可以说是一个概念,属于一个类,只是设备存在一定差异;像计算机网络中的
路由器
性能和功能上都是要优于
家用路由器
的,计算机网络中的路由器可能需要带动成百上千人上网,使用的人多了,那对应的需求也会很多,那相对的功能会多;而家用的只要保证几个人能正常上网就可以了。
❷ 问:计算机网络中“路由器”与“网关”的含义与区别
路由器是一种连接多个网络或网段的网络设备,它能将不同网络或网段之间的数据信息进行“翻译”,以使它们能够相互“读”懂对方的数据,从而构成一个更大的网络。
路由器有两大典型功能,即数据通道功能和控制功能。数据通道功能包括转发决定、背板转发以及输出链路调度等,一般由特定的硬件来完成;控制功能一般用软件来实现,包括与相邻路由器之间的信息交换、系统配置、系统管理等。
网关是互连网络中操作在OSI运输层之上的设施,所以称为设施, 是因为网关不一定是一台,有可能在一台主机中实现网关功能。当然也不排除使用一台计算机来专门实现网关具有的协议转换功能。
❸ 网络中的路由器是什么呀
路由器是什么
路由器是一种连接多个网络或网段的网络设备,它能将不同网络或网段之间的数据信息进行“翻译”,以使它们能够相互“读”懂对方的数据,从而构成一个更大的网络。
路由器有两大典型功能,即数据通道功能和控制功能。数据通道功能包括转发决定、背板转发以及输出链路调度等,一般由特定的硬件来完成;控制功能一般用软件来实现,包括与相邻路由器之间的信息交换、系统配置、系统管理等。
多少年来,路由器的发展有起有伏。90年代中期,传统路由器成为制约因特网发展的瓶颈。ATM交换机取而代之,成为IP骨干网的核心,路由器变成了配角。进入90年代末期,Internet规模进一步扩大,流量每半年翻一番,ATM网又成为瓶颈,路由器东山再起,Gbps路由交换机在1997年面世后,人们又开始以Gbps路由交换机取代ATM交换机,架构以路由器为核心的骨干网。
附:路由器原理及路由协议
近十年来,随着计算机网络规模的不断扩大,大型互联网络(如Internet)的迅猛发展,路由技术在网络技术中已逐渐成为关键部分,路由器也随之成为最重要的网络设备。用户的需求推动着路由技术的发展和路由器的普及,人们已经不满足于仅在本地网络上共享信息,而希望最大限度地利用全球各个地区、各种类型的网络资源。而在目前的情况下,任何一个有一定规模的计算机网络(如企业网、校园网、智能大厦等),无论采用的是快速以大网技术、FDDI技术,还是ATM技术,都离不开路由器,否则就无法正常运作和管理。
1 网络互连
把自己的网络同其它的网络互连起来,从网络中获取更多的信息和向网络发布自己的消息,是网络互连的最主要的动力。网络的互连有多种方式,其中使用最多的是网桥互连和路由器互连。
1.1 网桥互连的网络
网桥工作在OSI模型中的第二层,即链路层。完成数据帧(frame)的转发,主要目的是在连接的网络间提供透明的通信。网桥的转发是依据数据帧中的源地址和目的地址来判断一个帧是否应转发和转发到哪个端口。帧中的地址称为“MAC”地址或“硬件”地址,一般就是网卡所带的地址。
网桥的作用是把两个或多个网络互连起来,提供透明的通信。网络上的设备看不到网桥的存在,设备之间的通信就如同在一个网上一样方便。由于网桥是在数据帧上进行转发的,因此只能连接相同或相似的网络(相同或相似结构的数据帧),如以太网之间、以太网与令牌环(token ring)之间的互连,对于不同类型的网络(数据帧结构不同),如以太网与X.25之间,网桥就无能为力了。
网桥扩大了网络的规模,提高了网络的性能,给网络应用带来了方便,在以前的网络中,网桥的应用较为广泛。但网桥互连也带来了不少问题:一个是广播风暴,网桥不阻挡网络中广播消息,当网络的规模较大时(几个网桥,多个以太网段),有可能引起广播风暴(broadcasting storm),导致整个网络全被广播信息充满,直至完全瘫痪。第二个问题是,当与外部网络互连时,网桥会把内部和外部网络合二为一,成为一个网,双方都自动向对方完全开放自己的网络资源。这种互连方式在与外部网络互连时显然是难以接受的。问题的主要根源是网桥只是最大限度地把网络沟通,而不管传送的信息是什么。
1.2 路由器互连网络
路由器互连与网络的协议有关,我们讨论限于TCP/IP网络的情况。
路由器工作在OSI模型中的第三层,即网络层。路由器利用网络层定义的“逻辑”上的网络地址(即IP地址)来区别不同的网络,实现网络的互连和隔离,保持各个网络的独立性。路由器不转发广播消息,而把广播消息限制在各自的网络内部。发送到其他网络的数据茵先被送到路由器,再由路由器转发出去。
IP路由器只转发IP分组,把其余的部分挡在网内(包括广播),从而保持各个网络具有相对的独立性,这样可以组成具有许多网络(子网)互连的大型的网络。由于是在网络层的互连,路由器可方便地连接不同类型的网络,只要网络层运行的是IP协议,通过路由器就可互连起来。
网络中的设备用它们的网络地址(TCP/IP网络中为IP地址)互相通信。IP地址是与硬件地址无关的“逻辑”地址。路由器只根据IP地址来转发数据。IP地址的结构有两部分,一部分定义网络号,另一部分定义网络内的主机号。目前,在Internet网络中采用子网掩码来确定IP地址中网络地址和主机地址。子网掩码与IP地址一样也是32bit,并且两者是一一对应的,并规定,子网掩码中数字为“1”所对应的IP地址中的部分为网络号,为“0”所对应的则为主机号。网络号和主机号合起来,才构成一个完整的IP地址。同一个网络中的主机IP地址,其网络号必须是相同的,这个网络称为IP子网。
通信只能在具有相同网络号的IP地址之间进行,要与其它IP子网的主机进行通信,则必须经过同一网络上的某个路由器或网关(gateway)出去。不同网络号的IP地址不能直接通信,即使它们接在一起,也不能通信。
路由器有多个端口,用于连接多个IP子网。每个端口的IP地址的网络号要求与所连接的IP子网的网络号相同。不同的端口为不同的网络号,对应不同的IP子网,这样才能使各子网中的主机通过自己子网的IP地址把要求出去的IP分组送到路由器上
2 路由原理
