当前位置:首页 » 网络连接 » 计算机网络着名发展史人物
扩展阅读
电脑开机很慢变黑屏 2025-05-20 07:40:26
词歌a107平板电脑触摸屏 2025-05-20 07:37:53

计算机网络着名发展史人物

发布时间: 2022-05-01 02:26:52

计算机网络领域的领军人物有哪些

路易斯·普赞
在20世纪70年代早期,路易斯·普赞在分别位于法国、意大利和英国的地点之间建立起了一个创新性的连接数据网络。尽管这个网络只能连接几十台电脑,但其简单高效性为日后建立一个可以连接数百万台电脑的网络指明了方向。普赞对于当今互联网的建立功不可没。如今他依然在为互联网的进一步演变与提高振臂高呼。
英国女王伊丽莎白二世嘉奖了五位计算机网络先驱者。他们将分享刚设立的伊丽莎白女王工程奖(Queen Elizabeth Prize for Engineering)共计100万英镑(合160万美元)的奖金。其中四位获奖者都闻名于世,他们是:互联网协议的创始人温特•瑟夫(Vint Cerf)和鲍勃•康恩(Bob Kahn),万维网之父蒂姆•伯纳斯•李(Tim Berners Lee),成功发明首款网页浏览器的马克•安德森(Marc Andreessen)。然而,获奖的第五人就相对少为人知。他就是路易斯•普赞(Louis Pouzin),一个喋喋不休的法国人,他对这个领域做出的贡献完全称得上举足轻重。

在20世纪70年代早期,普赞在分别位于法国、意大利和英国的地点之间建立起了一个创新性的连接数据网络。尽管这个网络只能连接几十台电脑,但其简单高效性为日后建立一个可以连接数百万台电脑的网络指明了方向。普赞的发明激发了瑟夫和康恩的想象力,他们两位将普赞设计的许多方面都融入了他们的互联网协议设计,而互联网协议如今正驱动着整个互联网的运行。然而,在20世纪70年代晚期,法国政府撤走了对普赞项目的资金支持。他眼看着互联网席卷全球,最终自己的工作得到了证明。“对于路易斯来说,这份认可实在来得太迟,太迟了,”瑟夫说道,“这不公平。”

1931年出生在法国中部一个小村庄的普赞是在父亲开的锯木厂长大的。他被厂里那些危险的机器——除了电锯,还有发动电锯的蒸汽机——深深地吸引了,但父亲不许他碰,只给了他一个麦卡诺(Meccano,商标名,主要是钢铁组合的模型玩具)的建筑工具箱用以修木。普赞的父母鼓励他去法国最知名的理工大学——巴黎综合理工大学(École Polytechnique)求学。毕业后,他为法国国营的邮政、电报和电信供应商(PTT)设计出了一套机械工具。

然而,在20世纪50年代,普赞在《世界报》(Le Monde,法国第二大全国性日报,是法国在海外销售量最大的日报。)上读到了从办公用品供应商的年度展览会上发来的一篇报道,在其中美国技术公司IBM承诺不久后就会推出能够处理各种官僚文书苦差的电脑产品。沉醉于电脑化的潜力,普赞跳槽去了IBM在法国的竞争对手布尔集团(Bull)。在那儿他手下有十几位工程师,齐力为那台“在双层两室的空间中才能摆得下”而且时而抽风的计算机Gamma 60(译者注:布尔公司于1960年开发的超级计算机,技术水平与欧美不相上下)打造应用软件。然而这项工作的严密与苛刻——以及布尔与美国无线电公司(RCA)的合作——暴露了普赞能力的局限。“我意识到,如果我不能学会编程或英语,就无法在计算机行业立足,”他回忆说。

随后普赞利用两年公休假前往美国麻省理工学院(Massachusetts Institute of Technology)进修,成功地完成了给自己定下的这两大任务。20世纪60年代早期,普赞举家移民美国,并加入了一个致力于分时系统研发的先锋小组,分时系统旨在通过允许多个用户同时在一台计算机上运行多个程序,以期使昂贵的大型主机达到更高的利用率。普赞设计出了一款叫作RUNCOM的程序,可以帮助用户自动设定一些单调重复的指令。他本人将那款程序描述为包裹在电脑呼吸内脏外的一个“壳”,这既为一整类软件工具“命令行接口”(command-line shells)的产生贡献了灵感,也是其名称的来源。如今,命令行接口仍在现代操作系统中发挥作用。

这个法国人的异议

在20世纪60年代晚期法国政客就启动了一项意在振兴国家计算机产业的宏伟计划。1971年,政府叫板国资计算机科学研究机构——法国信息与自动化研究所(IRIA:Institut de Recherche d'Informatique et d'Automatique),开始了建立一个全国性计算机网络的研究。普赞被聘为项目负责人,这个项目也就是着名的CYCLADES。

在这期间,普赞访问了美国多所大学去学习更多有关阿帕网(ARPANET:Advanced Research Projects Agency Network)的知识。阿帕网由法国军方注资,于两年前接通,依靠一项前景广阔的新技术“包交换”(packet switching)在电脑间传输数据。将所有的通信切分成固定大小的数据包并且允许电脑间可以相互传递数据包,这就意味着没有必要在网络上的一对电脑间建立一个直接的连接。即使两台电脑关联甚少,也能够完成连接,这就减少了成本,并且加强了网络的弹性。即使一个网络的连接失败了,数据包也可以通过其它网络传输。

但在普赞看来,阿帕网的设计仍很保守低效。每台计算机都要依赖复杂的硬件才能连接上网络,因为阿帕网的设计包含了一个连接建立阶段,在这段时间一对电脑间可以建立起一条通信网络连接路径。连接建立后,数据包就会在这条路径中有序地进行传输。

普赞的团队想出了一个更高效的办法。他们提出每个数据包都该被标记并作为一个单独信息“数据报”(datagram)进行传输,而不是为一串数据包预设好一条传输的路径。在阿帕网中,成串的数据包都严格按照一定的顺序传输,就像火车的车厢一样。而在CYCLADES网络中,每个数据包就像一辆单独的汽车,可以依据目的地独立地进行传输。就像抛接杂耍一样将数据包还原排序的应该是接收数据的电脑而并非网络,如果某个数据包在传输过程中丢失了,接收电脑还可以发出重新传输的指令。

