❶ 按照网络的拓扑结构,计算机网络可以划分为哪几类
按照网络的拓扑结构,计算机网络可以划分为总线型拓扑、星型拓扑、环型拓扑、树型拓扑、网状拓扑和混合型拓扑。
1、星型拓扑
星型拓扑结构的优点
(1)结构简单,连接方便,管理和维护都相对容易,而且扩展性强。
(2)网络延迟时间较小,传输误差低。
(3)在同一网段内支持多种传输介质,除非中央节点故障,否则网络不会轻易瘫痪。
(4)每个节点直接连到中央节点,故障容易检测和隔离,可以很方便地排除有故障的节点。
2、总线拓扑
总线拓扑结构的优点
(1)总线结构所需要的电缆数量少,线缆长度短,易于布线和维护。
(2)总线结构简单,又是元源工作,有较高的可靠性。传输速率高,可达1~100Mbps。
(3)易于扩充,增加或减少用户比较方便,结构简单,组网容易,网络扩展方便
(4)多个节点共用一条传输信道,信道利用率高。
3、环型拓扑
环型拓扑的优点
(1)电缆长度短。
(2)增加或减少工作站时,仅需简单的连接操作。
(3)可使用光纤。
4、树型拓扑
树型拓扑的优点
(1)易于扩展。
(2)故障隔离较容易。
5、混合型拓扑
混合型拓扑的优点
(1)故障诊断和隔离较为方便。
(2)易于扩展。
(3)安装方便。
6、网型拓扑
网型拓扑的优点
(1)节点间路径多,碰撞和阻塞减少。
(2)局部故障不影响整个网络,可靠性高。
7、开关电源拓扑
树型拓扑的缺点:
各个节点对根的依赖性太大。
(1)目前计算机网络体系结构有哪几种扩展阅读
发展历程
1、诞生阶段
20世纪60年代中期之前的第一代计算机网络是以单个计算机为中心的远程联机系统,典型应用是由一台计算机和全美范围内2000多个终端组成的飞机订票系统,终端是一台计算机的外围设备,包括显示器和键盘,无CPU和内存
2、形成阶段
20世纪60年代中期至70年代的第二代计算机网络是以多个主机通过通信线路互联起来,为用户提供服务,兴起于60年代后期,典型代表是美国国防部高级研究计划局协助开发的ARPANET。
3、互联互通阶段
20世纪70年代末至90年代的第三代计算机网络是具有统一的网络体系结构并遵守国际标准的开放式和标准化的网络。ARPANET兴起后,计算机网络发展迅猛,各大计算机公司相继推出自己的网络体系结构及实现这些结构的软硬件产品。
4、高速网络技术阶段
20世纪90年代至今的第四代计算机网络,由于局域网技术发展成熟,出现光纤及高速网络技术,整个网络就像一个对用户透明的大的计算机系统,发展为以因特网( Internet)为代表的互联网。
❷ 计算机网络体系分为哪四层
1.、应用层
应用层对应于OSI参考模型的高层,为用户提供所需要的各种服务,例如:FTP、Telnet、DNS、SMTP等.
2.、传输层
传输层对应于OSI参考模型的传输层,为应用层实体提供端到端的通信功能,保证了数据包的顺序传送及数据的完整性。该层定义了两个主要的协议:传输控制协议(TCP)和用户数据报协议(UDP).
TCP协议提供的是一种可靠的、通过“三次握手”来连接的数据传输服务;而UDP协议提供的则是不保证可靠的(并不是不可靠)、无连接的数据传输服务.