当IP子网中的一台主机发送IP分组给同一IP子网的另一台主机时,它将直接把IP分组送到网络上,对方就能收到。而要送给不同IP于网上的主机时,它要选择一个能到达目的子网上的路由器,把IP分组送给该路由器,由路由器负责把IP分组送到目的地。如果没有找到这样的路由器,主机就把IP分组送给一个称为“缺省网关(default gateway)”的路由器上。“缺省网关”是每台主机上的一个配置参数,它是接在同一个网络上的某个路由器端口的IP地址。
路由器转发IP分组时,只根据IP分组目的IP地址的网络号部分,选择合适的端口,把IP分组送出去。同主机一样,路由器也要判定端口所接的是否是目的子网,如果是,就直接把分组通过端口送到网络上,否则,也要选择下一个路由器来传送分组。路由器也有它的缺省网关,用来传送不知道往哪儿送的IP分组。这样,通过路由器把知道如何传送的IP分组正确转发出去,不知道的IP分组送给“缺省网关”路由器,这样一级级地传送,IP分组最终将送到目的地,送不到目的地的IP分组则被网络丢弃了。
目前TCP/IP网络,全部是通过路由器互连起来的,Internet就是成千上万个IP子网通过路由器互连起来的国际性网络。这种网络称为以路由器为基础的网络(router based network),形成了以路由器为节点的“网间网”。在“网间网”中,路由器不仅负责对IP分组的转发,还要负责与别的路由器进行联络,共同确定“网间网”的路由选择和维护路由表。
路由动作包括两项基本内容:寻径和转发。寻径即判定到达目的地的最佳路径,由路由选择算法来实现。由于涉及到不同的路由选择协议和路由选择算法,要相对复杂一些。为了判定最佳路径,路由选择算法必须启动并维护包含路由信息的路由表,其中路由信息依赖于所用的路由选择算法而不尽相同。路由选择算法将收集到的不同信息填入路由表中,根据路由表可将目的网络与下一站(nexthop)的关系告诉路由器。路由器间互通信息进行路由更新,更新维护路由表使之正确反映网络的拓扑变化,并由路由器根据量度来决定最佳路径。这就是路由选择协议(routing protocol),例如路由信息协议(RIP)、开放式最短路径优先协议(OSPF)和边界网关协议(BGP)等。
转发即沿寻径好的最佳路径传送信息分组。路由器首先在路由表中查找,判明是否知道如何将分组发送到下一个站点(路由器或主机),如果路由器不知道如何发送分组,通常将该分组丢弃;否则就根据路由表的相应表项将分组发送到下一个站点,如果目的网络直接与路由器相连,路由器就把分组直接送到相应的端口上。这就是路由转发协议(routed protocol)。
路由转发协议和路由选择协议是相互配合又相互独立的概念,前者使用后者维护的路由表,同时后者要利用前者提供的功能来发布路由协议数据分组。下文中提到的路由协议,除非特别说明,都是指路由选择协议,这也是普遍的习惯。
3 路由协议
典型的路由选择方式有两种:静态路由和动态路由。
静态路由是在路由器中设置的固定的路由表。除非网络管理员干预,否则静态路由不会发生变化。由于静态路由不能对网络的改变作出反映,一般用于网络规模不大、拓扑结构固定的网络中。静态路由的优点是简单、高效、可靠。在所有的路由中,静态路由优先级最高。当动态路由与静态路由发生冲突时,以静态路由为准。
动态路由是网络中的路由器之间相互通信,传递路由信息,利用收到的路由信息更新路由器表的过程。它能实时地适应网络结构的变化。如果路由更新信息表明发生了网络变化,路由选择软件就会重新计算路由,并发出新的路由更新信息。这些信息通过各个网络,引起各路由器重新启动其路由算法,并更新各自的路由表以动态地反映网络拓扑变化。动态路由适用于网络规模大、网络拓扑复杂的网络。当然,各种动态路由协议会不同程度地占用网络带宽和CPU资源。
静态路由和动态路由有各自的特点和适用范围,因此在网络中动态路由通常作为静态路由的补充。当一个分组在路由器中进行寻径时,路由器首先查找静态路由,如果查到则根据相应的静态路由转发分组;否则再查找动态路由。
根据是否在一个自治域内部使用,动态路由协议分为内部网关协议(IGP)和外部网关协议(EGP)。这里的自治域指一个具有统一管理机构、统一路由策略的网络。自治域内部采用的路由选择协议称为内部网关协议,常用的有RIP、OSPF;外部网关协议主要用于多个自治域之间的路由选择,常用的是BGP和BGP-4。下面分别进行简要介绍。
3.1 RIP路由协议
RIP协议最初是为Xerox网络系统的Xerox parc通用协议而设计的,是Internet中常用的路由协议。RIP采用距离向量算法,即路由器根据距离选择路由,所以也称为距离向量协议。路由器收集所有可到达目的地的不同路径,并且保存有关到达每个目的地的最少站点数的路径信息,除到达目的地的最佳路径外,任何其它信息均予以丢弃。同时路由器也把所收集的路由信息用RIP协议通知相邻的其它路由器。这样,正确的路由信息逐渐扩散到了全网。
RIP使用非常广泛,它简单、可靠,便于配置。但是RIP只适用于小型的同构网络,因为它允许的最大站点数为15,任何超过15个站点的目的地均被标记为不可达。而且RIP每隔30s一次的路由信息广播也是造成网络的广播风暴的重要原因之一。
3.2 OSPF路由协议
80年代中期,RIP已不能适应大规模异构网络的互连,0SPF随之产生。它是网间工程任务组织(1ETF)的内部网关协议工作组为IP网络而开发的一种路由协议。
0SPF是一种基于链路状态的路由协议,需要每个路由器向其同一管理域的所有其它路由器发送链路状态广播信息。在OSPF的链路状态广播中包括所有接口信息、所有的量度和其它一些变量。利用0SPF的路由器首先必须收集有关的链路状态信息,并根据一定的算法计算出到每个节点的最短路径。而基于距离向量的路由协议仅向其邻接路由器发送有关路由更新信息。
与RIP不同,OSPF将一个自治域再划分为区,相应地即有两种类型的路由选择方式:当源和目的地在同一区时,采用区内路由选择;当源和目的地在不同区时,则采用区间路由选择。这就大大减少了网络开销,并增加了网络的稳定性。当一个区内的路由器出了故障时并不影响自治域内其它区路由器的正常工作,这也给网络的管理、维护带来方便。