这种包交换的“无连接”传输模式降低了网络中对那种复杂昂贵的为数据包预设路径的设备

需求。同时,这种简易的传输系统也使不同网络间的衔接更为容易。第一条CYCLADES网络连接在1973年首次面世,架构于巴黎和格勒诺布尔(法国东南部城市)之间,得到了瑟夫和康恩的密切关注,这两位科学家那时正在为如何赶超阿帕网绞尽脑汁。基于普赞CYCLADES系统中的无连接式数据报传输模式,瑟夫和康恩设计的TCP/IP协议栈如今仍在现代互联网中运行着。

连接中断

尽管CYCLADES系统的创新性折服了瑟夫和康恩,但这一发明却激起了法国PTT公司及纵贯欧洲的其它国营电信供应商的敌意。这些公司的工程师们认为普赞的设计根本不值得信赖,也不满CYCLADES解决网络智能这一问题的方式。普赞心知他的网络设计威胁到了PTT等国营公司的传统商业模式,却无意平息对方的愤怒。美国计算机科学家约翰•迪(John Day)回忆起1976年普赞做了一场尤其热血沸腾的讲座。“路易斯展示了一幅城堡的画像,上面标着‘PTT’,”他说,“从城堡的壁垒上垂下一条绳子,上面挂着PTT的用户;其他人则一直在对城堡的高墙发动猛攻。”

在20世纪70年代,欧洲的国营电信运营商都在纷纷打造自己的数据网络,这些网络基于过去用在电话上的电路交换技术。“构造复杂,造价高昂,”普赞说道,“而这正是吸引他们的主要因素。”当时的法国总统乔治•蓬皮杜(Georges Pompidou)是支持IRIA的,但在蓬皮杜1974年去世后,法国政府转而开始反对这一项目。1978年,政府将CYCLADES项目的预算大幅精简。“他们说,‘你此前的工作非常出色,现在是时候休息一下了,有空可以去逛逛公园放放风筝什么的’,”普赞如是说道。

同年,PTT公司接通了TRANSPAC网络(法国远程分组交换公用数据通信网),这是该公司自己设计的连接导向数据传输网络。“这简直是大错特错,”普赞评价说,“就是一条死胡同。”但起初看来并非如此——TRANSPAC系统巩固了Minitel的应用,Minitel是法国一家电话公司于1982年启用的消费者-信息服务,其应用非常广泛及成功。早在万维网面世10年前,Minitel就能够为法国市民提供网上银行、旅游预订及色情聊天室服务。在20世纪90年代晚期,它的用户就达到了2500万。然而,事实却证明,Minitel无法与互联网媲美,最终被停用。

即使是在法国政府丢弃了CYCLADES项目20年后,普赞的原上级以及盟友莫里斯•阿列格雷(Maurice Allègre)依然对此痛惜不已。“我们本可以成为互联网的先驱,”他在1999年写道,“如今我们却也只是用户之一而已,远远比不上那些可以决定互联网未来的大人物。”在这一打击后,普赞开始转向其它项目研究,最终步入了学术界。“我们浪费了这个伟人的众多心血,”约翰•迪说,“法国走向互联网技术的步伐比较滞缓,而这部分正是因为这一段历史。但如今,网络既成事实,普赞就成了法国人的英雄。”

最终,在2003年,法国政府授予了普赞“荣誉军团骑士级勋章”(Chevalier de la Légion d’Honneur),这是法国最高的奖励之一。普赞现年82岁,名义上已经退休了。但是,随着设计高雅的互联网遭受到越来越多来自商业和政治的压力,如同许多互联网的先驱人物一样,普赞仍在利用自己的名望推动着互联网向更开放和更透明的程度发展。他直言不讳地批评互联网管理的随意性,在这个管理体系中一些关键性决定居然是由公司、慈善机构和出身名门的笨蛋拼起来的一群杂烩来敲定。他们中的大多数都扎根于美国,在很大程度上对世界其他国家的用户不用担负任何责任。普赞尤其担心某五、六个互联网大公司的声势逐渐壮大,而这会造成用户会止步于“围起来的花园”这种封闭的体验,固定使用与这几个公司相关的站点和应用程序。在普赞看来,这已经触犯了互联网开放的传统。“在某种形式上,他们又在重造Minitel,”他这样评价道。

“在过去的30年,互联网本身并没有任何变化,在100年后,它理应有所不同。”

普赞提到,近年来有80%被采用的新技术标准是美国工程师或美国企业设计的。他尝试过游说议员对互联网体制做一些改变,以使其更易被非英语用户所理解。这场互联网改革运动在2009年获得了重要的一次胜利,当时ICANN(The Internet Corporation for Assigned Names and Numbers:互联网名称与数字地址分配机构),这个管理着互联网地址系统的慈善机构,破例地批准了一项发给用中文、阿拉伯语及其它非西方语言脚本编写的域名(包括网址)。

尽管有了这项决议,ICANN却是普赞最大的顾虑之一。ICANN驻于加利福利亚,对美国商务部也不怎么负责,近年来一直致力于提高其在国际互联网领域的影响力。然而,某些政府却觊觎ICANN手中的管理权——以及由网络专家组成的一个松散联盟IETF(The Internet Engineering Task Force:互联网工程任务组)的权利——政府希望把这些管理权转给一个更传统的国际组织如ITU(The International Telecommunication Union:国际电信联盟),一个落满灰尘的联合国组织,长期以来主要负责管理电话事务。一旦移权给ITU这样的官僚机构,就可能阻碍新标准的发展与采用。因此,许多国家就会得出这样的结论:美国引领的互联网现状才是最好的选择。普赞在考虑,将现有的国际机构分解重组生成一个新的组织是否会是一个更好的选择。

虽然普赞本是一个工程师而并非活动者,他关注的焦点却是互联网的运作支撑体系不该食古不化,而应继续演变与提高。“互联网只是作为一个实验性网络被创建了出来,”他说,“现在也仍然是。”他对美国、爱尔兰、西班牙以及世界各地在努力让互联网变得更加高效安全的研究者们给予了很大支持。“在过去的30年,互联网本身并没有任何变化,”他评价说,“在100年后,它理应有所不同。”普赞对于当今互联网的建立功不可没,但这并不意味着,他想互联网的发展止步不前。

⑵ 世界上第一个远程计算机网络仅有四个节点网络之父

发明之人是蒂姆·伯纳斯·李
网络是由节点和连线构成,表示诸对象及其相互联系。在数学上,网络是一种图,一般认为它专指加权图。网络除了数学定义外,还有具体的物理含义,即网络是从某种相同类型的实际问题中抽象出来的模型。
在计算机领域中,网络是信息传输、接收、共享的虚拟平台,通过它把各个点、面、体的信息联系到一起,从而实现这些资源的共享。
网络是人类发展史来最重要的发明,提高了科技和人类社会的发展。

⑶ 计算机先驱奖奖牌上那人是谁

  • 计算机先驱奖奖牌上那人是:查尔斯·巴贝奇.