3.、网际互联层
网际互联层对应于OSI参考模型的网络层,主要解决主机到主机的通信问题。它所包含的协议设计数据包在整个网络上的逻辑传输。注重重新赋予主机一个IP地址来完成对主机的寻址,它还负责数据包在多种网络中的路由。
该层有三个主要协议:网际协议(IP)、互联网组管理协议(IGMP)和互联网控制报文协议(ICMP)。
IP协议是网际互联层最重要的协议,它提供的是一个可靠、无连接的数据报传递服务。
4.、网络接入层(即主机-网络层)
网络接入层与OSI参考模型中的物理层和数据链路层相对应。它负责监视数据在主机和网络之间的交换。事实上,TCP/IP本身并未定义该层的协议,而由参与互连的各网络使用自己的物理层和数据链路层协议,然后与TCP/IP的网络接入层进行连接。地址解析协议(ARP)工作在此层,即OSI参考模型的数据链路层。
(2)目前计算机网络体系结构有哪几种扩展阅读:
OSI将计算机网络体系结构(architecture)划分为以下七层:
物理层: 将数据转换为可通过物理介质传送的电子信号相当于邮局中的搬运工人。
数据链路层: 决定访问网络介质的方式。
在此层将数据分帧,并处理流控制。本层指定拓扑结构并提供硬件寻址,相当于邮局中的装拆箱工人。
网络层: 使用权数据路由经过大型网络 相当于邮局中的排序工人。
传输层: 提供终端到终端的可靠连接 相当于公司中跑邮局的送信职员。
会话层: 允许用户使用简单易记的名称建立连接 相当于公司中收寄信、写信封与拆信封的秘书。
表示层: 协商数据交换格式 相当公司中简报老板、替老板写信的助理。
应用层: 用户的应用程序和网络之间的接口老板。
❸ 计算机网络结构分几种哪几种
计算机网络的分类方式有很多种,可以按地理范围、拓扑结构、传输速率和传输介质等分类。
⑴按地理范围分类
①局域网LAN(Local Area Network)
局域网地理范围一般几百米到10km之内,属于小范围内的连网。如一个建筑物内、一个学校内、一个工厂的厂区内等。局域网的组建简单、灵活,使用方便。
②城域网MAN(Metropolitan Area Network)
城域网地理范围可从几十公里到上百公里,可覆盖一个城市或地区,是一种中等形式的网络。
③广域网WAN(Wide Area Network)
广域网地理范围一般在几千公里左右,属于大范围连网。如几个城市,一个或几个国家,是网络系统中的最大型的网络,能实现大范围的资源共享,如国际性的Internet网络。
⑵按传输速率分类
网络的传输速率有快有慢,传输速率快的称高速网,传输速率慢的称低速网。传输速率的单位是b/s(每秒比特数,英文缩写为bps)。一般将传输速率在Kb/s—Mb/s范围的网络称低速网,在Mb/s—Gb/s范围的网称高速网。也可以将Kb/s网称低速网,将Mb/s网称中速网,将Gb/s网称高速网。
网络的传输速率与网络的带宽有直接关系。带宽是指传输信道的宽度,带宽的单位是Hz(赫兹)。按照传输信道的宽度可分为窄带网和宽带网。一般将KHz—MHz带宽的网称为窄带网,将MHz—GHz的网称为宽带网,也可以将kHz带宽的网称窄带网,将MHz带宽的网称中带网,将GHz带宽的网称宽带网。通常情况下,高速网就是宽带网,低速网就是窄带网。
⑶按传输介质分类
传输介质是指数据传输系统中发送装置和接受装置间的物理媒体,按其物理形态可以划分为有线和无线两大类。
①有线网
传输介质采用有线介质连接的网络称为有线网,常用的有线传输介质有双绞线、同轴电缆和光导纤维。
●双绞线是由两根绝缘金属线互相缠绕而成,这样的一对线作为一条通信线路,由四对双绞线构成双绞线电缆。双绞线点到点的通信距离一般不能超过100m。目前,计算机网络上使用的双绞线按其传输速率分为三类线、五类线、六类线、七类线,传输速率在10Mbps到600Mbps之间,双绞线电缆的连接器一般为RJ-45。
●同轴电缆由内、外两个导体组成,内导体可以由单股或多股线组成,外导体一般由金属编织网组成。内、外导体之间有绝缘材料,其阻抗为50Ω。同轴电缆分为粗缆和细缆,粗缆用DB-15连接器,细缆用BNC和T连接器。