3.3 BGP和BGP-4路由协议
BGP是为TCP/IP互联网设计的外部网关协议,用于多个自治域之间。它既不是基于纯粹的链路状态算法,也不是基于纯粹的距离向量算法。它的主要功能是与其它自治域的BGP交换网络可达信息。各个自治域可以运行不同的内部网关协议。BGP更新信息包括网络号/自治域路径的成对信息。自治域路径包括到达某个特定网络须经过的自治域串,这些更新信息通过TCP传送出去,以保证传输的可靠性。
为了满足Internet日益扩大的需要,BGP还在不断地发展。在最新的BGp4中,还可以将相似路由合并为一条路由。
3.4 路由表项的优先问题
在一个路由器中,可同时配置静态路由和一种或多种动态路由。它们各自维护的路由表都提供给转发程序,但这些路由表的表项间可能会发生冲突。这种冲突可通过配置各路由表的优先级来解决。通常静态路由具有默认的最高优先级,当其它路由表表项与它矛盾时,均按静态路由转发。
4 路由算法
路由算法在路由协议中起着至关重要的作用,采用何种算法往往决定了最终的寻径结果,因此选择路由算法一定要仔细。通常需要综合考虑以下几个设计目标:
——(1)最优化:指路由算法选择最佳路径的能力。
——(2)简洁性:算法设计简洁,利用最少的软件和开销,提供最有效的功能。
——(3)坚固性:路由算法处于非正常或不可预料的环境时,如硬件故障、负载过高或操作失误时,都能正确运行。由于路由器分布在网络联接点上,所以在它们出故障时会产生严重后果。最好的路由器算法通常能经受时间的考验,并在各种网络环境下被证实是可靠的。
——(4)快速收敛:收敛是在最佳路径的判断上所有路由器达到一致的过程。当某个网络事件引起路由可用或不可用时,路由器就发出更新信息。路由更新信息遍及整个网络,引发重新计算最佳路径,最终达到所有路由器一致公认的最佳路径。收敛慢的路由算法会造成路径循环或网络中断。
——(5)灵活性:路由算法可以快速、准确地适应各种网络环境。例如,某个网段发生故障,路由算法要能很快发现故障,并为使用该网段的所有路由选择另一条最佳路径。
路由算法按照种类可分为以下几种:静态和动态、单路和多路、平等和分级、源路由和透明路由、域内和域间、链路状态和距离向量。前面几种的特点与字面意思基本一致,下面着重介绍链路状态和距离向量算法。
链路状态算法(也称最短路径算法)发送路由信息到互联网上所有的结点,然而对于每个路由器,仅发送它的路由表中描述了其自身链路状态的那一部分。距离向量算法(也称为Bellman-Ford算法)则要求每个路由器发送其路由表全部或部分信息,但仅发送到邻近结点上。从本质上来说,链路状态算法将少量更新信息发送至网络各处,而距离向量算法发送大量更新信息至邻接路由器。
由于链路状态算法收敛更快,因此它在一定程度上比距离向量算法更不易产生路由循环。但另一方面,链路状态算法要求比距离向量算法有更强的CPU能力和更多的内存空间,因此链路状态算法将会在实现时显得更昂贵一些。除了这些区别,两种算法在大多数环境下都能很好地运行。
最后需要指出的是,路由算法使用了许多种不同的度量标准去决定最佳路径。复杂的路由算法可能采用多种度量来选择路由,通过一定的加权运算,将它们合并为单个的复合度量、再填入路由表中,作为寻径的标准。通常所使用的度量有:路径长度、可靠性、时延、带宽、负载、通信成本等
5 新一代路由器
由于多媒体等应用在网络中的发展,以及ATM、快速以太网等新技术的不断采用,网络的带宽与速率飞速提高,传统的路由器已不能满足人们对路由器的性能要求。因为传统路由器的分组转发的设计与实现均基于软件,在转发过程中对分组的处理要经过许多环节,转发过程复杂,使得分组转发的速率较慢。另外,由于路由器是网络互连的关键设备,是网络与其它网络进行通信的一个“关口”,对其安全性有很高的要求,因此路由器中各种附加的安全措施增加了CPU的负担,这样就使得路由器成为整个互联网上的“瓶颈”。
传统的路由器在转发每一个分组时,都要进行一系列的复杂操作,包括路由查找、访问控制表匹配、地址解析、优先级管理以及其它的附加操作。这一系列的操作大大影响了路由器的性能与效率,降低了分组转发速率和转发的吞吐量,增加了CPU的负担。而经过路由器的前后分组间的相关性很大,具有相同目的地址和源地址的分组往往连续到达,这为分组的快速转发提供了实现的可能与依据。新一代路由器,如IP Switch、Tag Switch等,就是采用这一设计思想用硬件来实现快速转发,大大提高了路由器的性能与效率。
新一代路由器使用转发缓存来简化分组的转发操作。在快速转发过程中,只需对一组具有相同目的地址和源地址的分组的前几个分组进行传统的路由转发处理,并把成功转发的分组的目的地址、源地址和下一网关地址(下一路由器地址)放人转发缓存中。当其后的分组要进行转发时,茵先查看转发缓存,如果该分组的目的地址和源地址与转发缓存中的匹配,则直接根据转发缓存中的下一网关地址进行转发,而无须经过传统的复杂操作,大大减轻了路由器的负担,达到了提高路由器吞吐量的目标。
❹ 路由是什么意思
路由是指路由器从一个接口上收到数据包,根据数据包的目的地址进行定向并转发到另一个接口的过程。路由通常与桥接来对比,在粗心的人看来,它们似乎完成的是同样的事。
它们的主要区别在于桥接发生在OSI参考模型的第二层(数据链路层),而路由发生在第三层(网络层)。这一区别使二者在传递信息的过程中使用不同的信息,从而以不同的方式来完成其任务。
(4)计算机网络中特定路由器的概念扩展阅读
路由器能够连接不同类型的局域网和广域网,如以太网、ATM网、FDDI网、令牌环网等。不同类型的网络,其传送的数据单元——包(Packet)的格式和大小是不同的。
就像公路运输是以汽车为单位装载货物,而铁路运输是以车皮为单位装载货物一样,从汽车运输改为铁路运输,必须把货物从汽车上放到火车车皮上,网络中的数据也是如此。
数据从一种类型的网络传输至另一种类型的网络,必须进行帧格式转换。路由器就有这种能力,而交换机和集线器就没有。
参考资料来源:网络-路由
❺ 路由器的专业定义是什么
