当前位置:首页 » 无线网络 » 无线网络ra算法
扩展阅读
平台站有哪些网站案例 2025-07-20 21:21:51
绿联蓝牙共享网络 2025-07-20 21:18:55

无线网络ra算法

发布时间: 2022-07-20 21:30:53

㈠ 目前常用的加密解密算法有哪些

加密算法

加密技术是对信息进行编码和解码的技术,编码是把原来可读信息(又称明文)译成代码形式(又称密文),其逆过程就是解码(解密)。加密技术的要点是加密算法,加密算法可以分为对称加密、不对称加密和不可逆加密三类算法。

对称加密算法 对称加密算法是应用较早的加密算法,技术成熟。在对称加密算法中,数据发信方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。收信方收到密文后,若想解读原文,则需要使用加密用过的密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。在对称加密算法中,使用的密钥只有一个,发收信双方都使用这个密钥对数据进行加密和解密,这就要求解密方事先必须知道加密密钥。对称加密算法的特点是算法公开、计算量小、加密速度快、加密效率高。不足之处是,交易双方都使用同样钥匙,安全性得不到保证。此外,每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一钥匙,这会使得发收信双方所拥有的钥匙数量成几何级数增长,密钥管理成为用户的负担。对称加密算法在分布式网络系统上使用较为困难,主要是因为密钥管理困难,使用成本较高。在计算机专网系统中广泛使用的对称加密算法有DES和IDEA等。美国国家标准局倡导的AES即将作为新标准取代DES。

不对称加密算法不对称加密算法使用两把完全不同但又是完全匹配的一对钥匙—公钥和私钥。在使用不对称加密算法加密文件时,只有使用匹配的一对公钥和私钥,才能完成对明文的加密和解密过程。加密明文时采用公钥加密,解密密文时使用私钥才能完成,而且发信方(加密者)知道收信方的公钥,只有收信方(解密者)才是唯一知道自己私钥的人。不对称加密算法的基本原理是,如果发信方想发送只有收信方才能解读的加密信息,发信方必须首先知道收信方的公钥,然后利用收信方的公钥来加密原文;收信方收到加密密文后,使用自己的私钥才能解密密文。显然,采用不对称加密算法,收发信双方在通信之前,收信方必须将自己早已随机生成的公钥送给发信方,而自己保留私钥。由于不对称算法拥有两个密钥,因而特别适用于分布式系统中的数据加密。广泛应用的不对称加密算法有RSA算法和美国国家标准局提出的DSA。以不对称加密算法为基础的加密技术应用非常广泛。

不可逆加密算法 不可逆加密算法的特征是加密过程中不需要使用密钥,输入明文后由系统直接经过加密算法处理成密文,这种加密后的数据是无法被解密的,只有重新输入明文,并再次经过同样不可逆的加密算法处理,得到相同的加密密文并被系统重新识别后,才能真正解密。显然,在这类加密过程中,加密是自己,解密还得是自己,而所谓解密,实际上就是重新加一次密,所应用的“密码”也就是输入的明文。不可逆加密算法不存在密钥保管和分发问题,非常适合在分布式网络系统上使用,但因加密计算复杂,工作量相当繁重,通常只在数据量有限的情形下使用,如广泛应用在计算机系统中的口令加密,利用的就是不可逆加密算法。近年来,随着计算机系统性能的不断提高,不可逆加密的应用领域正在逐渐增大。在计算机网络中应用较多不可逆加密算法的有RSA公司发明的MD5算法和由美国国家标准局建议的不可逆加密标准SHS(Secure Hash Standard:安全杂乱信息标准)等。

加密技术

加密算法是加密技术的基础,任何一种成熟的加密技术都是建立多种加密算法组合,或者加密算法和其他应用软件有机结合的基础之上的。下面我们介绍几种在计算机网络应用领域广泛应用的加密技术。

非否认(Non-repudiation)技术 该技术的核心是不对称加密算法的公钥技术,通过产生一个与用户认证数据有关的数字签名来完成。当用户执行某一交易时,这种签名能够保证用户今后无法否认该交易发生的事实。由于非否认技术的操作过程简单,而且直接包含在用户的某类正常的电子交易中,因而成为当前用户进行电子商务、取得商务信任的重要保证。

PGP(Pretty Good Privacy)技术 PGP技术是一个基于不对称加密算法RSA公钥体系的邮件加密技术,也是一种操作简单、使用方便、普及程度较高的加密软件。PGP技术不但可以对电子邮件加密,防止非授权者阅读信件;还能对电子邮件附加数字签名,使收信人能明确了解发信人的真实身份;也可以在不需要通过任何保密渠道传递密钥的情况下,使人们安全地进行保密通信。PGP技术创造性地把RSA不对称加密算法的方便性和传统加密体系结合起来,在数字签名和密钥认证管理机制方面采用了无缝结合的巧妙设计,使其几乎成为最为流行的公钥加密软件包。

数字签名(Digital Signature)技术 数字签名技术是不对称加密算法的典型应用。数字签名的应用过程是,数据源发送方使用自己的私钥对数据校验和或其他与数据内容有关的变量进行加密处理,完成对数据的合法“签名”,数据接收方则利用对方的公钥来解读收到的“数字签名”,并将解读结果用于对数据完整性的检验,以确认签名的合法性。数字签名技术是在网络系统虚拟环境中确认身份的重要技术,完全可以代替现实过程中的“亲笔签字”,在技术和法律上有保证。在公钥与私钥管理方面,数字签名应用与加密邮件PGP技术正好相反。在数字签名应用中,发送者的公钥可以很方便地得到,但他的私钥则需要严格保密。