  • 查尔斯·巴贝奇

  • 来自维基网络

    ⑷ 关于计算机网络发展的人物有哪些说一两个就行

    马云 唐骏

    ⑸ 计算机史着名人物及贡献,要详细,拜托了。

    1、冯·诺依曼(John Von Neumann , 1903-1957)

    冯·诺依曼是美籍匈牙利裔科学家、数学家,被誉为“电子计算机之父”。1945年,冯·诺依曼首先提出了“存储程序”的概念和二进制原理,后来人们把利用这种概念和原理设计的电子计算机系统统称为“冯.诺曼型结构”计算机。

    冯·诺依曼的主要贡献就是提出并实现了“存储程序”的概念。由于指令和数据都是二进制码,指令和操作数的地址又密切相关,因此,,当初选择这种结构是自然的。但是,这种指令和数据共享同一总线的结构,使得信息流的传输成为限制计算机性能的瓶颈,影响了数据处理速度的提高。

    在这篇论文里,范内瓦提出的诸多理论预测了二战后到现在几十年计算机的发展,许多后来的计算机领域先驱们都是受到这篇文章的启发,后来的鼠标,超文本等计算机技术的创造都是基于这篇具有理论时代意义的论文。

    ⑹ 例举几个为因特网发展做出巨大贡献的人物,并说明他们的贡献是什么

    “互联网之父”--Robert Kahn 和 Vinton Cerf。Vint 和 Robert Kahn 合作设计了 TCP/IP 协议及互联网的基础体系结构。为了表示对其工作的认可,克林顿总统于 1997 年向他们授予美国国家科技奖章。2005 年,Vint 和 Bob 荣获美国非军人最高荣誉勋章 — 总统自由勋章。这证明,他们在用于互联网内数据传输的软件代码方面的工作已将他们推上“改变了全球商务、通信和娱乐状况的数字革命的最前沿”。

    ⑺ 急求关于计算机发展历史的名人趣事!!!

    熟悉计算机发展历史的人大都知道,美国科学家冯·诺依曼历来被誉为“电子计算机之父”。可是,数学史界却同样坚持认为,冯·诺依曼是本世纪最伟大的数学家之一,他在遍历理论、拓扑群理论等方面做出了开创性的工作,算子代数甚至被命名为“冯·诺依曼代数”。 物理学家说,冯·诺依曼在30年代撰写的《量子力学的数学基础》已经被证明对原子物理学的发展有极其重要的价值;而经济学家则反复强调,冯·诺依曼建立的经济增长横型体系,特别是40年代出版的着作《博弈论和经济行为》,使他在经济学和决策科学领域竖起了一块丰碑。

    无论史学家怎样评价,美籍匈牙利裔学者约翰·冯·诺依曼(John Von Neumann , 1903-1957)都不愧为杰出的全才科学大师。人们至今还在津津乐道,这位天才人物的少年时代,竟请不到一位家庭教师……

    事情发生在1931年匈牙利首都布达佩斯。一位犹太银行家在报纸上刊登启事,要为他11岁的孩子招聘家庭教师,聘金超过常规10倍。布达佩斯人才济济,可一个多月过去,居然没有一人前往应聘。因为这个城市里,谁都听说过,银行家的长子冯·诺依曼聪慧过人,3岁就能背诵父亲帐本上的所有数字,6岁能够心算8位数除8位数的复杂算术题,8岁学会了微积分,其非凡的学习能力,使那些曾经教过他的教师惊诧不已。

    父亲无可奈何,只好把冯·诺依曼送进一所正规学校就读。不到一个学期,他班上的数学老师走进家门,告诉银行家自己的数学水平已远不能满足冯·诺依曼的需要。“假如不给创造这孩子深造的机会,将会耽误他的前途,”老师认真地说道,“我可以将他推荐给一位数学教授,您看如何?”

    银行家一听大喜过望,于是冯·诺依曼一面在学校跟班读书,一面由布达佩斯大学教授为他“开小灶”。然而,这种状况也没能维持几年,勤奋好学的中学生很快又超过了大学教授,他居然把学习的触角伸进了当时最新数学分支——集合论和泛函分析,同时还阅读了大量历史和文学方面的书籍,并且学会了七种外语。毕业前夕,冯·诺依曼与数学教授联名发表了他第一篇数学论文,那一年,他还不到17岁。

    考大学前夕,匈牙利政局出现动荡,冯·诺依曼便浪迹欧洲各地,在柏林和瑞士一些着名的大学听课。22岁时,他获瑞士苏黎士联邦工业大学化学工程师文凭。一年之后,轻而易举摘取布达佩斯大学数学博士学位。在柏林当了几年无薪讲师后,他转而攻向物理学,为量子 力学研究数学模型,又使自己在理论物理学领域占据了突出的地位。风华正茂的冯·诺依曼,靠着顽强的学习毅力,在科学殿堂里“横扫千军如卷席”,成为横跨“数、理、化”各门学科的超级全才。

    “机遇只偏爱有准备的头脑”。1928年,美国数学泰斗、普林斯顿高级研究院维伯伦教授(O.Veblen)广罗天下之英才,一封烫金的大红聘书,寄给了柏林大学这位无薪讲师,请他去美国讲授“量子力学理论课”。冯·诺依曼预料到未来科学的发展中心即将西移,欣然同意赴美国任教。1930年,27岁的冯·诺依曼被提升为教授;1933年,他又与爱因斯坦一起,被聘为普林斯顿高等研究院第一批终身教授,而且是6名大师中最年轻的一名。

    在冯·诺依曼的一些同事眼里,他简直就不象是我们这个地球上的人。他们评价说:“你看,琼尼的确不是凡人,但在同人们长期共同生活之后,他也学会了怎样出色地去模仿世人。”冯·诺依曼的思维极快,几乎在别人才说出头几句话时,就立即了解到对方最后的观点。天才出自于勤奋,他差不多天都工作到黎明才入睡,也常常因刻苦钻研而神魂颠倒,闹出些小笑话来。

    据说有一天,冯·诺依曼心神不定地被同事拉上了牌桌。一边打牌,一边还在想他的课题,狼狈不堪地“输掉”了10元钱。这位同事也是数学家,突然心生一计,想要捉弄一下他的朋友,于是用赢得的5元钱,购买了一本冯·诺依曼撰写的《博奕论和经济行为》,并把剩下的5元贴在书的封面,以表明他 “战胜”了“赌博经济理论家”,着实使冯·诺依曼“好没面子”。