路由器是互联网络中必不可少的网络设备之一,路由器是一种连接多个网络或网段的网络设备,它能将不同网络或网段之间的数据信息进行“翻译”,以使它们能够相互“读”懂对方的数据,从而构成一个更大的网络。路由器有两大典型功能,即数据通道功能和控制功能。数据通道功能包括转发决定、背板转发以及输出链路调度等,一般由特定的硬件来完成;控制功能一般用软件来实现,包括与相邻路由器之间的信息交换、系统配置、系统管理等。
要解释路由器的概念,首先要介绍什么是路由。所谓“路由”,是指把数据从一个地方传送到另一个地方的行为和动作,而路由器,正是执行这种行为动作的机器,它的英文名称为Router。路由器的基本功能如下:
第一,网络互连:路由器支持各种局域网和广域网接口,主要用于互连局域网和广域网,实现不同网络互相通信;
第二,数据处理:提供包括分组过滤、分组转发、优先级、复用、加密、压缩和防火墙等功能;
第三,网络管理:路由器提供包括路由器配置管理、性能管理、容错管理和流量控制等功能。
--------------------------------------------------------------------------------
路由器(Router)是工作在OSI第三层(网络层)上、具有连接不同类型网络的能力并能够选择数据传送路径的网络设备。路由器有三个特征:工作在网络层上、能够连接不同类型的网络、能够选择数据传的路径。
1、路由器工作在第三层上,路由器是第三层网络设备,这样说大家可能都不理解,就先说一下集线器和交换机吧。
集线器工作在第一层(即物理层),它没有智能处理能力,对它来说,数据只是电流而已,当一个端口的电流传到集线器中时,它只是简单地将电流传送到其他端口,至于其他端口连接的计算机接收不接收这些数据,它就不管了。
交换机工作在第二层(即数据链路层),它要比集线器智能一些,对它来说,网络上的数据就是MAC地址的集合,它能分辨出帧中的源MAC地址和目的MAC地址,因此可以在任意两个端口间建立联系,但是交换机并不懂得IP地址,它只知道MAC地址。
路由器工作在第三层(即网络层),它比交换机还要“聪明”一些,它能理解数据中的IP地址,如果它接收到一个数据包,就检查其中的IP地址,如果目标地址是本地网络的就不理会,如果是其他网络的,就将数据包转发出本地网络。
2、路由器能连接不同类型的网络
我们常见的集线器和交换机一般都是用于连接以太网的,但是如果将两种网络类型连接起来,比如以太网与ATM网,集线器和交换机就派不上用场了。
路由器能够连接不同类型的局域网和广域网,如以太网、ATM网、FDDI网、令牌环网等。不同类型的网络,其传送的数据单元——帧(Frame)的格式和大小是不同的,就像公路运输是汽车为单位装载货物,而铁路运输是以车皮为单位装载货物一样,从汽车运输改为铁路运输,必须把货物从汽车上放到火车车皮上,网络中的数据也是如此,数据从一种类型的网络传输至另一种类型的网络,必须进行帧格式转换。路由器就有这种能力,而交换机和集线器就没有。
实际上,我们所说的“互联网”,就是由各种路由器连接起来的,因为互联网上存在各种不同类型的网络,集线器和交换机根本不能胜任这个任务,所以必须由路由器来担当这个角色。
3、路由器具有路径选择能力
在互联网中,从一个节点到另一个节点,可能有许多路径,路由器可以选择通畅快捷的近路,会大大提高通信速度,减轻网络系统通信负荷,节约网络系统资源,这是集线器和二层交换机所根本不具备的性能。
路由器的种类
1、接入路由器
接入路由器是指将局域网用户接入到广域网中的路由器设备,我们局域网用户接触最多的就是接入路由器了。只要有互联网的地方,就会有路由器。如果你通过局域网共享线路上网,就一定会使用路由器。
有的读者会心生疑问:我是通过代理服务器上网的,不用路由器不也能接入互联网吗?其实代理服务器也是一种路由器,一台计算机加上网卡,再加上ISDN(或Modem或ADSL),再安装上代理服务器软件,事实上就已经构成了路由器,只不过代理服务器是用软件实现路由功能,而路由器是用硬件实现路由功能,就像VCD软解压软件和VCD机的关系一样,结构不同,但是功能却是相同的。
2、企业级路由器
企业级的路由器是用于连接大型企业内成千上万的计算机,普通的局域网用户就接触不到了。与接入路由器相比,企业级路由器支持的网络协议多、速度快,要处理各种局域网类型,支持多种协议,包括IP、IPX和Vine,还要支持防火墙、包过滤以及大量的管理和安全策略以及VLAN(虚拟局域网)。
3、骨干级路由器
只有工作在电信等少数部门的技术人员,才能接触到骨干级路由器。互联网目前由几十个骨干网构成,每个骨干网服务几千个小网络,骨干级路由器实现企业级网络的互联。对它的要求是速度和可靠性,而价格则处于次要地位。硬件可靠性可以采用电话交换网中使用的技术,如热备份、双电源、双数据通路等来获得。这些技术对所有骨干路由器来说是必须的。
骨干网上的路由器终端系统通常是不能直接访问的,它们连接长距离骨干网上的ISP和企业网络。互联网的快速发展给骨干网、企业网和接入网都带来了小的挑战。
❻ 什么是路由器
交换机与路由器的区别
计算机网络往往由许多种不同类型的网络互连连接而成。如果几个计算机网络只是在物理上连接在一起,它们之间并不能进行通信,那么这种“互连”并没有什么实际意义。因此通常在谈到“互连”时,就已经暗示这些相互连接的计算机是可以进行通信的,也就是说,从功能上和逻辑上看,这些计算机网络已经组成了一个大型的计算机网络,或称为互联网络,也可简称为互联网、互连网。
将网络互相连接起来要使用一些中间设备(或中间系统),ISO的术语称之为中继(relay)系统。根据中继系统所在的层次,可以有以下五种中继系统:
1.物理层(即常说的第一层、层L1)中继系统,即转发器(repeater)。
2.数据链路层(即第二层,层L2),即网桥或桥接器(bridge)。
3.网络层(第三层,层L3)中继系统,即路由器(router)。
4.网桥和路由器的混合物桥路器(brouter)兼有网桥和路由器的功能。
5.在网络层以上的中继系统,即网关(gateway).