PKI(Public Key Infrastructure)技术 PKI技术是一种以不对称加密技术为核心、可以为网络提供安全服务的公钥基础设施。PKI技术最初主要应用在Internet环境中,为复杂的互联网系统提供统一的身份认证、数据加密和完整性保障机制。由于PKI技术在网络安全领域所表现出的巨大优势,因而受到银行、证券、政府等核心应用系统的青睐。PKI技术既是信息安全技术的核心,也是电子商务的关键和基础技术。由于通过网络进行的电子商务、电子政务等活动缺少物理接触,因而使得利用电子方式验证信任关系变得至关重要,PKI技术恰好能够有效解决电子商务应用中的机密性、真实性、完整性、不可否认性和存取控制等安全问题。一个实用的PKI体系还必须充分考虑互操作性和可扩展性。PKI体系所包含的认证中心(CA)、注册中心(RA)、策略管理、密钥与证书管理、密钥备份与恢复、撤销系统等功能模块应该有机地结合在一起。

加密的未来趋势

尽管双钥密码体制比单钥密码体制更为可靠,但由于计算过于复杂,双钥密码体制在进行大信息量通信时,加密速率仅为单钥体制的1/100,甚至是 1/1000。正是由于不同体制的加密算法各有所长,所以在今后相当长的一段时期内,各类加密体制将会共同发展。而在由IBM等公司于1996年联合推出的用于电子商务的协议标准SET(Secure Electronic Transaction)中和1992年由多国联合开发的PGP技术中,均采用了包含单钥密码、双钥密码、单向杂凑算法和随机数生成算法在内的混合密码系统的动向来看,这似乎从一个侧面展示了今后密码技术应用的未来。

在单钥密码领域,一次一密被认为是最为可靠的机制,但是由于流密码体制中的密钥流生成器在算法上未能突破有限循环,故一直未被广泛应用。如果找到一个在算法上接近无限循环的密钥流生成器,该体制将会有一个质的飞跃。近年来,混沌学理论的研究给在这一方向产生突破带来了曙光。此外,充满生气的量子密码被认为是一个潜在的发展方向,因为它是基于光学和量子力学理论的。该理论对于在光纤通信中加强信息安全、对付拥有量子计算能力的破译无疑是一种理想的解决方法。

由于电子商务等民用系统的应用需求,认证加密算法也将有较大发展。此外,在传统密码体制中,还将会产生类似于IDEA这样的新成员,新成员的一个主要特征就是在算法上有创新和突破,而不仅仅是对传统算法进行修正或改进。密码学是一个正在不断发展的年轻学科,任何未被认识的加/解密机制都有可能在其中占有一席之地。

目前,对信息系统或电子邮件的安全问题,还没有一个非常有效的解决方案,其主要原因是由于互联网固有的异构性,没有一个单一的信任机构可以满足互联网全程异构性的所有需要,也没有一个单一的协议能够适用于互联网全程异构性的所有情况。解决的办法只有依靠软件代理了,即采用软件代理来自动管理用户所持有的证书(即用户所属的信任结构)以及用户所有的行为。每当用户要发送一则消息或一封电子邮件时,代理就会自动与对方的代理协商,找出一个共同信任的机构或一个通用协议来进行通信。在互联网环境中,下一代的安全信息系统会自动为用户发送加密邮件,同样当用户要向某人发送电子邮件时,用户的本地代理首先将与对方的代理交互,协商一个适合双方的认证机构。当然,电子邮件也需要不同的技术支持,因为电子邮件不是端到端的通信,而是通过多个中间机构把电子邮件分程传递到各自的通信机器上,最后到达目的地。

㈡ 假如有三个无线路由器,分别RA,RB,RC 如果通过WDS以A做主路由,BC副路由,他们三个分别能

不能吧。主路由应该关闭WDS的,B、C开启WDS和它连接,这样A就相当于总的出入口。B、C的流量最终要通过它进出,这个WDS网络用户数为22,用户数宽,而它只能承受10个用户,总出口窄,一宽一窄,A将成为网络的瓶颈,无法承载22个用户数。

解决方法:把A换成能无线接入20-30用户的企业级无线路由器就可以了,价格也不贵,不到300。如TP-LINK TL-WVR300,299元,可承载20个无线用户。

㈢ 在无线传感器网络中,如何根据接收信号的强度来判断发送者的距离有具体的计算公式么

基于RSSI的定位
RSSI测量,一般利用信号传播的经验模型与理论模型。
对于经验模型,在实际定位前,先选取若干测试点,记录在这些点各基站收到的信号强度,建立各个点上的位置和信号强度关系的离线数据库(x,y,ss1,ss2,ss3)。在实际定位时,根据测得的信号强度(ss1′,ss2′,ss3′)和数据库中记录的信号强度进行比较,信号强度均方差最小的那个点的坐标作为节点的坐标。
对于理论模型,常采用无线电传播路径损耗模型进行分析。常用的传播路径损耗模型有:自由空间传播模型、对数距离路径损耗模型、哈它模型、对数一常态分布模型等。自由空间无线电传播路径损耗模型为:

式中,d为距信源的距离,单位为km;f为频率,单位为MHz;k为路径衰减因子。其他的模型模拟现实环境,但与现实环境还是有一定的差距。比如对数一常态分布模型,其路径损耗的计算公式为:

式中,Xσ是平均值为O的高斯分布随机变数,其标准差范围为4~10;k的范围在2~5之间。取d=1,代入式(1)可得,LOSS,即PL(d0)的值。此时各未知节点接收锚节点信号时的信号强度为:

RSSI=发射功率+天线增益一路径损耗(PL(d))
2.2 基于RSSI的三角形质心定位算法的数学模型
不论哪种模型,计算出的接收信号强度总与实际情况下有误差,因为实际环境的复杂性,换算出的锚节点到未知节点的距离d总是大于实际两节点间的距离。如图1所示,锚节点A,B,C,未知节点D,根据RSSI模型计算出的节点A和D的距离为rA;节点B和D的距离为rB;节点C和D的距离为rC。分别以A,B,C为圆心;rA,rB,rC为半径画圆,可得交叠区域。这里的三角形质心定位算法的基本思想是:计算三圆交叠区域的3个特征点的坐标,以这三个点为三角形的顶点,未知点即为三角形质心,如图2所示,特征点为E,F,G,特征点E点的计算方法为:

同理,可计算出F,G,此时未知点的坐标为由仿真得,在图2中,实际点为D;三角形质心算法出的估计点为M;三边测量法算出的估计点为N。可知,三角形质心算法的准确度更高。

3 基于RSSI的三角形质心算法过程
3.1 步骤
(1)锚节点周期性向周围广播信息,信息中包括自身节点ID及坐标。普通节点收到该信息后,对同一锚节点的RSSI取均值。
(2)当普通节点收集到一定数量的锚节点信息时,不再接收新信息。普通节点根据RSSI从强到弱对锚节点排序,并建立RSSI值与节点到锚节点距离的映射。建立3个集合。
锚节点集合:

(3)选取RSSI值大的前几个锚节点进行自身定位计算。
在B_set:中优先选择RSSI值大的信标节点组合成下面的锚节点集合,这是提高定位精度的关键。

对锚节点集合,依次根据(3)式算出3个交点的坐标,最后由质心算法,得出未知节点坐标。
(4)对求出的未知节点坐标集合取平均,得未知节点坐标。
3.2 误差定义
定义定位误差为ER,假设得到的未知节点的坐标为(xm,ym),其真实位置为(x,y),则定位误差ER为:

4 仿 真
利用Matlab仿真工具模拟三角形质心算法,考察该算法的性能。假设在100 m×100 m的正方形区域内,36个锚节点均匀分布,未知节点70个,分别用三边测量法和三角形质心定位算法进行仿真,仿真结果如图3所示。由图3可知,三角形质心算法比三边测量法,定位精度更高,当测距误差变大时,用三角形质心算法得出的平均定位误差比用三边测量法得出的小得多。

5 结 语
在此提出了将RSSI方法和三角形质心定位算法相结合的方法,通过仿真实验,将该算法和三边测量算法相比较,证明了该算法的优越性。下一步将研究在锚节点数量不同时的平均定位误差。

㈣ 怎样在有线网络上设计无线网络

也许对于很多消费者来说,无线技术固然再好、再便捷但是如果不能BT下载,不能流畅地游戏那么它就没有价值。而本文的重点就是向大家介绍如何在WLAN环境下进行合理的BT下载设置,以便获得最佳的使用效果。

也许很多朋友都有这样的感觉,在将自家的有线路由器换成无线路由器以后,BT下载的稳定性和连接速度有了明显的下降,甚至是不能进行BT下载。其实,无论是有线还是无线路由他们的工作原理都基本一样:对内网向外网发出的信息不会进行阻拦,但对来自外部想进入内部网络的信息则会在进行识别、筛选后才会转发给内网电脑,也正是基于此原理,才导致了很多内网BT用户在下载时出现断流和缓慢的现象。当然,对于无线路由器来说,我们还需要进行一些额外的设置才能够获得与有线网络相同的下载效果。

关闭SSID

SSID(ServiceSetIdentifier)一般是由AP或无线路由器广播出来的局域网名称,它的目的是让只有设置为名称相同SSID的值的电脑才能互相通信。

对于BT下载来说,我们建议大家关闭SSID来获得更好的使用你效果。因为,关闭SSID后可以节省带宽的占用率和免除许多网络冗余信息,提高BT的下载速度。 另一方面,关闭SSID后也可以起到对网络保护的作用。关闭SSID广播后,其他用户将无法搜索到你无线设备的SSID,除非他能手动填写出你正确的SSID才能进行连接。