    另一则笑话发生在ENIAC计算机研制时期。 有几个数学家聚在一起切磋数学难题,百思不得某题之解。有个人决定带着台式计算器回家继续演算。次日清晨,他眼圈黑黑,面带倦容走进办公室,颇为得意地对大家炫耀说:“我从昨天晚上一直算到今晨4点半,总算找到那难题的5种特殊解答。它们一个比一个更难咧!”说话间,冯·诺依曼推门进来,“什么题更难?”虽只听到后面半句话,但“更难”二字使他马上来了劲。有人把题目讲给他听,教授顿时把自己该办的事抛在爪哇国,兴致勃勃地提议道:“让我们一起算算这5种特殊的解答吧。”

    大家都想见识一下教授的“神算”本领。只见冯·诺依曼眼望天花板,不言不语,迅速进到“入定” 状态。约莫过了5分来钟,就说出了前4种解答,又在沉思着第5种……。青年数学家再也忍不住了,情不自禁脱口讲出答案。冯·诺依曼吃了一惊,但没有接话茬。又过了1分钟,他才说道:“你算得对!”

    那位数学家怀着崇敬的心情离去,他不无揶揄地想:“还造什么计算机哟,教授的头脑不就是一台‘超高速计算机’吗?”然而,冯·诺依曼却呆在原地,陷入苦苦的思索,许久都不能自拔。有人轻声向他询问缘由,教授不安地回答说:“我在想,他究竟用的是什么方法,这么快就算出了答案。”听到此言,大家不禁哈哈大笑:“他用台式计算器算了整整一个夜晚!”冯·诺依曼一愣,也跟着开怀大笑起来。

    冯·诺依曼对科学做出的最大贡献当然是在计算机领域。

    1944年仲夏的一个傍晚,戈德斯坦来到阿贝丁车站,等候去费城的火车,突然看见前面不远处,有个熟悉的身影向他走过来。来者正是闻名世界的大数学家冯·诺依曼。天赐良机,戈德斯坦感到绝不能放过这次偶然的邂逅,他把早已埋藏在心中的几个数学难题,一古脑儿倒出来,向数学大师讨教。数学家和蔼可亲,没有一点架子,耐心地为戈德斯坦排忧解难。听着听着,冯·诺依曼不觉流露出吃惊的神色,敏锐地从数学问题里,感到眼前这位青年身边正发生着什么不寻常的事情。他开始反过来向戈德斯坦发问,直问得年轻人“好像又经历了一次博士论文答辩”。最后,戈德斯坦毫不隐瞒地告诉他莫尔学院的电子计算机课题和目前的研究进展。

    冯·诺依曼真的被震惊了,随即又感到极其兴奋。从1940年起,他就是阿贝丁试炮场的顾问,同样的计算问题也曾使数学大师焦虑万分。他急不可耐地向戈德斯坦表示,希望亲自到莫尔学院看一看那台尚未出世的机器。多年后,戈德斯坦回忆说:“当琼尼看到我们正在进行的一件工作时,他就双脚跳到电子计算机旁”。

    莫契利和埃克特高兴地等待着冯·诺依曼的来访,他们也迫切希望得到这位着名学者的指导,同时又有点儿怀疑。埃克特私下对莫契利说道:“你只要听听他提的第一个问题,就能判断出冯·诺依曼是不是真正的天才”。

    骄阳似火的8月,冯·诺依曼风尘仆仆地赶到了莫尔学院的试验基地,马不停蹄约见攻关小组成员。莫契利想起了埃克特的话,竖着耳朵聆听数学大师的第一个问题。当他听到冯·诺依曼首先问及的是机器的逻辑结构时,不由得对埃克特心照不宣地一笑,两人同时都被这位大科学家的睿智所折服!从此,冯· 诺依曼成为莫尔学院电子计算机攻关小组的实际顾问,与小组成员频繁地交换意见。年轻人机敏地提出各种设想,冯·诺依曼则运用他渊博的学识把讨论引向深入,逐步形成电子计算机的系统设计思想。冯·诺依曼以其厚实的科技功底、极强的综合能力与青年们结合,极大提高了莫尔小组的整体水平,使莫尔小组成为“人才放大器”,至今依然是科学界敬慕的科研组织典范。

    人们后来把“电子计算机之父”的桂冠戴在冯·诺依曼头上,而不是第一台电脑的两位实际研制者,这并不是没有根据的。莫契利和埃克特研制的ENIAC计算机获得巨大的成功,但它最致命的缺点是程序与计算两分离。指挥近2万电子管“开关”工作的程序指令,被存 放在机器的外部电路里。需要计算某个题目前,埃克特必须派人把数百条线路用手接通,像电话接线员那样工作几小时甚至好几天,才能进行几分钟运算。

    在ENIAC尚未投入运行前,冯·诺依曼就已开始准备对这台电子计算机进行脱胎换的改造。在短短10个月里,冯·诺依曼迅速把概念变成了方案。新机器方案命名为“离散变量自动电子计算机”,英文缩写EDVAC。1945年6月,冯·诺依曼与戈德斯坦等人,联名发表了一篇长达101页纸洋洋万言的报告,即计算机史上着名的“101页报告”。这份报告奠定了现代电脑体系结构坚实的根基,直到今天,仍然被认为是现代电脑科学发展里程碑式的文献。

    在EDVAC报告中, 冯·诺依曼明确规定出计算机的五大部件: 运算器CA、 逻辑控制器CC、存储器M、输入装置I和输出装置O,并描述了五大部件的功能和相互关系。与ENIAC相比,EDVAC的改进首先在于冯·诺依曼巧妙地想出“存储程序”的办法,程序也被他当作数据存进了机器内部,以便电脑能自动一条接着一条地依次执行指令,再也不必去接通什么线路。其次,他明确提出这种机器必须采用二进制数制,以充分发挥电子器件的工作特点,使结构紧凑且更通用化。人们后来把按这一方案思想设计的机器统称为“诺依曼机”。

    自冯·诺依曼设计的EDVAC计算机始,直到今天我们用“奔腾”芯片制作的多媒体计算机为止,电脑一代又一代的“传人”,大大小小千千万万台计算机,都没能够跳出“诺依曼机”的掌心。冯·诺依曼为现代计算机的发展指明了方向,从这个意义上讲,他是当之无愧的“电子计算机之父”。当然,随着人工智能和神经网络计算机的发展,“诺依曼机”一统天下的格局已经被打破,但冯·诺依曼对于发展电脑做出的巨大功绩,永远也不会因此而泯灭其光辉!