当中继系统是转发器时,一般不称之为网络互联,因为这仅仅是把一个网络扩大了,而这仍然是一个网络。高层网关由于比较复杂,目前使用得较少。因此一般讨论网络互连时都是指用交换机和路由器进行互联的网络。本文主要阐述交换机和路由器及其区别。
2 交换机和路由器
“交换”是今天网络里出现频率最高的一个词,从桥接到路由到ATM直至电话系统�蘼酆沃殖‘隙伎山�涮子茫�悴磺宓降资裁床攀钦嬲�慕换弧F涫到换灰淮首钤绯鱿钟诘缁跋低常�刂甘迪至礁霾煌�缁盎��浠耙粜藕诺慕换唬�瓿筛霉ぷ鞯纳璞妇褪堑缁敖换换�K�源颖疽馍侠唇玻�换恢皇且恢旨际醺拍睿�赐瓿尚藕庞缮璞溉肟诘匠隹诘淖�ⅰR虼耍�灰�呛头�细枚ㄒ宓乃�猩璞付伎杀怀莆�换簧璞浮S纱丝杉��敖换弧笔且桓龊�骞惴旱拇视铮�彼�挥美疵枋鍪�萃�绲诙�愕纳璞甘保�导手傅氖且桓銮沤由璞福欢�彼�挥美疵枋鍪�萃�绲谌�愕纳璞甘保�种傅氖且桓雎酚缮璞浮?
我们经常说到的以太网交换机实际是一个基于网桥技术的多端口第二层网络设备,它为数据帧从一个端口到另一个任意端口的转发提供了低时延、低开销的通路。
由此可见,交换机内部核心处应该有一个交换矩阵,为任意两端口间的通信提供通路,或是一个快速交换总线,以使由任意端口接收的数据帧从其他端口送出。在实际设备中,交换矩阵的功能往往由专门的芯片(ASIC)完成。另外,以太网交换机在设计思想上有一个重要的假设,即交换核心的速度非常之快,以致通常的大流量数据不会使其产生拥塞,换句话说,交换的能力相对于所传信息量而无穷大(与此相反,ATM交换机在设计上的思路是,认为交换的能力相对所传信息量而言有限)。
虽然以太网第二层交换机是基于多端口网桥发展而来,但毕竟交换有其更丰富的特性,使之不但是获得更多带宽的最好途径,而且还使网络更易管理。
而路由器是OSI协议模型的网络层中的分组交换设备(或网络层中继设备),路由器的基本功能是把数据(IP报文)传送到正确的网络,包括:
1.IP数据报的转发,包括数据报的寻径和传送;
2.子网隔离,抑制广播风暴;
3.维护路由表,并与其他路由器交换路由信息,这是IP报文转发的基础。
4.IP数据报的差错处理及简单的拥塞控制;
5.实现对IP数据报的过滤和记帐。
对于不同地规模的网络,路由器的作用的侧重点有所不同。
在主干网上,路由器的主要作用是路由选择。主干网上的路由器,必须知道到达所有下层网络的路径。这需要维护庞大的路由表,并对连接状态的变化作出尽可能迅速的反应。路由器的故障将会导致严重的信息传输问题。
在地区网中,路由器的主要作用是网络连接和路由选择,即连接下层各个基层网络单位--园区网,同时负责下层网络之间的数据转发。
在园区网内部,路由器的主要作用是分隔子网。早期的互连网基层单位是局域网(LAN),其中所有主机处于同一逻辑网络中。随着网络规模的不断扩大,局域网演变成以高速主干和路由器连接的多个子网所组成的园区网。在其中,处个子网在逻辑上独立,而路由器就是唯一能够分隔它们的设备,它负责子网间的报文转发和广播隔离,在边界上的路由器则负责与上层网络的连接。
3 第二层交换机和路由器的区别
传统交换机从网桥发展而来,属于OSI第二层即数据链路层设备。它根据MAC地址寻址,通过站表选择路由,站表的建立和维护由交换机自动进行。路由器属于OSI第三层即网络层设备,它根据IP地址进行寻址,通过路由表路由协议产生。交换机最大的好处是快速,由于交换机只须识别帧中MAC地址,直接根据MAC地址产生选择转发端口算法简单,便于ASIC实现,因此转发速度极高。但交换机的工作机制也带来一些问题。
1.回路:根据交换机地址学习和站表建立算法,交换机之间不允许存在回路。一旦存在回路,必须启动生成树算法,阻塞掉产生回路的端口。而路由器的路由协议没有这个问题,路由器之间可以有多条通路来平衡负载,提高可靠性。
2.负载集中:交换机之间只能有一条通路,使得信息集中在一条通信链路上,不能进行动态分配,以平衡负载。而路由器的路由协议算法可以避免这一点,OSPF路由协议算法不但能产生多条路由,而且能为不同的网络应用选择各自不同的最佳路由。
3.广播控制:交换机只能缩小冲突域,而不能缩小广播域。整个交换式网络就是一个大的广播域,广播报文散到整个交换式网络。而路由器可以隔离广播域,广播报文不能通过路由器继续进行广播。
4.子网划分:交换机只能识别MAC地址。MAC地址是物理地址,而且采用平坦的地址结构,因此不能根据MAC地址来划分子网。而路由器识别IP地址,IP地址由网络管理员分配,是逻辑地址且IP地址具有层次结构,被划分成网络号和主机号,可以非常方便地用于划分子网,路由器的主要功能就是用于连接不同的网络。
5.保密问题:虽说交换机也可以根据帧的源MAC地址、目的MAC地址和其他帧中内容对帧实施过滤,但路由器根据报文的源IP地址、目的IP地址、TCP端口地址等内容对报文实施过滤,更加直观方便。
6.介质相关:交换机作为桥接设备也能完成不同链路层和物理层之间的转换,但这种转换过程比较复杂,不适合ASIC实现,势必降低交换机的转发速度。因此目前交换机主要完成相同或相似物理介质和链路协议的网络互连,而不会用来在物理介质和链路层协议相差甚元的网络之间进行互连。而路由器则不同,它主要用于不同网络之间互连,因此能连接不同物理介质、链路层协议和网络层协议的网络。路由器在功能上虽然占据了优势,但价格昂贵,报文转发速度低。
近几年,交换机为提高性能做了许多改进,其中最突出的改进是虚拟网络和三层交换。