●光缆由两层折射率不同的材料组成。内层是具有高折射率的玻璃单根纤维体组成,外层包一层折射率较低的材料。光缆的传输形式分为单模传输和多模传输,单模传输性能优于多模传输。所以,光缆分为单模光缆和多模光缆,单模光缆传送距离为几十公里,多模光缆为几公里。光缆的传输速率可达到每秒几百兆位。光缆用ST或SC连接器。光缆的优点是不会受到电磁的干扰,传输的距离也比电缆远,传输速率高。光缆的安装和维护比较困难,需要专用的设备。
②无线网
采用无线介质连接的网络称为无线网。目前无线网主要采用三种技术:微波通信,红外线通信和激光通信。这三种技术都是以大气为介质的。其中微波通信用途最广,目前的卫星网就是一种特殊形式的微波通信,它利用地球同步卫星作中继站来转发微波信号,一个同步卫星可以覆盖地球的三分之一以上表面,三个同步卫星就可以覆盖地球上全部通信区域。
⑷按拓扑结构分类
计算机网络的物理连接形式叫做网络的物理拓扑结构。连接在网络上的计算机、大容量的外存、高速打印机等设备均可看作是网络上的一个节点,也称为工作站。计算机网络中常用的拓扑结构有总线型、星型、环型等。
①总线拓扑结构
总线拓扑结构是一种共享通路的物理结构。这种结构中总线具有信息的双向传输功能,普遍用于局域网的连接,总线一般采用同轴电缆或双绞线。
总线拓扑结构的优点是:安装容易,扩充或删除一个节点很容易,不需停止网络的正常工作,节点的故障不会殃及系统。由于各个节点共用一个总线作为数据通路,信道的利用率高。但总线结构也有其缺点:由于信道共享,连接的节点不宜过多,并且总线自身的故障可以导致系统的崩溃。
②星型拓扑结构
星型拓扑结构是一种以中央节点为中心,把若干外围节点连接起来的辐射式互联结构。这种结构适用于局域网,特别是近年来连接的局域网大都采用这种连接方式。这种连接方式以双绞线或同轴电缆作连接线路。
星型拓扑结构的特点是:安装容易,结构简单,费用低,通常以集线器(Hub)作为中央节点,便于维护和管理。中央节点的正常运行对网络系统来说是至关重要的。
③环型拓扑结构
环型拓扑结构是将网络节点连接成闭合结构。信号顺着一个方向从一台设备传到另一台设备,每一台设备都配有一个收发器,信息在每台设备上的延时时间是固定的。
这种结构特别适用于实时控制的局域网系统。
环型拓扑结构的特点是:安装容易,费用较低,电缆故障容易查找和排除。有些网络系统为了提高通信效率和可靠性,采用了双环结构,即在原有的单环上再套一个环,使每个节点都具有两个接收通道。环型网络的弱点是,当节点发生故障时,整个网络就不能正常工作。
④树型拓扑结构
树型拓扑结构就像一棵“根”朝上的树,与总线拓扑结构相比,主要区别在于总线拓扑结构中没有“根”。这种拓扑结构的网络一般采用同轴电缆,用于军事单位、政府部门等上、下界限相当严格和层次分明的部门。
树型拓扑结构的特点:优点是容易扩展、故障也容易分离处理,缺点是整个网络对根的依赖性很大,一旦网络的根发生故障,整个系统就不能正常工作。
❹ 计算机网络的结构有那些
网络的拓扑结构是抛开网络物理连接来讨论网络系统的连接形式,网络中各站点相互连接的方法和形式称为网络拓扑。拓扑图给出网络服务器、工作站的网络配置和相互间的连接,它的结构主要有星型结构、总线结构、树型结构、网状结构、蜂窝状结构、分布式结构等。
星型结构
星型结构是指各工作站以星型方式连接成网。网络有中央节点,其他节点(工作站、服务器)都与中央节点直接相连,这种结构以中央节点为中心,因此又称为集中式网络。它具有如下特点:结构简单,便于管理;控制简单,便于建网;网络延迟时间较小,传输误差较低。但缺点也是明显的:成本高、可靠性较低、资源共享能力也较差。
环型结构
环型结构由网络中若干节点通过点到点的链路首尾相连形成一个闭合的环,这种结构使公共传输电缆组成环型连接,数据在环路中沿着一个方向在各个节点间传输,信息从一个节点传到另一个节点。
环型结构具有如下特点:信息流在网中是沿着固定方向流动的,两个节点仅有一条道路,故简化了路径选择的控制;环路上各节点都是自举控制,故控制软件简单;由于信息源在环路中是串行地穿过各个节点,当环中节点过多时,势必影响信息传输速率,使网络的响应时间延长;环路是封闭的,不便于扩充;可靠性低,一个节点故障,将会造成全网瘫痪;维护难,对分支节点故障定位较难。
总线型结构