    第二次世界大战结束后,由于种种原因,ENIAC研制小组发生令人痛惜的分裂,“内存程序”的机器无法被立即研制。冯·诺依曼、戈德斯坦和勃克斯三人返回了新泽西州普林斯顿大学。1946年,他们为普林斯顿高级研究院先期研制出新的IAS计算机(IAS即高级研究院英文缩写)。

    冯·诺依曼的归来,在普林斯顿掀起了一股强劲的电脑热。一向冷冷清清的研究院沸腾了,大批专业人才仰慕他的大名,纷至沓来,使普林斯顿高级研究院一时间成为美国电子计算机的研究中心。 冯·诺依曼乘热打铁,着手将他那101页计算机方案付诸实施。1951 年,这台凝聚着他多年心血的EDSAC计算机终于面世,程序储存在机器内部后,效率比ENIAC提高数百倍,只用了3563个电子管和1万只晶体二极管,以1024个水银延迟线来储存程序和数据,消耗电力和占地面积亦只有ENIAC的三分之一。

    在冯·诺依曼研制ISA电脑的期间,美国涌现了一批按照普林斯顿大学提供的ISA照片结构复制的计算机。例如,洛斯阿拉莫斯国家实验室研制的MANIAC,伊利诺斯大学制造的ILLAC。雷明顿·兰德公司科学家沃尔(W. Ware)甚至不顾冯·诺依曼的反对,把他研制的机器命名为JOHNIAC(“约翰尼克” ,“约翰”即冯·诺依曼的名字)。冯·诺依曼的大名已经成为现代电脑的代名词。

    在普林斯顿,冯·诺依曼还利用计算机去解决各个科学领域中的问题。他提出了一项用计算机预报天气的研究计划,构成了今天系统的气象数值预报的基础;他受聘担任IBM公司的科学顾问,帮助该公司催生出第一台存储程序的电脑IBM 701;他对电脑与人脑的相似性怀着浓厚的兴趣,准备从计算机的角度研究人类的思维;他虽然没有参加达特默斯首次人工智能会议,但他开创了人工智能研究领域的数学学派;他甚至是提出计算机程序可以复制的第一人,在半个世纪前就预言了电脑病毒的出现……

    1957年2月8日,冯·诺依曼身患骨癌,甚至没来得及写完那篇关于用电脑模拟人类语言的讲稿,就在美国德里医院与世长辞,只生活了 54个春秋。他一生获得了数不清的奖项,包括两次获得美国总统奖,1994年还被追授予美国国家基础科学奖。他是电脑发展史上最有影响的一代伟人。

    ⑻ 计算机网络在发展的过程中出现过哪些关键人物列举10个人.急!!在线等~

    1、Larry Page and Sergey Brin (Google联合创始人)
    2、Tim Berners-Lee (互联网创始人—)
    3 Mark Zuckerberg (Facebook创始人)
    4、Shawn Fanning (Napster,Rupture,P2P的创始人)
    5、Kevin Rose (Digg,新闻业)
    6、Matt Mullenweg (WordPress)WEBLOG
    7、Bram Cohen (BitTorrent)
    8、Pierre Omidyar (eBay)
    9、Mike Morhaime (Blizzard Entertainment - World of
    Warcraft)暴雪公司:魔兽争霸
    10、Jimmy Wales (Wikipedia维基网络)
    11、Craig Newmark (社区网站Craigslist)
    12、Chad Hurley and Steve Chen (Youtube联合创始人)
    13、David Filo and Jerry Yang (Yahoo三巨头:杨致远、大卫·菲罗、塞梅尔)
    14、Jack Ma (Alibaba)马云
    15、Jeff Preston Bezos (Amazon亚马逊首席执行官)

    ⑼ 列举3位在计算机发展史上做出重要贡献的华裔人士,介绍他们的简单生平和贡献。

    1:计算机语言之父:尼盖德

    10日,计算机编程语言的先驱克里斯汀·尼盖德死于心脏病,享年75岁。尼盖德帮助因特网奠下了基础,为计算机业做出了巨大贡献。据挪威媒体报道,尼盖德11日在挪威首都奥斯陆逝世。

    尼盖德是奥斯陆大学的教授,因为发展了Simula编程语言,为MS-DOS和因特网打下了基础而享誉国际。克里斯汀·尼盖德于1926年在奥斯陆出生,1956年毕业于奥斯陆大学并取得数学硕士学位,此后致力于计算机计算与编程研究。

    1961年~1967年,尼盖德在挪威计算机中心工作,参与开发了面向对象的编程语言。因为表现出色,2001年,尼盖德和同事奥尔·约安·达尔获得了2001年A.M.图灵机奖及其它多个奖项。当时为尼盖德颁奖的计算机协会认为他们的工作为Java,C++等编程语言在个人电脑和家庭娱乐装置的广泛应用扫清了道路,“他们的工作使软件系统的设计和编程发生了基本改变,可循环使用的、可靠的、可升级的软件也因此得以面世

    世纪发现·从图灵机到冯·诺依曼机

    英国科学家艾伦·图灵1937年发表着名的《论应用于解决问题的可计算数字》一文。文中提出思考原理计算机——图灵机的概念,推进了计算机理论的发展。1945年图灵到英国国家物理研究所工作,并开始设计自动计算机。1950年,图灵发表题为《计算机能思考吗?》的论文,设计了着名的图灵测验,通过问答来测试计算机是否具有同人类相等的智力。

    图灵提出了一种抽象计算模型,用来精确定义可计算函数。图灵机由一个控制器、一条可无限伸延的带子和一个在带子上左右移动的读写头组成。这个在概念上如此简单的机器,理论上却可以计算任何直观可计算的函数。图灵机作为计算机的理论模型,在有关计算机和计算复杂性的研究方面得到广泛应用。

    计算机是人类制造出来的信息加工工具。如果说人类制造的其他工具是人类双手的延伸,那么计算机作为代替人脑进行信息加工的工具,则可以说是人类大脑的延伸。最初真正制造出来的计算机是用来解决数值计算问题的。二次大战后期,当时为军事目的进行的一系列破译密码和弹道计算工作,越来越复杂。大量的数据、复杂的计算公式,即使使用电动机械计算器也要耗费相当的人力和时间。在这种背景下,人们开始研制电子计算机。