划分子网可以缩小广播域,减少广播风暴对网络的影响。路由器每一接口连接一个子网,广播报文不能经过路由器广播出去,连接在路由器不同接口的子网属于不同子网,子网范围由路由器物理划分。对交换机而言,每一个端口对应一个网段,由于子网由若干网段构成,通过对交换机端口的组合,可以逻辑划分子网。广播报文只能在子网内广播,不能扩散到别的子网内,通过合理划分逻辑子网,达到控制广播的目的。由于逻辑子网由交换机端口任意组合,没有物理上的相关性,因此称为虚拟子网,或叫虚拟网。虚拟网技术不用路由器就解决了广播报文的隔离问题,且虚拟网内网段与其物理位置无关,即相邻网段可以属于不同虚拟网,而相隔甚远的两个网段可能属于不同虚拟网,而相隔甚远的两个网段可能属于同一个虚拟网。不同虚拟网内的终端之间不能相互通信,增强了对网络内数据的访问控制。
交换机和路由器是性能和功能的矛盾体,交换机交换速度快,但控制功能弱,路由器控制性能强,但报文转发速度慢。解决这个矛盾的技术是三层交换,既有交换机线速转发报文能力,又有路由器良好的控制功能。
4 第三层交换机和路由器的区别
在第三层交换技术出现之前,几乎没有必要将路由功能器件和路由器区别开来,他们完全是相同的:提供路由功能正在路由器的工作,然而,现在第三层交换机完全能够执行传统路由器的大多数功能。作为网络互连的设备,第三层交换机具有以下特征:
1.转发基于第三层地址的业务流;
2.完全交换功能;
3.可以完成特殊服务,如报文过滤或认证;
4.执行或不执行路由处理。
第三层交换机与传统路由器相比有如下优点:
1.子网间传输带宽可任意分配:传统路由器每个接口连接一个子网,子网通过路由器进行传输的速率被接口的带宽所限制。而三层交换机则不同,它可以把多个端口定义成一个虚拟网,把多个端口组成的虚拟网作为虚拟网接口,该虚拟网内信息可通过组成虚拟网的端口送给三层交换机,由于端口数可任意指定,子网间传输带宽没有限制。
2.合理配置信息资源:由于访问子网内资源速率和访问全局网中资源速率没有区别,子网设置单独服务器的意义不大,通过在全局网中设置服务器群不仅节省费用,更可以合理配置信息资源。
3.降低成本:通常的网络设计用交换机构成子网,用路由器进行子网间互连。目前采用三层交换机进行网络设计,既可以进行任意虚拟子网划分,又可以通过交换机三层路由功能完成子网间通信,为此节省了价格昂贵的路由器。
4.交换机之间连接灵活:作为交换机,它们之间不允许存在回路,作为路由器,又可有多条通路来提高可靠性、平衡负载。三层交换机用生成树算法阻塞造成回路的端口,但进行路由选择时,依然把阻塞掉的通路作为可选路径参与路由选择。
5 结论
综上所述,交换机一般用于LAN-WAN的连接,交换机归于网桥,是数据链路层的设备,有些交换机也可实现第三层的交换。路由器用于WAN-WAN之间的连接,可以解决异性网络之间转发分组,作用于网络层。他们只是从一条线路上接受输入分组,然后向另一条线路转发。这两条线路可能分属于不同的网络,并采用不同协议。相比较而言,路由器的功能较交换机要强大,但速度相对也慢,价格昂贵,第三层交换机既有交换机线速转发报文能力,又有路由器良好的控制功能,因此得以广播应用。
参考资料:http://www.boofee.net/flyingbamboo/index.php?job=art&articleid=a_20050827_150403
❼ 计算机网络中的路由器是干什么的
路由器是用来路由的,所谓路由就是IP的寻址。在一般的应用中我们通常是把路由器看成一种连接两个网络的设备。如果两个不同的网络要通信必须有路由器。一般家用的路由器能带5台电脑。专业的能带好多。
❽ 什么是路由器配置原理带图片介绍。
路由器(Router)是计算机名词。要解释路由器的概念,首先要介绍什么是路由。所谓“路由”,是指把数据从一个地方传送到另一个地方的行为和动作,而路由器,正是执行这种行为动作的机器,它的英文名称为Router。是使用一种或者更多度量因素的网络层设备,它决定网络通信能够通过的最佳路径。路由器依据网络层信息将数据包从一个网络前向转发到另一个网络。偶尔也称为网关(尽管网关的这个定义现在己经过时)。 路由器是互联网络中必不可少的网络设备之一,路由器是一种连接多个网络或网段的网络设备,它能将不同网络或网段之间的数据信息进行“翻译”,以使它们能够相互“读”懂对方的数据,从而构成一个更大的网络。 路由器有两大典型功能,即数据通道功能和控制功能。数据通道功能包括转发决定、背板转发以及输出链路调度等,一般由特定的硬件来完成;控制功能一般用软件来实现,包括与相邻路由器之间的信息交换、系统配置、系统管理等。路由器的功能 简单的讲,路由器主要有以下几种功能: 第一,网络互连,路由器支持各种局域网和广域网接口,主要用于互连局域网和广域网,实现不同网络互相通信;第二,数据处理,提供包括分组过滤、分组转发、优先级、复用、加密、压缩和防火墙等功能;第三,网络管理,路由器提供包括配置管理、性能管理、容错管理和流量控制等功能。 路由器(Router)是一种负责寻径的网络设备,它在互连网络中从多条路径中寻找通讯量最少的一条网络路径提供给用户通信。路由器用于连接多个逻辑上分开的网络。对用户提供最佳的通信路径,路由器利用路由表为数据传输选择路径,路由表包含网络地址以及各地址之间距离的清单,路由器利用路由表查找数据包从当前位置到目的地址的正确路径。路由器使用最少时间算法或最优路径算法来调整信息传递的路径,如果某一网络路径发生故障或堵塞,路由器可选择另一条路径,以保证信息的正常传输。路由器可进行数据格式的转换,成为不同协议之间网络互连的必要设备。 