总线结构是指各工作站和服务器均挂在一条总线上,各工作站地位平等,无中心节点控制,公用总线上的信息多以基带形式串行传递,其传递方向总是从发送信息的节点开始向两端扩散,如同广播电台发射的信息一样,因此又称广播式计算机网络。各节点在接受信息时都进行地址检查,看是否与自己的工作站地址相符,相符则接收网上的信息。
总线型结构的网络特点如下:结构简单,可扩充性好。当需要增加节点时,只需要在总线上增加一个分支接口便可与分支节点相连,当总线负载不允许时还可以扩充总线;使用的电缆少,且安装容易;使用的设备相对简单,可靠性高;维护难,分支节点故障查找难。
分布式结构
分布式结构的网络是将分布在不同地点的计算机通过线路互连起来的一种网络形式,分布式结构的网络具有如下特点:由于采用分散控制,即使整个网络中的某个局部出现故障,也不会影响全网的操作,因而具有很高的可靠性;网中的路径选择最短路径算法,故网上延迟时间少,传输速率高,但控制复杂;各个节点间均可以直接建立数据链路,信息流程最短;便于全网范围内的资源共享。缺点为连接线路用电缆长,造价高;网络管理软件复杂;报文分组交换、路径选择、流向控制复杂;在一般局域网中不采用这种结构。
树型结构
树型结构是分级的集中控制式网络,与星型相比,它的通信线路总长度短,成本较低,节点易于扩充,寻找路径比较方便,但除了叶节点及其相连的线路外,任一节点或其相连的线路故障都会使系统受到影响。
网状拓扑结构
在网状拓扑结构中,网络的每台设备之间均有点到点的链路连接,这种连接不经济,只有每个站点都要频繁发送信息时才使用这种方法。它的安装也复杂,但系统可靠性高,容错能力强。有时也称为分布式结构。
蜂窝拓扑结构
蜂窝拓扑结构是无线局域网中常用的结构。它以无线传输介质(微波、卫星、红外等)点到点和多点传输为特征,是一种无线网,适用于城市网、校园网、企业网。
在计算机网络中还有其他类型的拓扑结构,如总线型与星型混合。总线型与环型混合连接的网络。在局域网中,使用最多的是总线型和星型结构。
❺ 计算机网络的组成和体系结构
一、计算机网络的基本组成
计算机网络是一个很复杂的系统,它由许多计算机软件、硬件和通信设备组合而成。下面对一个计算机网络所需的主要部分,即服务器、工作站、外围设备、网络软件作简要介绍。
1.服务器(Server)
在计算机网络中,服务器是整个网络系统的核心,一般是指分散在不同地点担负一定数据处理任务和提供资源的计算机,它为网络用户提供服务并管理整个网络,它影响着网络的整体性能。一般在大型网络中采用大型机、中型机和小型机作为网络服务器,可保证网络的可靠性。对于网点不多,网络通信量不大,数据安全性要求不太高的网络,可以选用高档微机作网络服务器。根据服务器在网络中担负的网络功能的不同,又可分为文件服务器、通信服务器和打印服务器等。在小型局域网中,最常用的是文件服务器。一般来说网络越大、用户越多、服务器负荷越大,对服务器性能要求越高。
2.工作站(Workstation)
工作站有时也称为“节点”或“客户机(Client)”,是指通过网络适配器和线缆连接到网络上的计算机,是网络用户进行信息处理的个人计算机。它和服务器不同,服务器是为整个网络提供服务并管理整个网络,而工作站只是一个接入网络的设备,它保持原有计算机的功能,作为独立的计算机为用户服务,同时又可按一定的权限访问服务器,享用网络资源。
工作站通常都是普通的个人计算机,有时为了节约经费,不配软、硬盘,称为“无盘工作站”。
3.网络外围设备
是指连接服务器和工作站的一些连线或连接设备,如同轴电缆、双绞线、光纤等传输介质,网卡(NIC)、中继器(Repeater)、集线器(Hub)、交换机(Switch)、网桥(Bridge)等,又如用于广域网的设备:调制解调器(Modem)、路由器(Router)、网关(Gateway)等,接口设备:T型头、BNC连接器、终端匹配器、RJ45头、ST头、SC头、FC头等。
4.网络软件
前面介绍的都是网络硬件设备。要想网络能很好地运行,还必须有网络软件。
通常网络软件包括网络操作系统(NOS)、网络协议软件和网络通信软件等。其中,网络操作系统是为了使计算机具备正常运行和连接上网的能力,常见的网络操作系统有UNIX、Linux、Novell Netware、Windows NT、Windows 2000 Server、Windows XP等;网络协议软件是为了各台计算能使用统一的协议,可以看成是计算机之间相互会话使用的语言;而运用协议进行实际的通信则是由通信软件完成的。