启用加密,控制用户数量

与传统有线路由相比,无线路由器更容易被他人入侵,尤其是没有采用任何加密措施的无线路由,你的邻居将毫不费力的使用你的网络进行下载和其他操作,从而影响你的网络质量。

除了上面提到的关闭SSID,我们还可以通过WEP和WPA这些无线加密手段来对网络进行保护。这里我们建议大家,在其他设置正常的情况下,排除ISP和软件的问题后,您不妨看看是否有人偷偷潜入了您的网络。
IEEE 802.11 Wireless LAN 网络
13.1 网络架构及特性简介
由于可携式计算机(包含笔记型计算机 (notebook) 和掌上型计算机 (laptop))普及率的快速成长,无线局域网络对今日的计算机及通讯工业来讲,将成为一项重要的观念及技术。在无线局域网络的架构中,计算机主机不需要像在传统的有线网络里,必需保持固定在网络架构中的某个节点上,而是可以在任意的时间作任何的移动,也能对网络上的数据作任意的访问。大体说来,无线网络有四项特性与传统的有线网络不同:
一、无线网络的目的地址(Destination Address)通常不等于目的位置(Destination Location):
在有线网络里,一个地址通常就代表一个固定的位置,然而在无线网络里,这件事不一定成立,因为在无线网络中,事先被给定地址的一部计算机,随时都有可能会移动到不同的地方。
二、无线网络的传输媒介会影响整体网络的设计:
无线网络的实体层和有线网络的实体层基本上有很大的不同,无线网络的实体层有下列特性:
点和点之间的连结范围是有限的,因为这牵涉到讯号强弱的关系。
使用了一个需要共享的传输媒介。
传送的讯号未被保护,易受外来噪声干扰。
在数据传送的可靠性来讲,较有线网络来的差。
具有动态的网络拓扑结构。
因为上述的原因,使得设计整个网络的软硬体架构,就会和传统的有线网络不同。举例而言,由于讯号传送范围的受限,使得无线局域网络硬体架构的设计,就必需考虑到只能在一个有着合理几何距离的区域内。
三、无线网络要有能力处理会移动的工作站:
对无线网络来讲,一个重要的要求就是,不但能处理可携式的工作站 (portable station),更要能处理移动式的工作站 (mobile station),可携式的工作站也会从某一个位置移动到另一个位置,但长时间来看,它通常还是会固定在某一个位置上。而移动式的工作站就有可能在短时间内不断的移动,且会在移动中仍对网络上的数据作访问。
四、无线网络和其它 IEEE 802 网络层间的关系不同:
为了达到网络的透明化,无线局域网络希望做到在逻辑链接层就能和别的网络相通,这使得无线局域网络必需将处理移动性工作站及保持数据传送可靠性的能力全做在网络媒介访问层 (MAC Layer) 中,这和传统有线网络在媒介访问层所需具有的功能是不同的。
无线局域网络正逐渐受到重视,为了使各种竞争产品之间能兼容互通,标准的制定就成了重要的工作,而 IEEE 802.11 无线局域网络 (wireless LAN) 的标准就在这样的情况下诞生。
IEEE 802.11 主要目的是要制定一套适合在无线局域网络环境下作业的通讯协议,最重要的工作,就是要制定出 MAC 层和实体层。 因此 IEEE 802.11 的参考模式主要分成两部份,第一部份是制定出适用于所有无线网络系统的 MAC 规格,设计出和实体层无关的 MAC 协议。第二部份则是制定出和传输媒介相关的 PHY 规格。IEEE 802.11 所支持的每一种传输讯号频宽,都有不同的 PHY 规格。例如,915MHz 频宽、2.4GHz 和5.2GHz 频宽以及红外线频宽等,都有不同的 PHY 规格。此外功率的管理和时限性的服务等也包括在 IEEE 802.11的定义范围内。本章讨论的重点将着重在 IEEE 802.11 所制订出的 MAC 通讯协议上。IEEE 802.11 无线局域网络的主要特性如下:
多重传输速率。IEEE 802.11可以让工作站使用不同的传输速率(单位为100kbps)在网络上通讯。例如 0.5 Mbps, 1 Mbps 或 2 Mbps。
frame为 IEEE 802.11 frame。
传输媒介为无线电。
基本通讯协议为 CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance)。如果同时有二个或二个以上的工作站传送frame将造成冲撞,发生冲撞的frame视为无效并丢弃。IEEE 802.11所采用的 CSMA/CA通讯协议虽可避免大部分不必要的冲撞,但仍无法完全排除冲撞的现象。因此只适合用来传送非实时性的数据。
提供两种传送服务。分布式协调功能 (Distributed Coordination Function, DCF) 使用 CSMA/CA ,适合传输非实时信息。集中式协调功能 (Point Coordination Function, PCF) 由网络协调者 (Point Coordinator) 掌控并且以轮询 (polling) 的方式安排工作站传送frame的时机及顺序。由于工作站传送的时间可事先安排,因此可提供保证传送延迟的服务。
非实时传输使用之频宽不保证公平分配。在 DCF 部份由于工作站利用 CSMA/CA 通讯协议来互相竞争传送frame的机会,并没有轮流传送的特性,因此每个工作站实际使用的频宽量可能不同。
提供认证 (Authentication) 及数据保密 (Privacy) 功能。无线电是一种开放性的介质,任何人都可以很容易的干扰或!!。任证是确任对方的身分,免得在不知情的状况下因
为与陌生人通讯而泄漏重要的信息。保密是利用加密 (Encryption) 及解密 (Decryption) 的技术来保护传送的数据,使得!!者即使!!到数据也无法得知其内容。
较不适合多媒体信息传输。虽然网络提供保证的传送延迟服务,但目前最高的传送速率只有 2 Mbps。此频宽尚不足以应付具有实时要求的多媒体信息。如果无线网络上同时存在许多工作站,则每一部工作站平均分配到的频宽将更少。
13.2 无线局域网络硬件架构
要了解无线局域网络硬件架构之前,要先了解无线局域网络协议的功能需求,因为 IEEE 802.11 就是根据这些需求,拟订了一套无线局域网络系统的基本架构。 IEEE 802.11将最低的功能频宽订为 1Mbps,这对于一般性的操作,像档案传输、程序加载、交易处理等,是绝对必要的。对于需要传输实时数据的应用软件,像数字式声音、影像等,IEEE 802.11也提供了时限性 (time bounded)的服务。另外,IEEE 802.11也定义了包括财务、办公室、学校以及工业大楼等各种环境中的可靠操作需求。此外,还定义了行动式的计算机系统至少必须支持每小时几哩的行人速度。而为了整合这些需求,IEEE 802.11就制订出两种不同类型的无线局域网络基本架构:
有基础架构的无线局域网络 (Infrastructure Wireless LAN)
无基础架构的无线局域网络 (Ad Hoc Wireless LAN)