路由器使用寻径协议来获得网络信息,采用基于“寻径矩阵”的寻径算法和准则来选择最优路径。按照OSI参考模型,路由器是一个网络层系统。路由器分为单协议路由器和多协议路由器。 为了完成“路由”的工作,在路由器中保存着各种传输路径的相关数据--路由表(Routing Table),供路由选择时使用。路由表中保存着子网的标志信息、网上路由器的个数和下一个路由器的名字等内容。路由表可以是由系统管理员固定设置好的,也可以由系统动态修改,可以由路由器自动调整,也可以由主机控制。在路由器中涉及到两个有关地址的名字概念,那就是:静态路由表和动态路由表。由系统管理员事先设置好固定的路由表称之为静态(static)路由表,一般是在系统安装时就根据网络的配置情况预先设定的,它不会随未来网络结构的改变而改变。动态(Dynamic)路由表是路由器根据网络系统的运行情况而自动调整的路由表。路由器根据路由选择协议(Routing Protocol)提供的功能,自动学习和记忆网络运行情况,在需要时自动计算数据传输的最佳路径。 为了简单地说明路由器的工作原理,现在我们假设有这样一个简单的网络。如图所示,A、B、C、D四个网络通过路由器连接在一起。 现在我们来看一下在如图所示网络环境下路由器又是如何发挥其路由、数据转发作用的。现假设网络A中一个用户A1要向C网络中的C3用户发送一个请求信号时,信号传递的步骤如下: 第1步:用户A1将目的用户C3的地址C3,连同数据信息以数据帧的形式通过集线器或交换机以广播的形式发送给同一网络中的所有节点,当路由器A5端口侦听到这个地址后,分析得知所发目的节点不是本网段的,需要路由转发,就把数据帧接收下来。 第2步:路由器A5端口接收到用户A1的数据帧后,先从报头中取出目的用户C3的IP地址,并根据路由表计算出发往用户C3的最佳路径。因为从分析得知到C3的网络ID号与路由器的C5网络ID号相同,所以由路由器的A5端口直接发向路由器的C5端口应是信号传递的最佳途经。 第3步:路由器的C5端口再次取出目的用户C3的IP地址,找出C3的IP地址中的主机ID号,如果在网络中有交换机则可先发给交换机,由交换机根据MAC地址表找出具体的网络节点位置;如果没有交换机设备则根据其IP地址中的主机ID直接把数据帧发送给用户C3,这样一个完整的数据通信转发过程也完成了。 从上面可以看出,不管网络有多么复杂,路由器其实所做的工作就是这么几步,所以整个路由器的工作原理基本都差不多。当然在实际的网络中还远比上图所示的要复杂许多,实际的步骤也不会像上述那么简单,但总的过程是这样的。增加路由器涉及的基本协议 路由器英文名称为Router,是一种用于连接多个网络或网段的网络设备。这些网络可以是几个使用不同协议和体系结构的网络(比如互联网与局域网),可以是几个不同网段的网络(比如大型互联网中不同部门的网络),当数据信息从一个部门网络传输到另外一个部门网络时,可以用路由器完成。现在,家庭局域网也越来越多地采用路由器宽带共享的方式上网。 路由器在连接不同网络或网段时,可以对这些网络之间的数据信息进行“翻译”,然后“翻译”成双方都能“读”懂的数据,这样就可以实现不同网络或网段间的互联互通。同时,它还具有判断网络地址和选择路径的功能以及过滤和分隔网络信息流的功能。目前,路由器已成为各种骨干网络内部之间、骨干网之间以及骨干网和互联网之间连接的枢纽。 NAT:全称Network Address Translation(网络地址转换),路由器通过NAT功能可以将局域网内部的IP地址转换为合法的IP地址并进行Internet的访问。比如,局域网内部有个IP地址为192.168.0.1的计算机,当然通过该IP地址可以和内网其他的计算机通信;但是如果该计算机要访问外部Internet网络,那么就需要通过NAT功能将192.168.0.1转换为合法的广域网IP地址,比如210.113.25.100。 DHCP:全称Dynamic Host Configuration Protocol(动态主机配置协议),通过DHCP功能,路由器可以为网络内的主机动态指定IP地址,而不需要每个用户去设置静态IP地址,并将TCP/IP配置参数分发给局域网内合法的网络客户端。 DDNS:全称Dynamic Domain Name Server(动态域名解析系统),通常称为“动态DNS”,因为对于普通的宽带上网使用的都是ISP(网络服务商)提供的动态IP地址。如果在局域网内建立了某个服务器需要Internet用户进行访问,那么,可以通过路由器的DDNS功能将动态IP地址解析为一个固定的域名,比如 www.cpcw.com,这样Internet用户就可以通过该固定域名对内网服务器进行访问。 PPPoE:全称Point to Point Protocal over Ethernet(以太网上的点对点协议),通过PPPoE技术,可以让宽带调制解调器(ADSL、Modem)用户获得宽带网的个人身份验证访问,能为每个用户创建虚拟拨号连接,这样就可以高速连接到Internet。路由器具备该功能,可以实现PPPoE的自动拨号连接,这样与路由器连接的用户可以自动连接到Internet。 ICMP:全称Internet Control Message Protocol(Internet控制消息协议),该协议是TCP/IP协议集中的一个子协议,主要用于在主机与路由器之间传递控制信息,包括报告错误、交换受限控制和状态信息等。
❾ 什么路由器