    世界上第一台计算机“科洛萨斯”诞生于英国,“科洛萨斯”计算机是1943年3月开始研制的,当时研制“科洛萨斯”计算机的主要目的是破译经德国“洛伦茨”加密机加密过的密码。使用其他手段破译这种密码需要6至8个星期,而使用‘科洛萨斯’计算机则仅需6至8小时。1944年1月10日,“科洛萨斯”计算机开始运行。自它投入使用后,德军大量高级军事机密很快被破译,盟军如虎添翼。“科洛萨斯”比美国的ENIAC计算机问世早两年多,在二战期间破译了大量德军机密,战争结束后,它被秘密销毁了,故不为人所了解。

    尽管第一台电子计算机诞生于英国,但英国没有抓住由计算机引发的技术和产业革命的机遇。相比之下,美国抓住了这一历史机遇,鼓励发展计算机技术和产业,从而崛起了一大批计算机产业巨头,大大促进了美国综合国力的发展。1944年美国国防部门组织了有莫奇利和埃克脱领导的ENIAC计算机的研究小组,当时在普林斯顿大学工作的现代计算机的奠基者美籍匈牙利数学家冯·诺依曼也参加了者像研究工作。1946年研究工作获得成功,制成了世界上第一台电子数字计算机ENIAC。这台用18000只电子管组成的计算机,尽管体积庞大,耗电量惊人,功能有限,但是确实起了节约人力节省时间的作用,而且开辟了一个计算机科学技术的新纪元。这也许连制造它的科学家们也是始料不及的。

    最早的计算机尽管功能有限,和现代计算机有很大的差别,但是它已具备了现代计算机的基本部分,那就是运算器、控制器和存储器。

    运算器就象算盘,用来进行数值运算和逻辑运算,并获得计算结果。而控制器就象机算机的司令部,指挥着计算机各个部分的工作,它的指挥是靠发出一系列控制信号完成的。

    计算机的程序、数据、以及在运算中产生的中间结果以及最后结果都要有个存储的地方,这就是计算机的第三个部件——存储器。

    计算机是自动进行计算的,自动计算的根据就是存储于计算机中的程序。现代的计算机都是存储程序计算机,又叫冯·诺依曼机,这是因为存储程序的概念是冯·诺依曼提出的。人们按照要解决的问题的数学描述,用计算机能接受的“语言”编制成程序,输入并存储于计算机,计算机就能按人的意图,自动地高速地完成运算并输出结果。程序要为计算机提供要运算的数据、运算的顺序、进行何种运算等等。

    微电子技术的产生使计算机的发展又有了新的机遇,它使计算机小型化成为可能。微电子技术的发展可以追溯到晶体管的出现。1947年美国电报电话公司的贝尔实验室的三位学家巴丁、不赖顿和肖克莱制成第一支晶体管,开始了以晶体管代替电子管的时代。

    晶体管的出现可以说是集成电路出台的序幕。晶体管出现后,一些科学家发现,把电路元器件和连线像制造晶体管那样做在一块硅片上可实现电路的小型化。于是,晶体管制造工业经过10年的发展后,1958年出现了第一块集成电路。

    微电子技术的发展,集成电路的出现,首先引起了计算机技术的巨大变革。现代计算机多把运算器和控制器做在一起,叫微处理器,由于计算机的心脏——微处理器(计算机芯片)的集成化,使微型计算机应运尔生,并在70-80年代间得到迅速发展,特别是IBM PC个人计算机出现以后,打开了计算机普及的大门,促进了计算机在各行各业的应用,五六十年代,价格昂贵、体积庞大、耗电量惊人的计算机,只能在少数大型军事或科研设施中应用,今天由于采用了大规模集成电路,计算机已经进入普通的办公室和家庭。

    标志集成电路水平的指标之一是集成度,即在一定尺寸的芯片上能做出多少个晶体管,从集成电路出现到今天,仅40余年,发展的速度却是惊人的,芯片越做越小,这对生产、生活的影响也是深远的。ENIAC计算机占地150平方米,重达30吨,耗电量几百瓦,其所完成的计算,今天高级一点的袖珍计算器皆可完成。这就是微电子技术和集成电路所创造的奇迹。

    现状与前景

    美国科学家最近指出,经过30多年的发展,计算机芯片的微型化已接近极限。计算机技术的进一步发展只能寄希望于全新的技术,如新材料、新的晶体管设计方法和分子层次的计算技术。

    过去30多年来,半导体工业的发展基本上遵循穆尔法则,即安装在硅芯片上的晶体管数目每隔18个月就翻一番。芯片体积越来越小,包含的晶体管数目越来越多,蚀刻线宽越来越小;计算机的性能也因而越来越高,同时价格越来越低。但有人提出,这种发展趋势最多只能再持续10到15年的时间。

    美国最大的芯片生产厂商英特尔公司的科学家保罗·A·帕坎最近在美国《科学》杂志上撰文说,穆尔法则(1965年提出的预测半导体能力将以几何速度增长的法则)也许在未来10年里就会遇到不可逾越的障碍:芯片的微型化已接近极限。人们尚未找到超越该极限的方法,一些科学家将其称之为“半导体产业面临的最大挑战”。

    目前最先进的超大规模集成电路芯片制造技术所能达到的最小线宽约为0.18微米,即一根头发的5%那样宽。晶体管里的绝缘层只有4到5个原子那样厚。日本将于2000年初开始批量生产线宽只有0. 13微米的芯片。预计这种芯片将在未来两年得到广泛应用。下一步是推出线宽0. 1微米的的芯片。帕坎说,在这样小的尺寸上,晶体管只能由不到100个原子构成。

    芯片线宽小到一定程度后,线路与线路之间就会因靠得太近而容易互相干扰。而如果通过线路的电流微弱到只有几十个甚至几个电子,信号的背景噪声将大到不可忍受。尺寸进一步缩小,量子效应就会起作用,使传统的计算机理论完全失效。在这种情况下,科学家必须使用全新的材料、设计方法乃至运算理论,使半导体业和计算机业突破传统理论的极限,另辟蹊径寻求出路。

    当前计算机发展的主流是什么呢?国内外比较一致的看法是

    RISC

    RISC是精简指令系统计算机(Reced Instruction Set Computer)的英文缩写。所谓指令系统计算机所能执行的操作命令的集合。程序最终要变成指令的序列,计算机能执行。计算机都有自己的指令系统,对于本机指令系统的指令,计算机能识别并执行,识别就是进行译码——把代表操作的二进制码变成操作所对应的控制信号,从而进行指令要求的操作。一般讲,计算机的指令系统约丰富,它的功能也约强。RISC系统将指令系统精简,使系统简单,目的在于减少指令的执行时间,提高计算机的处理速度。传统的计算机一般都是每次取一条指令,而RISC系统采用多发射结构,在同一时间发射多条指令,当然这必须增加芯片上的执行部件。