所谓的基础架构通常指的就是一个现存的有线网络分布式系统 (wired distribution system),在这种网络架构中,会存在一种特别的节点,称作AP (access points),这个AP的功能就是要将一个或多个的无线局域网络和现存的有线网络分散系统相连结,以提供某个无线局域网络中的工作站,能和较远距离的另一个无线局域网络的工作站通讯,另一方面也促使无线局域网络中的工作站,能访问有线分布式系统中的网络资源。这一类型的无线网络通讯范围,通常是以同一栋建筑物出现,例如,商店、医院、或是同一栋楼层。
无基础架构的无线局域网络主要是要提供不限量的用户,能实时架设起无线通信网路,在这种架构中,通常任二个用户间都可直接通讯,这一类的无线网络架构在会议室里经常用得上。IEEE 802.11所制订的架构允许“无基础架构的无线局域网络”和“有基础架构的无线局域网络”同时使用同一套基本访问协议。然而,一般讨论 IEEE 802.11 无线局域网络硬体架构,还是偏重在“有基础架构的无线网络上”。IEEE 802.11 所定义的无线网络硬体架构,主要由下列组件所组成(参考图13-1):
Wireless Medium (WM):无线传输媒介,无线局域网络实体层所使用到的传输媒介。
Station (STA):工作站,任何设备只要拥有 IEEE 802.11 的 MAC 层和 PHY 层的接口,就可称为一个工作站。
Station Services (SS):工作站服务,提供工作站送收数据的服务。
Basic Service Area (BSA):在“有基础架构的无线局域网络”中,每一个几何上的建构区块 (building block) 就称为一个基本服务区域 (Basic Service Area, 简称 BSA) ,每一建构区块的大小依该无线工作站的环境和功率而定。
Basic Service Set (BSS):基本服务区中所有工作站的集合。
Distribute System (DS):分布式系统,通常是由有线网络所构成,可将数个 BSAs 连结起来。
Access Point (AP):AP,连结 BSS 和 DS 的设备,不但具有工作站的功能,还提供工作站具有访问分布式系统的能力,通常在一个 BSA 内会有一个AP。
Extended Service Area (ESA):数个 BSAs 经由 DS 连结在一起,所形成的区域,就叫作一个扩充服务区。
Extended Service Set (ESS):数个经由分布式系统所连接的 BSS 中的每一基本工作站集,形成一个扩充服务集。
Distribution System Services (DSS):分布式系统所提供的服务,使得数据能在不同的 BSSs 间传送。
图13-1 无线网络硬体架构组成组件
IEEE 802.11 无线网络系统与传统的有线局域网络相连结是经由一个称为 “端口接器”(Portal)的连结设备,如图13-2 所示。端口接器的主要功能是将数据从有线局域网络送入无线网络系统,或将来自无线局域网络的数据送入有线局域网络中。这之间除了必须考虑通讯协议的不同外也要考虑到传输媒介的差异。
图13-2 无线局域网络与有线局域网络之相连结
13.3 无线局域网络软件架构
IEEE 802.11的软体架构主要可分为工作站软体和分布式系统软体二部份。标准中并无规定应如何实作此分布式系统软体,取而代之的是,它描述了这个分布式系统应提供那些服务才能满足整个系统所需。因此,无线网络的软件架构可看成是由下列二大类的服务所组成(参考图13-3):
工作站服务 (Station Services, 简称 SS), 由工作站所提供。此类服务提供工作站具有正确送收数据的能力,另外也考虑传送数据的安全性。包含下列两种服务:
身份确认服务(Authentication)
隐密性服务(Privacy)
分布式系统服务(Distribution System Services, 简称 DSS),由分布式系统所提供。此类服务使 MAC frame能在同一个 ESS 中的不同 BSS 间传送。无论工作站移动到那里,也都要能收到它该收到的数据,这类服务大部份是由一个特别的工作站呼叫使用,此工作站本身也同时提供这些服务,因此也称为AP(Access Point, 简称AP)。AP是唯一同时提供 SS 和 DSS的无线网络组件,它也是工作站与分布式系统间的桥梁。分散系统提供下列五种服务:
联结服务(Association)
取消联结服务(Disassociation)
分送服务(Distribution)
整合服务(Integration)
重联结服务(Reassociation)
图13-3 无线网络软体服务架构
IEEE 802.11 所指定的七种服务中有五种是用来支持使“媒介访问服务数据单元”(MAC service data unit,简称 MSDU) 能在不同的 BSS 间传送。另外二种则是用来控制工作站对 IEEE 802.11局域网络的访问,及数据的隐私性。其功能分述如下:
分送服务(Distribution):此服务的主要工作就是将分布式系统中的数据送到该送到的地方。以图13-3 为例,假设有一笔frame要从 工作站 1 送到 工作站 4 ,一开始这笔frame会先被送到工作站 2 ( 输入AP),接着工作站 2 会透过“分送服务”将这笔frame送到工作站 3 (输出AP),而工作站 3 再透过无线媒介将frame送达工作站 4 。IEEE 802.11 并没有规定分散系统要如何将frame正确的送达目的位置,但它说明了在“联结”(Association)、“取消联结”(Disassociation)及“重联结”(Reassociation) 等服务中该提供那些信息,使得分散系统可以决定该笔frame该送往那个 输出AP,而将frame送达正确的目的地位置。
整合服务(Integration):此服务的主要目的是要使frame能在分散系统和现存的传统局域网络间传送。如果分送服务知道该笔frame的目的地位置是一个现存的 IEEE 802.x 有线局域网络,则该笔frame在分散系统中的输出点将是端口接器而不是AP。分送服务若发现该frame是要被送到端口接器将会使得分散系统在frame送达端口接器后接着驱动“整合服务”,而整合服务的任务就是将该笔frame从分散系统转送到相连的局域网络媒介。其中整合服务要做的主要工作就是将不同的地址空间做一个转换。 为了要了解以下所将要介绍的“联结”(Association)、“取消联结”(Disassociation)及“重联结”(Reassociation)等服务的意义,我们先介绍一个叫做“移动性”(mobility) 的观念,IEEE 802.11对工作站,定义了三种程度的“移动性”,分别描述如下: 无变动:此程度的移动性又可分为以下两种型式:静止(工作站根本就没动)及区域性的移动(工作站只在一个基本服务区内移动)。
基本服务区的变动:工作站会从一个基本服务区移动到另一个基本服务区,但仍保持在同一个扩充服务区内。
扩充服务区的变动:工作站会从某一个扩充服务区内的基本服务区移动到另一个扩充服务区内的基本服务区。