路由器(Router)是计算机名词。
要解释路由器的概念,首先要介绍什么是路由。所谓“路由”,是指把数据从一个地方传送到另一个地方的行为和动作,而路由器,正是执行这种行为动作的机器,它的英文名称为Router。是使用一种或者更多度量因素的网络层设备,它决定网络通信能够通过的最佳路径。路由器依据网络层信息将数据包从一个网络前向转发到另一个网络。偶尔也称为网关(尽管网关的这个定义现在己经过时)。
路由器是互联网络中必不可少的网络设备之一,路由器是一种连接多个网络或网段的网络设备,它能将不同网络或网段之间的数据信息进行“翻译”,以使它们能够相互“读”懂对方的数据,从而构成一个更大的网络。 路由器有两大典型功能,即数据通道功能和控制功能。数据通道功能包括转发决定、背板转发以及输出链路调度等,一般由特定的硬件来完成;控制功能一般用软件来实现,包括与相邻路由器之间的信息交换、系统配置、系统管理等。
路由器的工作原理
1、路由器接收来自它连接的某个网站的数据。
2、路由器将数据向上传递,并且(必要时)重新组合IP数据报。
3、路由器检查IP头部中的目的地址,如果目的地址位于发出数据的那个网络,那么路由器就放下被认为已经达到目的地的数据,因为数据是在目的计算机所在网络上传输。
4、如果数据要送往另一个网络,那么路由器就查询路由表,以确定数据要转发到的目的地。
5、路由器确定哪个适配器负责接收数据后,就通过相应的软件传递数据,以便通过网络来传送数据。
❿ 什么是“路由器”和“猫”以及“交换机”有什么区别的
路由器(Router)是计算机名词。 要解释路由器的概念,首先要介绍什么是路由。所谓“路由”,是指把数据从一个地方传送到另一个地方的行为和动作,而路由器,正是执行这种行为动作的机器,它的英文名称为Router。是使用一种或者更多度量因素的网络层设备,它决定网络通信能够通过的最佳路径。路由器依据网络层信息将数据包从一个网络前向转发到另一个网络。偶尔也称为网关(尽管网关的这个定义现在己经过时)。 路由器是互联网络中必不可少的网络设备之一,路由器是一种连接多个网络或网段的网络设备,它能将不同网络或网段之间的数据信息进行“翻译”,以使它们能够相互“读”懂对方的数据,从而构成一个更大的网络。 路由器有两大典型功能,即数据通道功能和控制功能。数据通道功能包括转发决定、背板转发以及输出链路调度等,一般由特定的硬件来完成;控制功能一般用软件来实现,包括与相邻路由器之间的信息交换、系统配置、系统管理等。 你说的猫其实就是MODEM. 我们常说的Modem,其实是Molator(调制器)与Demolator(解调器)的简称,中文称为调制解调器。也有人跟据Modem的谐音,亲昵地称之为“猫”。我们知道,计算机内的信息是由“0”和“1”组成数字信号,而在电话线上传递的却只能是模拟电信号。于是,当两台计算机要通过电话线进行数据传输时,就需要一个设备负责数模的转换。这个数模转换器就是我们这里要讨论的Modem。计算机在发送数据时,先由Modem把数字信号转换为相应的模拟信号,这个过程称为“调制”。经过调制的信号通过电话载波传送到另一台计算机之前,也要经由接收方的Modem负责把模拟信号还原为计算机能识别的数字信号,这个过程我们称“解调”。正是通过这样一个“调制”与“解调”的数模转换过程,从而实现了两台计算机之间的远程通讯。 交换机. 交换(switching)是按照通信两端传输信息的需要,用人工或设备自动完成的方法,把要传输的信息送到符合要求的相应路由上的技术统称。广义的交换机(switch)就是一种在通信系统中完成信息交换功能的设备。 在计算机网络系统中,交换概念的提出是对于共享工作模式的改进。我们以前介绍过的HUB集线器就是一种共享设备,HUB本身不能识别目的地址,当同一局域网内的A主机给B主机传输数据时,数据包在以HUB为架构的网络上是以广播方式传输的,由每一台终端通过验证数据包头的地址信息来确定是否接收。也就是说,在这种工作方式下,同一时刻网络上只能传输一组数据帧的通讯,如果发生碰撞还得重试。这种方式就是共享网络带宽。 交换机拥有一条很高带宽的背部总线和内部交换矩阵。交换机的所有的端口都挂接在这条背部总线上,控制电路收到数据包以后,处理端口会查找内存中的地址对照表以确定目的MAC(网卡的硬件地址)的NIC(网卡)挂接在哪个端口上,通过内部交换矩阵迅速将数据包传送到目的端口,目的MAC若不存在才广播到所有的端口,接收端口回应后交换机会“学习”新的地址,并把它添加入内部MAC地址表中。 使用交换机也可以把网络“分段”,通过对照MAC地址表,交换机只允许必要的网络流量通过交换机。通过交换机的过滤和转发,可以有效的隔离广播风暴,减少误包和错包的出现,避免共享冲突。 交换机在同一时刻可进行多个端口对之间的数据传输。每一端口都可视为独立的网段,连接在其上的网络设备独自享有全部的带宽,无须同其他设备竞争使用。当节点A向节点D发送数据时,节点B可同时向节点C发送数据,而且这两个传输都享有网络的全部带宽,都有着自己的虚拟连接。假使这里使用的是10Mbps的以太网交换机,那么该交换机这时的总流通量就等于2×10Mbps=20Mbps,而使用10Mbps的共享式HUB时,一个HUB的总流通量也不会超出10Mbps。 总之,交换机是一种基于MAC地址识别,能完成封装转发数据包功能的网络设备。交换机可以“学习”MAC地址,并把其存放在内部地址表中,通过在数据帧的始发者和目标接收者之间建立临时的交换路径,使数据帧直接由源地址到达目的地址。
采纳哦