网络软件功能的强弱直接影响到网络的性能,因为网络中的资源共享、相互通信、访问控制和文件管理等都是通过网络软件实现的。
二、计算机网络的拓扑结构
所谓计算机网络的拓扑结构是指网络中各结点(包括连接到网络中的设备、计算机)的地理分布和互连关系的几何构形,即网络中结点的互连模式。
网络的拓扑结构影响着整个网络的设计、功能、可靠性和通信费用等指标,常见的网络拓扑结构有总线型、星型、环型等,通过使用路由器和交换机等互连设备,可在此基础上构建一个更大网络。
1.总线型
在总线型结构中,将所有的入网计算机接入到一条通信传输线上,为防止信号反射,一般在总线两端连有终端匹配器如图6-1(a)。总线型结构的优点是信道利用率高,可扩充性好,结构简单,价格便宜。当数据在总线上传递时,会不断地“广播”,第一节点均可收到此信息,各节点会对比数据送达的地址与自己的地址是否相同,若相同,则接收该数据,否则不必理会该数据。缺点是同一时刻只能有两个网络结点在相互通信,网络延伸距离有限,网络容纳的节点数有限。在总线上只要有一个结点连接出现问题,会影响整个网络运行,且不易找到故障点。
图6-1 网络拓扑结构
2.星型
在星型结构中,以中央结点为中心,其他结点都与中央结点相连。每台计算机通过单独的通信线路连接到中央结点,由该中央结点向目的结点传送信息,如图6-1(b),因此,中央结点必须有较强的功能和较高的可靠性。
在已实现的网络拓扑结构中,这是最流行的一种。跟总线型拓扑结构相比,它的主要的优势是一旦某一个电缆线段被损坏了,只有连接到那个电缆段的主机才会受到影响,结构简单,建网容易,便于管理。缺点是该拓扑是以点对点方式布线的,故所需线材较多,成本相对较高,此外中央结点易成为系统的“瓶颈”,且一旦发生故障,将导致全网瘫痪。
3.环型
在环型结构中,如图6-1(c)所示,各网络结点连成封闭环路,数据只能是单向传递,每个收到数据包的结点都向它的下一结点转发该数据包,环游一圈后由发送结点回收。当数据包经过目标结点时,目标结点根据数据包中的目标地址判断出是自己接收,并把该数据包拷贝到自己的接收缓冲中。
环型拓扑结构的优点是:结构简单,网络管理比较简单,实时性强。缺点是:成本较高,可靠性差,网络扩充复杂,网络中若有任一结点发生故障都会使整个网络瘫痪。
三、计算机网络的体系结构
要弄清网络的体系结构,需先弄清网络协议是什么。
网络协议是两台网络上的计算机进行通信时使用的语言,是通信的规则和约定。为了在网络上传输数据,网络协议定义了数据应该如何被打成包、并且定义了在接收数据时接收计算机如何解包。在同一网络中的两台计算机为了相互通信,必须运行同一协议,就如同两个人交谈时,必须采用对方听得懂的语言和语速。
由于网络结点之间的连接可能是很复杂的,因此,为了减少协议设计的复杂性,在制定协议时,一般把复杂成分分解成一些简单成分,再将它们复合起来,而大多数网络都按层来组织,并且规定:(1)一般是将用户应用程序作为最高层,把物理通信线路作为最低层,将其间再分为若干层,规定每层处理的任务,也规定每层的接口标准;(2)每一层向上一层提供服务,而与再上一层不发生关系;(3)每一层可以调用下一层的服务传输信息,而与再下一层不发生关系。(4)相邻两层有明显的接口。
除最低层可水平通信外,其他层只能垂直通信。
层和协议的集合被称为网络的体系结构。为了帮助大家理解,我们从现实生活中的一个例子来理解网络的层次关系。假如一个只懂得法语的法国文学家和一个只懂得中文的中国文学家要进行学术交流,那么他们可将论文翻译成英语或某一种中间语言,然后交给各自的秘书选一种通信方式发给对方,如图6-2所示。
图6-2 中法文学家学术交流方式
下面介绍两个重要的网络体系结构:OSI参考模型和TCP/IP参考模型。
1.OSI参考模型
由于世界各大型计算机厂商推出各自的网络体系结构,不同计算机厂商的设备相互通信困难。为建立更大范围内的计算机网络,必然要解决异构网络的互连,因而国际标准化组织ISO于1977年提出“开放系统互连参考模型”,即着名的OSI(Open system interconnection/Reference Model)。它将计算机网络规定为物理层、数据链路层、网络层、传输层、会话层、表示层、应用层等七层,受到计算机界和通信界的极大关注。