联结服务(Association):此服务的主要目的是要在工作站和AP之间建立一个通讯联机。当分布式系统要将数据送给工作站时,它必需事先知道这个工作站目前是透过那个AP来访问分布式系统,这些信息就是由联结服务来提供。一个工作站在被允许借由某个AP送数据给分散系统之前,它必须先和此AP作联结,通常在一个基本服务区内有一个AP,因此任何在这个基本服务区内的工作站想和外界作通讯,就必须先向此AP相联结。此动作类似注册,因为当工作站作完联结的动作后,AP就会记住此工作站目前在它的管辖范围之内。请注意在任一瞬间,任一个工作站只会和一个AP作联结,这样才能使得分散系统能在任一时候知道哪一个工作站是由哪一个AP所管辖。然而,一个AP却可同时和多个工作站作联结。联结服务都是由工作站所启动的,通常工作站会借由启动联结服务来要求和AP作一个联结。
重联结服务(Reassociation):此服务的主要目的是要将一个移动中工作站的联结,从一个AP转移到另一个AP。当工作站从一个基本服务区移动到另一个基本服务区时,它就会启动一个“重联结的服务”,此服务会将工作站和它所移入的基本服务区内的AP作一个联结,使得分散系统将来能知道此工作站目前已由另一个AP所管辖了。重联结的服务也都是由工作站所启动的。
取消联结服务(Disassociation):此服务的主要目的是取消一个联结。当一个工作站传送资料结束时,可以启动“取消联结服务”。另外,当一个工作站从一个基本服务区移动到另一个基本服务区时,它除了会对新的AP启动“重联结服务”外,也会对旧的AP启动“取消联结服务”。此服务可由工作站或AP来启动。不论是哪一方启动,另一方都不能拒绝。AP可能因为网络负荷的原因,而启动此服务对工作站取消联结。
身份确认服务(Authentication):此服务的主要目的是用来确认每一个工作站的身份。IEEE 802.11 支援一种叫做“盘问/响应”(Challenge/Response,简称 C/R) 的身份确认方法。一般 C/R 身份确认的方法主要有下列三个步骤:
声明身份 (Assertion of Identity)
盘问声明 (Challenge of Assertion)
回应盘问 (Response to Challenge)
以下为 C/R 身份确认方法的实例
声明 (Assertion):我是工作站 4
盘问 (Challenge):证明你的身份
回应 (Response):这是我的密码
结果 (Result):如果密码 OK ,工作站就完成身份确认
IEEE 802.11 通常要求双向式的身份确认。在任一瞬间,一个工作站能同时和多个工作站(包含AP)作身份确认的动作。身份确认的服务是属于工作站服务。
隐密性服务 (Privacy);此服务的主要目的是避免传送数据的内容被!!。无线网络和有线网络不太相同的地方,其中一点就在于无线网络的数据是在空气这开放的介质中传播,因此任何只要装有 IEEE 802.11 适配卡的工作站都能接收到别人的数据,所以数据的保密性若做的不好,资料就很容易被别人所!!。“隐密性服务”的主要功能就是提供一套“隐密性服务”的算法 (privacy algorithm) 将数据做加密与解密。“隐密性服务”也是属于工作站服务 。
13.4 frame格式
IEEE 802.11 的 MAC frame格式如图13-4 所示,其中包含
frame标头 (Header):30字节,此部份主要包括了控制信息 (control information),地址 (addressing),顺序号码 (sequencing number),持续时间 (ration) 等字段。
资料:长度不一(0 - 2312 字节),此部份依frame型态 (frame type) 有所不同。
错误检查码 :4 字节,记录frame的检查码,采用 CRC-32 技术。
2 2 6 6 6 2 6 0-2312 4 字节
Frame Control
Duration/ID
Address 1
Address 2
Address 3
Sequence Control
Address 4
Frame Body
CRC
------------------------- MAC Header --------------
图13-4 MAC frame格式
13.4.1 frame控制字段
frame控制字段之格式如图13-5 所示。其中
2 2 4 1 1 1 1 1 1 1 1 位
Protocol
Version
Type
Subtype
To
DS
From DS
More
Flag
Retry
Pwr
Mgt
More
Data
WEP
Order
图13-5 frame控制字段格式
Protocol Version : 802.11 标准版本,目前值为 00。
Type and Subtype : frame型态,目前定义的有三种 : Data frame, Control frame, Management frame。 每一种型态有可分为若干次型态,如表13-1 所示。
To DS : 此旗标值为 1 表示此 Data frame(包括广播或群播frame)要传送给分布式系统。若为其它种类的frame,则其值应为 0。
From DS : 此旗标值为 1 表示此 Data frame(包括广播或群播frame)是由分布式系统传送下来。若为其它种类的frame,则其值应为 0。To DS 与 From DS之组合有四种,期代表意义如表13-2 所示。
More Fragments : 此旗标值为 1 表示工作站尚有其它片段(Fragments) 待传送。若为其它种类的frame,则其值应为 0。
Retry : 此旗标值为 1 表示此 Data frame(或Managementframe)为重送之frame。接收端可依此讯息来丢弃重复之frame。
Power Management : 此旗标用来显示工作站之电源管理模式。其值为 1 表示此工作站处于省电模式,其值为 0 表示此工作站处于正常模式。所有由 AP 传送的frame上此值都必须为 0。
More Data : 此旗标由 AP 用来通知处于省电模式之工作站说 AP 目前仍有MSDUs 欲传送给该工作站。在 Data frame上其值为 1 表示至少还有一个 MSDU 待转送。若为其它种类的frame,则其值应为 0。
WEP : 此旗标值为 1 表示此 Data frame(或Managementframe)中所携带的数据已经过 WEP 算法处理过。若为其它的frame,则其值应为 0。
Order : 此旗标值为 1 表示此 Data frame经由严格依序服务等级 (Strictly-Ordered service class) 来传送。若为其它的frame,则其值应为 0。
表13-1 各式frame型态及次型态
Type value
b3 b2
Type Description
Subtype Value
b7 b6 b5 b4