    并行处理技术

    并行处理技术也是提高计算机处理速度的重要方向,传统的计算机,一般只有一个中央处理器,中央处理器中执行的也只是一个程序,程序的执行是一条接一条地顺序进行,通过处理器反映程序的数据也是一个接一个的一串,所以叫串行执行指令。并行处理技术可在同一时间内多个处理器中执行多个相关的或独立的程序。目前并行处理系统分两种:一种具有4个、8个甚至32个处理器集合在一起的并行处理系统,或称多处理机系统;另一种是将100个以上的处理器集合在一起,组成大规模处理系统。这两种系统不仅是处理器数量多少之分,其内部互连方式、存储器连接方式、操作系统支持以及应用领域都有很大的不同。

    曾经有一段时间,超级计算机是利用与普通计算机不同的材料制造的。最早的克雷1号计算机是利用安装在镀铜的液冷式电路板上的奇形怪状的芯片、通过手工方式制造的。而克雷2号计算机看起来更加奇怪,它在一个盛有液态碳氟化合物的浴器中翻腾着气泡———采用的是“人造血液”冷却。并行计算技术改变了所有这一切。现在,世界上速度最快的计算机是美国的“Asci Red”, 这台计算机的运算速度为每秒钟2·1万亿次,它就是利用与个人计算机和工作站相同的元件制造的,只不过超级计算机采用的元件较多而已,内部配置了9000块标准奔腾芯片。鉴于目前的技术潮流,有一点是千真万确的,那就是超级计算机与其它计算机的差别正在开始模糊。

    至少在近期,这一趋势很明显将会继续下去。那么,哪些即将到来的技术有可能会扰乱计算技术的格局,从而引发下一次超级计算技术革命呢?

    这样的技术至少有三种:光子计算机、生物计算机和量子计算机。它们能够成为现实的可能性都很小,但是由于它们具有引发革命的潜力,因此是值得进行研究的。

    光子计算机

    光子计算机可能是这三种新技术中最接近传统的一种。几十年来,这种技术已经得到了有限的应用,尤其是在军用信号处理方面。

    在光子计算技术中,光能够像电一样传送信息,甚至传送效果更好,,光束在把信息从一地传送至另一地的效果要优于电,这也就是电话公司利用光缆进行远距离通信的缘故。光对通信十分有用的原因,在于它不会与周围环境发生相互影响,这是它与电不同的一点。两束光线可以神不知鬼不觉地互相穿透。光在长距离内传输要比电子信号快约100倍,光器件的能耗非常低。预计,光子计算机的运算速度可能比今天的超级计算机快1000到10000倍。

    令人遗憾的是,正是这种极端的独立性使得人们难以制造出一种全光子计算机,因为计算处理需要利用相互之间的影响。要想制造真正的光子计算机,就必须开发出光学晶体管,这样就可以用一条光束来开关另一条光束了。这样的装置已经存在,但是要制造具有适合的性能特征的光学晶体管,还需要仰仗材料科学领域的重大突破。

    生物计算机

    与光子计算技术相比,大规模生物计算技术实现起来更为困难,不过其潜力也更大。不妨设想一种大小像柚子,能够进行实时图像处理、语音识别及逻辑推理的超级计算机。这样的计算机已经存在:它们就是人脑。自本世纪70年代以来,人们开始研究生物计算机(也叫分子计算机),随着生物技术的稳步发展,我们将开始了解并操纵制造大脑的基因学机制。

    生物计算机将具有比电子计算机和光学计算机更优异的性能。如果技术进步继续保持目前的速度,可以想象在一二十年之后,超级计算机将大量涌现。这听起来也许像科幻小说,但是实际上已经出现了这方面的实验。例如,硅片上长出排列特殊的神经元的“生物芯片”已被生产出来。

    在另外一些实验室里,研究人员已经利用有关的数据对DNA的单链进行了编码,从而使这些单链能够在烧瓶中实施运算。这些生物计算实验离实用还很遥远,然而1958年时我们对集成电路的看法也不过如此。

    量子计算机

    量子力学是第三种有潜力创造超级计算革命的技术。这一概念比光子计算或生物计算的概念出现得晚,但是却具有更大的革命潜力。由于量子计算机利用了量子力学违反直觉的法则,它们的潜在运算速度将大大快于电子计算机。事实上,它们速度的提高差不多是没有止境的。一台具有5000个左右量子位的量子计算机可以在大约3 0秒内解决传统超级计算机需要100亿年才能解决的素数问题。

    眼下恰好有一项重要的用途适合这种貌似深奥的作业。通过对代表数据的代码进行加密,计算机数据得到保护。而解密的数学“钥匙”是以十分巨大的数字——一般长达250位——及其素数因子的形式出现的。这样的加密被认为是无法破译的,因为没有一台传统计算机能够在适当的时间里计算出如此巨大数字的素数因子。但是,至少在理论上,量子计算机可以轻易地处理这些素数加密方案。因此,量子计算机黑客将不仅能够轻而易举地获得常常出没于各种计算机网络(包括因特网)中的信用卡号码及其他个人信息,而且能够轻易获取政府及军方机密。这也正是某些奉行“宁为人先、莫落人后”这一原则的政府机构一直在投入巨资进行量子计算机研究的原因。

    量子超级网络引擎

    量子计算机将不大可能破坏因特网的完整性,不仅如此,它们到头来还可能给因特网带来巨大的好处。两年前,贝尔实验室的研究人员洛夫·格罗弗发现了用量子计算机处理我们许多人的一种日常事务的方法———搜寻隐藏在浩如烟海的庞大数据库内的某项信息。寻找数据库中的信息就像是在公文包里找东西一样。如果各不相同的量子位状态组合分别检索数据库不同的部分,那么其中的一种状态组合将会遭遇到所需查找的信息。

    由于某些技术的限制,量子搜索所能带来的速度提高并没有预计的那么大,例如,如果要在1亿个地址中搜索某个地址,传统计算机需要进行大约5000万次尝试才能找到该地址;而量子计算机则需大约1万次尝试,不过这已经是很大的改善了,如果数据库增大的话,改善将会更大。此外,数据库搜索是一种十分基础的计算机任务,任何的改善都很可能对大批的应用产生影响。

    迄今为止,很少有研究人员愿意预言量子计算机是否将会得到更为广泛的应用。尽管如此,总的趋势一直是喜人的。尽管许多物理学家————如果不是全部的话———一开始曾认为量子力学扑朔迷离的本性必定会消除实用量子计算技术面临的难以捉摸而又根深蒂固的障碍,但已经进行的深刻而广泛的理论研究却尚未能造就一台实实在在的机器。

    那么,量子计算机的研究热潮到底意味着什么?计算技术的历史表明,总是先有硬件和软件的突破,然后才出现需要由它们解决的问题。或许,到我们需要检索那些用普通计算机耗时数月才能查完的庞大数据库时,量子计算机才将会真正开始投入运行。研究将能取代电子计算机的技术并非易事。毕竟,采用标准微处理器技术的并行计算机每隔几年都会有长足的进步。因此,任何要想取代它的技术必须极其出色。不过,计算技术领域的进步始终是十分迅速的,并且充满了意想不到的事情。对未来的预测从来都是靠不住的,事后看来,那些断言“此事不可行”的说法,才是最最愚蠢的。

    除了超级计算机外,未来计算机还会在哪些方面进行发展呢?

