当前位置:首页 » 无线网络 » cy无线传感器网络协议
扩展阅读
苹果电脑这么显示桌面 2025-07-19 05:38:48

cy无线传感器网络协议

发布时间: 2022-06-18 22:15:02

1. 无线传感网络协议包括哪三种方式

ZIGBEE协议。最适合传感器网络的无线通信技术。相应的就是ZIGBEE协议,实现是ZIGBEE协议栈。
此外无线通信技术还有WIFI,蓝牙,GPRS等

2. 无线传感器网络路由协议有哪些基本分类简述spin路由算法特点

(1)能量优先
传统路由协议在选择最优路径时,很少考虑节点的能量消耗问题。而无线传感器网络中节点的能量有限,延长整个网络的生存期成为传感器网络路由协议设计的重要目标,因此需要考虑节点的能量消耗以及网络能量均衡使用的问题。
(2)基于局部拓扑信息
无线传感器网络为了节省通信能量,通常采用多跳的通信模式,而节点有限的存储资源和计算资源,使得节点不能存储大量的路由信息,不能进行太复杂的路由计算。在节点只能获取局部拓扑信息和资源有限的情况下,如何实现简单高效的路由机制是无线传感器网络的一个基本问题。
(3)以数据为中心
传统的路由协议通常以地址作为节点的标识和路由的依据,而无线传感器网络中大量节点随机部署,所关注的是监测区域的感知数据,而不是具体哪个节点获取的信息,不依赖于全网唯一的标识。传感器网络通常包含多个传感器节点到少数汇聚节点的数据流,按照对感知数据的需求、数据通信模式和流向等,以数据为中心形成消息的转发路径。
(4)应用相关
传感器网络的应用环境千差万别,数据通信模式不同,没有一个路由机制适合所有的应用,这是传感器网络应用相关性的一个体现。设计者需要针对每一个具体应用的需求,设计与之适应的特定路由机制。
针对传感器网络路由机制的上述特点,在根据具体应用设计路由机制时,传感器网络需满足一定的路由机制。

3. 协议相比,无线传感器网络的路由协议具有哪些特点

与传统网络的路由协议相比,无线传感器网络的路由协议具有以下特点:
(1)能量优先
由于节点的能量有限,因此需要考虑节点的能量消耗以及网络能量均衡使用的问题。
(2)基于局部拓扑信息
节点只能获取局部拓扑信息且资源有限,需要实现简单高效的路由机制。
(3)以数据为中心
传感器网络通常包含多个传感器节点到少数汇聚节点的数据流,按照对感知数据的需求、数据通信模式和流向等,以数据为中心形成信息的转发路径。
(4)应用相关
传感器网络的应用环境千差万别,需要针对每一个具体应用的需求,设计与之适应的特定路由机制。
根据无线传感器网络路由的特点,现阶段WSN路由协议设计要遵从如下原则:
(1)能量利用率优先考虑
无线传感器网络路由协议以节能为目标,采用各种方式减少通信消耗,延长WSN的生存时间。
(2)数据为中心
以数据为中心的路由协议要求采用基于属性的命名机制,某个节点的故障并不会影响整个协议的运行,提高了网络的强健性。
(3)不影响传感器节点探测精度条件下的数据聚合
通过数据聚合,将多个节点的数据综合成有意义的信息,提高了感知信息的准确性,同时增强了系统的强健性。
(4)实现节点定位和目标追踪
通过节点定位,达到路由决策的目的,同时降低整个系统的能量消耗,提高系统的生存时间。

4. 无线传感器网络的路由协议有哪些类型路由协议的设计要求

(1)能量优先
传统路由协议在选择最优路径时,很少考虑节点的能量消耗问题。而无线传感器网络中节点的能量有限,延长整个网络的生存期成为传感器网络路由协议设计的重要目标,因此需要考虑节点的能量消耗以及网络能量均衡使用的问题。
(2)基于局部拓扑信息
无线传感器网络为了节省通信能量,通常采用多跳的通信模式,而节点有限的存储资源和计算资源,使得节点不能存储大量的路由信息,不能进行太复杂的路由计算。在节点只能获取局部拓扑信息和资源有限的情况下,如何实现简单高效的路由机制是无线传感器网络的一个基本问题。
(3)以数据为中心
传统的路由协议通常以地址作为节点的标识和路由的依据,而无线传感器网络中大量节点随机部署,所关注的是监测区域的感知数据,而不是具体哪个节点获取的信息,不依赖于全网唯一的标识。传感器网络通常包含多个传感器节点到少数汇聚节点的数据流,按照对感知数据的需求、数据通信模式和流向等,以数据为中心形成消息的转发路径。
(4)应用相关
传感器网络的应用环境千差万别,数据通信模式不同,没有一个路由机制适合所有的应用,这是传感器网络应用相关性的一个体现。设计者需要针对每一个具体应用的需求,设计与之适应的特定路由机制。
针对传感器网络路由机制的上述特点,在根据具体应用设计路由机制时,传感器网络需满足一定的路由机制。