Subtype Description
00
Management
0000
Association Request
00
Management
0001
Association Response
00
Management
0010
Reassociation Request
00
Management
0011
Reassociation Response
00
Management
0100
Probe Request
00
Management
0101
Probe Response
00
Management
0110-0111
Reserved
00
Management
1000
Beacon
00
Management
1001
ATIM
00
Management
1010
Disassociation
00
Management
1011
Authentication
00
Management
1100
Deauthentication
00
Management
1101-1111
Reserved
01
Control
0000-1001
Reserved
01
Control
1010
PS-Poll
01
Control
1011
RTS
01
Control
1100
CLS
01
Control
1101
ACK
01
Control
1110
CF End
01
Control
1111
CF End+CF-Ack
10
Data
0000
Data
10
Data
0001
Data+CF-Ack
10
Data
0010
Data+CF-Poll
10
Data
0011
Data+CF-Ack+CF-Poll
10
Data
0100
Null Function (no data)
10
Data
0101
CF-Ack (no data)
10
Data
0110
CF-Poll (no data)
10
Data
0111
CF-Ack+CF-Poll (no data)
10
Data
1000-1111
Reserved
11
Reserved
0000-1111
Reserved
表13-2 To DS 与 From DS组合与意义
To DS
From DS值
代表意义
To DS = 0
From DS = 0
Dataframe由一个工作站直接传送给另外一个在相同BSS中的工作站
To DS = 1
Dataframe传送给分布式系统
From DS = 0
To DS = 0
From DS = 1
Dataframe由分布式系统传下来
To DS = 1
From DS = 1
由一个AP 传给另外一个AP 的WDSframe
13.4.2 Duration/ID 字段
Duration /ID 字段长度为16位,其用法如下(请参考表13-3):
若frame为控制型态(Control Type),且次型态为PS-Poll, 则此字段代表一个SID, 其最左边两个位都是1, 而剩下的 14 位则是传送此frame之工作站之SID。SID 值的范围为 1 到 2007。
若为其它frame,则此字段代表一个ration, 其值依各frame型态而定。不过对于所有在免竞争期间所传送的frame来说,此字段之值应设为 32768。当Duration/ID 字段的内容小于 32768 时,表示其为一个ration 值,应该被拿来修正NAV。
表13-3 Duration /ID 字段意义 Bit 15
Bit 14
Bits 13-0
用途
0
0-32767
Duration (由此frame结束后起 算,单位为us)
1
0
0
在免竞争期间所传送之frame使用之固定值(32768)
1
0
1-16383
保留
1
1
0
保留
1
1
1-2007
在PS-Pollframe中指定之工作站 ID
1
1
20013-16383
保留
13.4.3 地址字段
MACframe格式中共有四个地址字段。这些字段用来记录BSSID (BSS Identifier), 起始工作站地址 (Source Address, SA),目地的工作站地址(Destination Address, DA),传送工作站地址(Transmitter Address, TA),及接收工作站地址(Receiver Address, RA)。其中目地的工作站地址(DA) 可以是各别或群播地址。是该frame的最终目的地。起始工作站地址 (SA) 是产生此frame的工作站地址。传送工作站地址(TA) 是指在无线媒介上传送此frame的工作站地址。接收工作站地址(RA) 则是指在无线媒介上接收此frame的工作站地址。每一个地址长度都是符合 IEEE 802 标准之 48 位。有些frame并不需要用到所有的地址字段。有些地址字段在使用时和其在地址字段的相对地址(1-4)有关而与地址型态无关。例如当一个工作站接收到一笔frame时,都是用Address 1 的内容来判断该frame是否传送给自己。而 CTS frame (ACKframe) 中的 RA 则等于 RTS frame (需要被回复之frame) 中的 Address 2 的内容。
每个 BSS 都有一个具唯一性的辨识码 (BSSID, 长度为 48 位), 对于有基础架构的BSS, 此辨识码为AP (AP) 中的工作站的地址。对于无基础架构的BSS (IBSS), 此辨识码最左边两个位为 01, 而剩下的 46 位则以随机数产生。广播性BSSID (48 位都为 1) 只能用在管理frame且次型态为Probe (Type = 00, Subtype = 0100 或 0101)。
13.4.4 顺序控制字段 (Sequence Control)
顺序控制字段包含两个次字段 : 顺序号码 (Sequence Number, 12 位) 及片段号码 (Segment Number, 4 位), 如图13-6 所示。其中顺序号码为该frame携带之 MSDU 的顺序号码。每一个 MSDU 都有一个顺序号码, 其值由 0 开始, 到4095, 然后重复轮流使用。由同一个 MSDU 切割出来的片段都应该使用相同的顺序号码。片段号码则是指该片段在原来MSDU所切割出来的片段顺序。第一个片段(或没有切割的MSDU)其值为0。以后则依序加一,到 15 为止,然后重复轮流使用。
4 12 位
Fragment Number
Sequence Number
图13-6 顺序控制字段
13.5 各式frame型态之格式
13.5.1控制frame
控制frame之控制字段内容如图13-7所示。
Protocol
Version
Type
Subtype
To
DS
From DS
More
Flag
Retry
Pwr
Mgt
More
Data
WEP
Order
Protocol
Version
Control
Subtype
0
0
0
0
Pwr
Mgt
0
0
0
2 2 4 1 1 1 1 1 1 1 1 位