2.TCP/IP参考模型
TCP/IP(Transmission Control Protocol/Internet protocol)协议是Internet使用的通信协议,由ARPANET研究中心开发。TCP/IP是一组协议集(Internet protocol suite),而TCP、IP是该协议中最重要最普遍使用的两个协议,所以用TCP/IP来泛指该组协议。
TCP/IP协议的体系结构被分为四层:
(1)网络接口层 是该模型的最低层,其作用是负责接收IP数据报,并通过网络发送出去,或者从网络上接收网络帧,分离IP数据报。
(2)网络层 IP协议被定义驻留在这一层中,它负责将信息从一台主机传到指定接收的另一台主机。主要功能是:寻址、打包和路由选择。
(3)传输层 提供了两个协议用于数据传输,即传输控制协议TCP和通用数据协议UDP,负责提供准确可靠和高效的数据传送服务。
(4)应用层 位于TCP/IP最高层,为用户提供一组常用的应用程序协议。例如:简单邮件传输协议SMTP、文件传协议FTP、远程登录协议Telnet、超文本传输协议HTTP(该协议是后来扩充的)等。随着Internet的发展,又开发了许多实用的应用层协议。
图6-3是TCP/IP模型和OSI模型的简单比较:
图6-3 TCP/IP模型和OSI模型的对比
❻ 计算机网络安全体系结构包括什么
计算机网络安全体系结构是由硬件网络、通信软件以及操作系统构成的。
对于一个系统而言,首先要以硬件电路等物理设备为载体,然后才能运 行载体上的功能程序。通过使用路由器、集线器、交换机、网线等网络设备,用户可以搭建自己所需要的通信网络,对于小范围的无线局域网而言,人们可以使用这 些设备搭建用户需要的通信网络,最简单的防护方式是对无线路由器设置相应的指令来防止非法用户的入侵,这种防护措施可以作为一种通信协议保护。
计算机网络安全广泛采用WPA2加密协议实现协议加密,用户只有通过使用密匙才能对路由器进行访问,通常可以讲驱动程序看作为操作系统的一部分,经过注册表注册后,相应的网络 通信驱动接口才能被通信应用程序所调用。网络安全通常是指网络系统中的硬件、软件要受到保护,不能被更改、泄露和破坏,能够使整个网络得到可持续的稳定运 行,信息能够完整的传送,并得到很好的保密。因此计算机网络安全设计到网络硬件、通信协议、加密技术等领域。
(6)目前计算机网络体系结构有哪几种扩展阅读
计算机安全的启示:
1、按先进国家的经验,考虑不安全因素,网络接口设备选用本国的,不使用外国货。
2、网络安全设施使用国产品。
3、自行开发。
网络的拓扑结构:重要的是确定信息安全边界
1、一般结构:外部区、公共服务区、内部区。
2、考虑国家利益的结构:外部区、公共服务区、内部区及稽查系统和代理服务器定位。
3、重点考虑拨号上网的安全问题:远程访问服务器,放置在什么位置上,能满足安全的需求。
❼ 计算机网络由哪几部分组成
计算机网络的组成基本上包括:计算机、网络操作系统、传输介质(可以是有形的,也可以是无形的,如无线网络的传输介质就是空间)以及相应的应用软件四部分。
计算机网络的分类与一般的事物分类方法一样,可以按事物所具有的不同性质特点(即事物的属性)分类。计算机网络通俗地讲就是由多台计算机(或其它计算机网络设备)通过传输介质和软件物理(或逻辑)连接在一起组成的。
虽然网络类型的划分标准各种各样,但是从地理范围划分是一种大家都认可的通用网络划分标准。按这种标准可以把各种网络类型划分为局域网、城域网、广域网和互联网四种。局域网一般来说只
能是一个较小区域内,城域网是不同地区的网络互联,不过在此要说明的一点就是这里的网络划分并没有严格意义上地理范围的区分,只能是一个定性的概念。
(7)目前计算机网络体系结构有哪几种扩展阅读:
计算机网络按广义分类:
计算机网络也称计算机通信网。关于计算机网络的最简单定义是:一些相互连接的、以共享资源为目的的、自治的计算机的集合。若按此定义,则早期的面向终端的网络都不能算是计算机网络,而