    多媒体技术

    多媒体技术是进一步拓宽计算机应用领域的新兴技术。它是把文字、数据、图形、图像和声音等信息媒体作为一个集成体有计算机来处理,把计算机带入了一个声、文、图集成的应用领域。多媒体必须要有显示器、键盘、鼠标、操纵杆、视频录象带/盘、摄象机、输入/输出、电讯传送等多种外部设备。多媒体系统把计算机、家用电器、通信设备组成一个整体由计算机统一控制和管理。多媒体系统将对人类社会产生巨大的影响。

    网络

    当前的计算机系统多是连成网络的计算机系统。所谓网络,是指在地理上分散布置的多台独立计算机通过通信线路互连构成的系统。根据联网区域的大小,计算机网络可分成居域网和远程网。小至一个工厂的各个车间和办公室,大到跨洲隔洋都可构成计算机网。因特网将发展成为人类社会中一股看不见的强大力量--它悄无声息地向人们传递各种信息,以最快、最先进的手段方便人类的工作和生活。现在的因特网发展有将世界变成“地球村”的趋势。

    专家认为PC机不会马上消失,而同时单功能或有限功能的终端设备(如手执电脑、智能电话)将挑战PC机作为计算机革新动力的地位。把因特网的接入和电子邮件的功能与有限的计算功能结合起来的“置顶式”计算机如网络电视将会很快流行开来。单功能的终端最终会变得更易应用

    智能化计算机

    我们对大脑的认识还很肤浅,但是使计算机智能化的工作绝不能等到人们对大脑有足够认识以后才开始。使计算机更聪明,从开始就是人们不断追求的目标。目前用计算机进行的辅助设计、翻译、检索、绘图、写作、下棋、机械作业等方面的发展,已经向计算机的智能化迈进了一步。随着计算机性能的不断提高,人工智能技术在徘徊了50年之后终于找到了露脸的机会,世界头号国际象棋大师卡斯帕罗夫向“深蓝”的俯首称臣,让人脑第一次尝到了在电脑面前失败的滋味。人类从来没有像今天这样深感忧惧,也从来没有像今天这样强烈地感受到认识自身的需要。

    目前的计算机,多数是冯·诺依曼型计算机,它在认字、识图、听话及形象思维方面的功能特别差。为了使计算机更加人工智能化,科学家开始使计算机模拟人类大脑的功能,近年来,各先进国家注意开展人工神经网络的研究,向计算机的智能化迈出了重要的一步。

    人工神经网络的特点和优越性,主要表现在三个方面:具有自学功能。六如实现图象识别时,只要线把许多不同的图象样板和对应的应识别的结果输入人工神经网络,网络就会通过自学功能,漫漫学会识别类似的图像。自学功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供同经济预测、市场预测、效益预测、其前途是很远大的。

    具有联想储存功能。人的大脑是具有两厢功能的。如果有人和你提起你幼年的同学张某某。,你就会联想起张某某的许多事情。用人工神经网络的反馈网络就可以实现这种联想。

    具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。

    人工神经网络是未来为电子技术应用的新流域。智能计算机的构成,可能就是作为主机的冯·诺依曼机与作为智能外围的人工神经网络的结合。

    人们普遍认为智能计算机将像穆尔定律(1965年提出的预测半导体能力将以几何速度增长的定律)的应验那样必然出现。提出这一定律的英特尔公司名誉董事长戈登·穆尔本人也同意这一看法,他认为:“硅智能将发展到很难将计算机和人区分开来的程度。”但是计算机智能不会到此为止。许多科学家断言,机器的智慧会迅速超过阿尔伯特·爱因斯坦和霍金的智慧之和。霍金认为,就像人类可以凭借其高超的捣弄数字的能力来设计计算机一样,智能机器将创造出性能更好的计算机。最迟到下个世纪中叶(而且很可能还要快得多),计算机的智能也许就会超出人类的理解能力。

    ⑽ 因特网的发明人

    互联网之父,指互联网的创始人、发明人,这一美称被先后授予多人,包括:蒂姆·伯纳斯·李(Tim Berners-Lee)、温顿·瑟夫(Vint Cerf 原名:Vinton Gray "Vint" Cerf )、罗伯特·卡恩(Robert Elliot Kahn)等, 所以“互联网之父不是一个人,而是一个群体。

    • 外文名

    • Tim Berners-Lee

    • 国籍

    • 英国

    • 出生地

    • 英国

    • 出生日期

    • 1955年

    • 主要成就

    • 是万维网的发明者,互联网之父

    • 目录

    • 1蒂姆·伯纳斯·李

    • 2温顿·瑟夫

    • 3罗伯特・卡恩

    • 蒂姆·伯纳斯·李

      编辑

      蒂姆·伯纳斯·李(Tim Berners-Lee)爵士(1955年出生于英国)是万维网的发明者,互联网之父,英王功

      罗伯特・卡恩Robert Elliot Kahn, 现代全球互联网发展史上最着名的科学家之一,TCP/IP协议合作发明者,互联网雏形Arpanet网络系统设计者,“信息高速公路”概念创立人。美国国家工程协会(National Academy of Engineering)成员,美国电气与电子工程师IEEE学会(IEEE)成员,美国人工智能协会(American Association for Artificial Intelligence)成员,美国计算机协会(ACM) 成员,前美国总统科技顾问。罗伯特·卡恩1986年创立美国全国研究创新联合会(CNRI,Corporation for National Research Initiatives)并任主席。CNRI是罗伯特·卡恩于1986年亲自领导创建的,为美国信息基础设施研究和发展提供指导和资金支持的非营利组织,同时也执行IETF的秘书处职能。