5. 无线传感器网络的路由协议具体有哪些特点

自组织、低功耗、单向数据、大规模

6. 物联网的中国发展

物联网在中国迅速崛起得益于我国在物联网方面的几大优势。
第一,我国早在1999年就启动了物联网核心传感网技术研究,研发水平处于世界前列;
第二,在世界传感网领域,我国是标准主导国之一,专利拥有量高;
第三,我国是能够实现物联网完整产业链的国家之一;
第四,我国无线通信网络和宽带覆盖率高,为物联网的发展提供了坚实的基础设施支持;
第五,我国已经成为世界第二大经济体,有较为雄厚的经济实力支持物联网发展。 物联网在中国高校的研究,当前的聚焦点在北京邮电大学和南京邮电大学。作为“感知中国”的中心,无锡市2009年9月与北京邮电大学就传感网技术研究和产业发展签署合作协议,标志中国“物联网”进入实际建设阶段。协议声明,无锡市将与北京邮电大学合作建设研究院,内容主要围绕传感网,涉及光通信、无线通信、计算机控制、多媒体、网络、软件、电子、自动化等技术领域,此外,相关的应用技术研究、科研成果转化和产业化推广工作也同时纳入议程。
为积极参与“感知中国”中心及物联网建设的科技创新和成果转化工作,保持、扩大学校在物联网研究领域的优势。南京邮电大学召开物联网建设专题研讨会,及时调整科研机构和专业设置,新成立了物联网与传感网研究院、物联网学院。2009年9月10日,全国高校首家物联网研究院在南京邮电大学正式成立。新华日报记者探访了南邮的“无线传感器网络研究中心”,这里的研究者与“物联网”打交道已有五六年。在实验室,一些“物联网”产品已经初见雏形。此外,南邮还有系列举措推进物联网建设的研究:设立物联网专项科研项目,鼓励教师积极参与物联网建设的研究;启动“智慧南邮”平台建设,在校园内建设物联网示范区等。
世界第一块工业物联网芯片
2012年由重庆邮电大学研发的全球首款支持三大国际工业无线标准的物联网核心芯片——渝“芯”一号(uz/cy2420)在渝正式发布,标志着我国在工业物联网技术领域达到了世界领先水平,为我国掌握物联网核心技术的国际竞争话语权奠定了坚实基础,对加快推进工业化与信息化的深度融合具有重要意义。
我国第一家高校物联网工程学院
2010年6月10日,江南大学为进一步整合相关学科资源,推动相关学科跨越式发展,提升战略性新兴产业的人才培养与科学研究水平,服务物联网产业发展,江南大学信息工程学院和江南大学通信与控制工程学院合并组建成立“物联网工程学院”,也是全国第一个物联网工程学院。
2012年6月,教育权威数据在物联网爱好者论坛建立开设物联网工程专业的物联网学校查询系统,专为物联网工程专业学生服务,方便大家查询开设物联网工程专业院校。 2011年4月,长安大学为加快建设特色鲜明的大学,推动陕西省(国家物联网中心)相关学科跨越式发展,推动地方经济,服务物联网产业发展,长安大学和西安浐灞生态区共建长安大学科技园”,也是全国第一个拥有直接服务于物联网板块的国家级大学科技园。
项目描述:占地面积80亩,建筑面积130000平方米,长安大学联合具有较强技术转化实力的企业打造物联网产业园区,依托西安地区科研综合实力和人才优势,重点发展超高频RFID、高端传感器的研发及技术转换转让,打造物联网器件集散、物联网行业应用解决方案集聚、物联网产品展示以及研发办公、商业配套。
目标招商企业(项目):项目主要吸引物联网集成技术、软件开发及产品销售企业入区经营;吸引智能物流、环保、交通、电网、安防、家居等六个主要门类的研发服务类企业和项目入园。 权威人士日前向记者表示,首批5亿元物联网专项基金申报工作已启动,共有600多家企业申报。工信部已筛选出100多家符合条件的企业。物联网专项基金总计50亿元,预计5年内发放完毕。
工信部、财政部4月联合出台物联网专项基金相关管理办法。该基金将重点支持技术研发类、产业化类、应用示范与推广类和标准研制与公共服务类四大项目。已形成基本齐全的物联网产业体系,网络通信相关技术和产业支持能力与国外差距相对较小,但传感器、RFID (无线射频技术)等感知端制造产业、高端软件与集成服务与国外差距相对较大。我国大陆共有450余家从事敏感元件及传感器生产厂家,但外资企业占67%。 据透露,申请首批物联网专项基金企业多为中资企业。通过物联网专项基金引导,有关部门希望培育技术创新能力强,具有自主知识产权、自主品牌和国际竞争力的大企业,加快产业培育和发展。 物联网工程师证书是根据国家工信部门要求颁发的一类物联网专业领域下工业和信息化领域急需紧缺人才证书。
该证书被划分为5个方向:
物联网工程师、节能环保工程师、物联网系统工程师、智能电网工程师、智能物流工程师。