只能称为联机系统(因为那时的许多终端不能算是自治的计算机)。但随着硬件价格的下降,许多终端都具有一定的智能,因而“终端”和“自治的计算机”逐渐失去了严格的界限。若用微型计算
机作为终端使用,按上述定义,则早期的那种面向终端的网络也可称为计算机网络。
另外,从逻辑功能上看,计算机网络是以传输信息为基础目的,用通信线路将多个计算机连接起来的计算机系统的集合,一个计算机网络组成包括传输介质和通信设备。
从用户角度看,计算机网络是这样定义的:存在着一个能为用户自动管理的网络操作系统。由它调用完成用户所调用的资源,而整个网络像一个大的计算机系统一样,对用户是透明的。
一个比较通用的定义是:利用通信线路将地理上分散的、具有独立功能的计算机系统和通信设备按不同的形式连接起来,以功能完善的网络软件及协议实现资源共享和信息传递的系统。
从整体上来说计算机网络就是把分布在不同地理区域的计算机与专门的外部设备用通信线路互联成一个规模大、功能强的系统,从而使众多的计算机可以方便地互相传递信息,共享硬件、软件、数
据信息等资源。简单来说,计算机网络就是由通信线路互相连接的许多自主工作的计算机构成的集合体。
最简单的计算机网络就只有两台计算机和连接它们的一条链路,即两个节点和一条链路。
参考资料:网络--计算机网络
❽ 计算机网络结构体系有哪些
计算机网络体系结构:是指计算机网络层次结构模型和各层协议的集合。它广泛采用的是国际标准化组织(ISO)在1979年提出的开放系统互连(OSI-Open System Interconnection)的参考模型。OSI参考模型用物理层、数据链路层、网络层、传送层、对话层、表示层和应用层七个层次描述网络的结构,它的规范对所有的厂商是开放的,具有知道国际网络结构和开放系统走向的作用。它直接影响总线、接口和网络的性能。目前常见的网络体系结构有FDDI、以太网、令牌环网和快速以太网等。从网络互连的角度看,网络体系结构的关键要素是协议和拓扑。
❾ 究竟网络有几个层次
为了使不同计算机厂家生产的计算机能够相互通信,以便在更大的范围内建立计算机网络,国际标准化组织(ISO)在1978年提出了“开放系统互联参考模型”,即着名的OSI/RM模型(Open System Interconnection/Reference Model)。它将计算机网络体系结构的通信协议划分为七层,自下而上依次为:物理层(Physics Layer)、数据链路层(Data Link Layer)、网络层(Network Layer)、传输层(Transport Layer)、会话层(Session Layer)、表示层(Presentation Layer)、应用层(Application Layer)。其中第四层完成数据传送服务,上面三层面向用户。
除了标准的OSI七层模型以外,常见的网络层次划分还有TCP/IP四层协议以及TCP/IP五层协议
1)物理层(Physical Layer)
激活、维持、关闭通信端点之间的机械特性、电气特性、功能特性以及过程特性。该层为上层协议提供了一个传输数据的可靠的物理媒体。简单的说,物理层确保原始的数据可在各种物理媒体上传输。物理层记住两个重要的设备名称,中继器(Repeater,也叫放大器)和集线器。
2)数据链路层(Data Link Layer)
数据链路层在物理层提供的服务的基础上向网络层提供服务,其最基本的服务是将源自网络层来的数据可靠地传输到相邻节点的目标机网络层。为达到这一目的,数据链路必须具备一系列相应的功能,主要有:如何将数据组合成数据块,在数据链路层中称这种数据块为帧(frame),帧是数据链路层的传送单位;如何控制帧在物理信道上的传输,包括如何处理传输差错,如何调节发送速率以使与接收方相匹配;以及在两个网络实体之间提供数据链路通路的建立、维持和释放的管理。数据链路层在不可靠的物理介质上提供可靠的传输。该层的作用包括:物理地址寻址、数据的成帧、流量控制、数据的检错、重发等。
有关数据链路层的重要知识点:
1>数据链路层为网络层提供可靠的数据传输;
2>基本数据单位为帧;
3> 主要的协议:以太网协议;
4> 两个重要设备名称:网桥和交换机。
3)网络层(Network Layer)
网络层的目的是实现两个端系统之间的数据透明传送,具体功能包括寻址和路由选择、连接的建立、保持和终止等。它提供的服务使传输层不需要了解网络中的数据传输和交换技术。如果您想用尽量少的词来记住网络层,那就是“路径选择、路由及逻辑寻址”。
网络层中涉及众多的协议,其中包括最重要的协议,也是TCP/IP的核心协议——IP协议。IP协议非常简单,仅仅提供不可靠、无连接的传送服务。IP协议的主要功能有:无连接数据报传输、数据报路由选择和差错控制。与IP协议配套使用实现其功能的还有地址解析协议ARP、逆地址解析协议RARP、因特网报文协议ICMP、因特网组管理协议IGMP。具体的协议我们会在接下来的部分进行总结,有关网络层的重点为:
1> 网络层负责对子网间的数据包进行路由选择。此外,网络层还可以实现拥塞控制、网际互连等功能;
2> 基本数据单位为IP数据报;
3> 包含的主要协议:
IP协议(Internet Protocol,因特网互联协议);
ICMP协议(Internet Control Message Protocol,因特网控制报文协议);
ARP协议(Address Resolution Protocol,地址解析协议);
RARP协议(Reverse Address Resolution Protocol,逆地址解析协议)。
4> 重要的设备:路由器。
4)传输层(Transport Layer)
第一个端到端,即主机到主机的层次。传输层负责将上层数据分段并提供端到端的、可靠的或不可靠的传输。此外,传输层还要处理端到端的差错控制和流量控制问题。
传输层的任务是根据通信子网的特性,最佳的利用网络资源,为两个端系统的会话层之间,提供建立、维护和取消传输连接的功能,负责端到端的可靠数据传输。在这一层,信息传送的协议数据单元称为段或报文。
网络层只是根据网络地址将源结点发出的数据包传送到目的结点,而传输层则负责将数据可靠地传送到相应的端口。
有关网络层的重点:
1>传输层负责将上层数据分段并提供端到端的、可靠的或不可靠的传输以及端到端的差错控制和流量控制问题;
2> 包含的主要协议:TCP协议(Transmission Control Protocol,传输控制协议)、UDP协议(User Datagram Protocol,用户数据报协议);
3> 重要设备:网关。
5)会话层
会话层管理主机之间的会话进程,即负责建立、管理、终止进程之间的会话。会话层还利用在数据中插入校验点来实现数据的同步。
6)表示层
表示层对上层数据或信息进行变换以保证一个主机应用层信息可以被另一个主机的应用程序理解。表示层的数据转换包括数据的加密、压缩、格式转换等。
7)应用层
为操作系统或网络应用程序提供访问网络服务的接口。
会话层、表示层和应用层重点:
1> 数据传输基本单位为报文;
2> 包含的主要协议:FTP(文件传送协议)、Telnet(远程登录协议)、DNS(域名解析协议)、SMTP(邮件传送协议),POP3协议(邮局协议),HTTP协议(Hyper Text Transfer Protocol)。
摘抄
❿ 什么是计算机网络体系结构 包括哪些内容
计算机网络体系结构可以从网络体系结构、网络组织、网络配置三个方面来描述,网络组织是从网络的物理结构和网络的实现两方面来描述计算机网络,网络配置是从网络应用方面来描述计算机网络的布局,硬件、软件和通信线路来描述计算机网络,网络体系结构是从功能上来描述计算机网络结构。
它是一个分层次的模块式结构。
从宏观角度着重剖析了它们之间的联系,数据通信原理,各层的数据传输单元,各层数据封装原理,以及共同的各层主要功能,各层主要功能实现原理、主要通信协议,以及相关的计算机网络基础知识。
相互通信的两个计算机系统必须高度协调工作才行,而这种“协调”是相当复杂的。
“分层”可将庞大而复杂的问题,转化为若干较小的局部问题,而这些较小的局部问题就比较易于研究和处理。
(10)目前计算机网络体系结构有哪几种扩展阅读:
网络体系结构的设计考虑:
层次之间的先后次序、任务是按照什么先后顺序来完成、层次之间的通信接口、任务的每个步骤之间如何协调
网络体系结构分层的好处:
促进标准化、各层相互独立,技术升级和扩展灵活性好、便于方案设计和维护