7. 无线传感器网络通信协议的目录

第1章 无线传感器网络概述
1.1 引言
1.2 无线传感器网络介绍
1.2.1 无线传感器网络体系结构
1.2.2 无线传感器网络的特点和关键技术
1.2.3 无线传感器网络的应用
1.3 无线传感器网络路由算法
1.3.1 无线传感器网络路由算法研究的主要思路
1.3.2 无线传感器网络路由算法的分类
1.3.3 无线传感器网络QoS路由算法研究的基本思想
1.3.4 无线传感器网络QoS路由算法研究的分类
1.3.5 平面路由的主流算法
1.3.6 分簇路由的主流算法
1.4 ZigBee技术
1.4.1 ZigBee技术的特点
1.4.2 ZigBee协议框架
1.4.3 ZigBee的网络拓扑结构
1.5 无线传感器安全研究
1.5.1 无线传感器网络的安全需求
1.5.2 无线传感器网络安全的研究进展
1.5.3 无线传感器网络安全的研究方向
1.6 水下传感器网络
1.7 无线传感器网络定位
1.7.1 存在的问题
1.7.2 性能评价
1.7.3 基于测距的定位方法
1.7.4 非测距定位算法
1.7.5 移动节点定位
第2章 无线传感器网络的分布式能量有效非均匀成簇算法
2.1 引言
2.2 相关研究工作
2.2.1 单跳成簇算法
2.2.2 多跳成簇算法
2.3 DEEUC成簇路由算法
2.3.1 网络模型
2.3.2 DEEUC成簇算法
2.3.3 候选簇头的产生
2.3.4 估计平均能量
2.3.5 最终簇头的产生
2.3.6 平衡簇头区节点能量
2.3.7 算法分析
2.4 仿真和分析
2.5 结论及下一步工作
参考文献
第3章 无线传感器网络分簇多跳能量均衡路由算法
3.1 无线传输能量模型
3.2 无线传感器网络路由策略研究
3.2.1 平面路由
3.2.2 单跳分簇路由算法研究
3.2.3 多跳层次路由算法研究
3.3 LEACH-L算法
3.3.1 LEACH-L的改进思路
3.3.2 LEACH-L算法模型
3.3.3 LEACH-L描述
3.4 LEACH-L的分析
3.5 实验仿真
3.5.1 评价参数
3.5.2 仿真环境
3.5.3 仿真结果
3.6 总结及未来的工作
3.6.1 总结
3.6.2 未来的工作
参考文献
第4章 基于生成树的无线传感器网络分簇通信协议
4.1 引言
4.2 无线传输能量模型
4.3 基于时间延迟机制的分簇算法(CHTD)
4.3.1 CHTD的改进思路
4.3.2 CHTD簇头的产生
4.3.3 CHTD簇头数目的确定
4.3.4 CHTD最优簇半径
4.3.5 CHTD描述
4.3.6 CHTD的特性
4.4 CHTD簇数据传输研究
4.4.1 引言
4.4.2 改进的CHTD算法(CHTD-M)
4.4.3 CHTD-M的分析
4.5 仿真分析
4.5.1 生命周期
4.5.2 接收数据包量
4.5.3 能量消耗
4.5.4 负载均衡
4.6 总结及未来的工作
4.6.1 总结
4.6.2 未来的工作
参考文献
第5章 基于自适应蚁群系统的传感器网络QoS路由算法
5.1 引言
5.2 蚁群算法
5.3 APAS算法的信息素自适应机制
5.4 APAS算法的挥发系数自适应机制
5.5 APAS算法的QoS改进参数
5.6 APAS算法的信息素分发机制
5.7 APAS算法的定向广播机制
5.8 仿真实验及结果分析
5.8.1 仿真环境
5.8.2 仿真结果及分析
5.9 总结及未来的工作
5.9.1 总结
5.9.2 未来的工作
参考文献
第6章 无线传感器网络簇头选择算法
6.1 引言
6.2 LEACH NEW算法
6.2.1 网络模型
6.2.2 LEACH NEW簇头选择机制
6.2.3 簇的生成
6.2.4 簇头间多跳路径的建立
6.3 仿真实现
6.4 结论及未来的工作
参考文献
第7章 水下无线传感网络中基于向量的低延迟转发协议
7.1 引言
7.2 相关工作
7.3 网络模型
7.3.1 问题的数学描述
7.3.2 网络模型
7.4 基于向量的低延迟转发协议
7.4.1 基于向量转发协议的分析
7.4.2 基于向量的低延迟转发算法
7.5 仿真实验
7.5.1 仿真环境
7.5.2 仿真分析
7.6 总结
参考文献
第8章 无线传感器网络数据融合算法研究
8.1 引言
8.2 节能路由算法
8.2.1 平面式路由算法
8.2.2 层状式路由算法
8.3 数据融合模型
8.3.1 数据融合系统
8.3.2 LEACH簇头选择算法
8.3.3 簇内融合路径
8.3.4 环境设定和能耗公式
8.4 数据融合仿真
8.4.1 仿真分析
8.4.2 仿真结果分析
8.5 结论
参考文献
第9章 无线传感器网络相关技术
9.1 超宽带技术
9.1.1 系统结构的实现比较简单
9.1.2 空间传输容量大
9.1.3 多径分辨能力强
9.1.4 安全性高
9.1.5 定位精确
9.2 物联网技术
9.2.1 物联网原理
9.2.2 物联网的背景与前景
9.3 云计算技术
9.3.1 SaaS软件即服务
9.3.2 公用/效用计算
9.3.3 云计算领域的Web服务
9.4 认知无线电技术
9.4.1 传统的Ad-hoc方式中无线传感器网络的不足
9.4.2 在ZigBee无线传感器网络中的应用
参考文献
第10章 无线传感器网络应用
10.1 军事应用
10.2 农业应用
10.3 环保监测
10.4 建筑应用
10.5 医疗监护
10.6 工业应用
10.6.1 工业安全
10.6.2 先进制造
10.6.3 交通控制管理
10.6.4 仓储物流管理
10.7 空间、海洋探索
10.8 智能家居应用

8. 无线传感器网络MAC协议有哪些基本分类

没有统一的MAC协议分类方式,但是大体依据标准分为三种,如根据网络拓扑结构方式(分布式和集中式控制);使用单一或多信道方式;采用固定分配信道还是随机访问信道方式。
已有的参考文献也将无线传感器网络MAC协议分为三类:确定性分配、竞争占用和随机访问。前两者不是传感器网络的理想选择。因为TDMA固定时隙的发送模式功耗过大,为了节省功耗,空闲状态应关闭发射机。竞争占用方案需要实时监测信道状态也不是一种合理的选择。随机介质访问模式比较适合于无线传感网络的节能要求。
下面介绍根据信道分配使用方式,将无线传感器网络MAC协议分为基于无线信道随机竞争方式和时分复用方式及基于时分和频分复用等其他混合方式三种。
1) 无线信道随机竞争接入方式(CSMA)

节点需要发送数据时采用随机方式使用无线信道,典型的如采用载波监听多路访问(CSMA)的MAC协议,需要注意隐藏终端和暴露终端问题,尽量减少节点间的干扰。

2) 无线信道时分复用无竞争接入方式(TDMA)

采用时分复用(TDMA)方式给每个节点分配了一个固定的无线信道使用时段,可以有效避免节点间的干扰。

3) 无线信道时分/频分/码分等混合复用接入方式(TDMA/FDMA/CDMA)

通过混合采用时分和频分或码分等复用方式,实现节点间的无冲突信道分配策略。

9. 无线传感器网络常见通信协议标准是什么

无线传感器网络主要由三大部分组成,包括节点、传感网络和用户这3部分。其中,节点一般是通过一定方式将节点覆盖在一定的范围,整个范围按照一定要求能够满足监测的范围;传感网络是最主要的部分,它是将所有的节点信息通过固定的渠道进行收集,然后对这些节点信息进行一定的分析计算,将分析后的结果汇总到一个基站,最后通过卫星通信传输到指定的用户端,从而实现无线传感的要求