㈤ 多址技术背景

网上查找的,不知对不对。1.多址技术的概念和问题的本质
---多址技术一直都是无线通信的关键技术之一,甚至是移动通信换代的一个重要标志。多址技术所要解决问题的特点是:通信(子)网中的登记用户数常常远大于同一时刻实际请求服务的用户数。其实就是研究如何将有限的通信资源在多个用户之间进行有效的切割与分配,在保证多用户之间通信质量的同时尽可能地降低系统的复杂度并获得较高系统容量的一门技术。其中对通信资源的切割与分配也就是对多维无线信号空间的划分,在不同的维上进行不同的划分就对应着不同的多址技术。常见的维有信号的时域、频域和空域,此外还有信号的各种扩展维。信号空间划分的目标是要使得各用户的无线信号之间在所划分的维上达到正交,这样这些用户就可以共享有限的通信资源而不会相互干扰。如式1所示,其中Si和Sj分别为对应于用户i和j的无线信号;积分变量x为划分信号空间的维,如可以为时间、频率、空间或扩展维变量。实际中不同用户之间的无线信号往往不能做到完全正交,而只能做到准正交,也就是说在积分区间中的积分应是趋近于零。
---多址技术的选择应用在不同的应用领域往往有着不同的评价指标。图1所示为三种常见的信号空间划分方法,分别对应于时分多址(TDMA)、频分多址(FDMA)和空分多址(SDMA),其他在各种扩展维上进行信号空间的划分方法在原理上则是类似的。下面,本文将试图对这些多址技术进行较为全面的阐述,特别是无线通信中一些新近发展的多址技术。
2.频分多址(FDMA)
---频分多址(FDMA)是应用最早的一种多址技术,AMPS、NAMPS、TACS、NTT和JTACS等第一代移动通信系统所采用的多址技术就是FDMA,此外在卫星通信中FDMA也得到了广泛的应用。频分多址的原理如图1(a)所示;此时,式1中的自变量x应为频率f。每个FDMA信道每次只能承载一路业务信息,在信道空闲时也不能被其他用户共享,频谱利用率较低,系统容量较小。FDMA信道的带宽窄(30kHz),限制了系统业务的进一步拓展。FDMA系统中的基站需要采用带通滤波器以消除寄生辐射的影响,在移动台则需要使用双工器以支持收发器的同时工作,从而增加了基站与移动台的成本。当然,FDMA相对于下面的TDMA也有优势。比如,FDMA系统中的码间干扰小,几乎无需均衡;用于同步控制等的系统开销小;分配了信道的基站和移动台可以同时进行连续的信号发射。
3.时分多址(TDMA)
---时分多址(TDMA)在第二代移动通信系统中得到了广泛应用,如GSM、NADC和PACS等;此外在不少新建的卫星通信系统中也有所采用。时分多址的原理如图1(b)所示;此时,式1中的自变量x应为时间t。TDMA系统中的各用户仅在所分配的时隙工作,可以共享频带资源,因此频谱利用率高,系统容量较大。同样是由于用户工作的非连续性,所以电源效率高。TDMA系统的发射和接收均在不同的时隙,所以无须双工器。而且TDMA系统还可以根据用户需求灵活地进行时隙分配。TDMA系统的缺陷是由于发射速率较高,为了消除码间干扰的影响需要采用自适应均衡;此外就是用于同步控制等的系统开销较大。
4.空分多址(SDMA)
---空分多址(SDMA)是一种新发展的多址技术,在由中国提出的第三代移动通信标准TD-SCDMA中就应用了SDMA技术;此外在卫星通信中也有人提出应用SDMA。空分多址的原理如图1(c)所示;此时,式1中的自变量x应为空间变量s。SDMA实现的核心技术是智能天线的应用,理想情况下它要求天线给每个用户分配一个点波束;这样根据用户的空间位置就可以区分每个用户的无线信号,换句话说,处于不同位置的用户可以在同一时间使用同一频率和同一码型而不会相互干扰。实际上,SDMA通常都不是独立使用的,而是与其他多址方式如FDMA、TDMA和CDMA等结合使用;也就是说对于处于同一波束内的不同用户再用这些多址方式加以区分。
---应用SDMA的优势是明显的:它可以提高天线增益,使得功率控制更加合理有效,显着地提升系统容量;此外一方面可以削弱来自外界的干扰,另一方面还可以降低对其他电子系统的干扰。如前所述,SDMA实现的关键是智能天线技术,这也正是当前应用SDMA的难点。特别是对于移动用户,由于移动无线信道的复杂性,使得智能天线中关于多用户信号的动态捕获、识别与跟踪以及信道的辨识等算法极为复杂,从而对DSP(数字信号处理)提出了极高的要求,对于当前的技术水平这还是个严峻的挑战。所以,虽然人们对于智能天线的研究已经取得了不少鼓舞人心的进展,但仍然由于存在上述一些在目前尚难以克服的问题而未得到广泛应用。但可以预见,由于SDMA的诸多诱人之处,SDMA的推广是必然的。
5.扩频多址(SSMA)/码分多址(CDMA)
---扩频多址(SSMA)系统的共同特点之一是扩频,也就是说用于传输信息的信号带宽远大于信息带宽;共同特点之二是在扩频的实现上,不论通过什么途径扩频,但基本都是用一组优选的扩频码进行控制,正因为此,扩频多址又称为码分多址(CDMA)。或者说,CDMA是在信号的扩展维——编码维上对无线信号空间进行划分。顾名思义,码分多址就是给每个用户分配一个唯一的扩频码(或称地址码),通过该扩频码的不同来识别用户。对于扩频码的选择要求比较苛刻:在正交性上当然要求它满足式1,但实际中通常是准正交性,即自相关性很强,而互相关性很弱;出于系统容量的考虑,对于特定长度的地址码集还要求其能够提供足够多的地址码;在统计特性上要求地址码类似白噪声以增强隐蔽性,这在军事通信中尤为重要;为了提高处理增益应选择周期足够长的地址码;而为了便于实现则应选择产生与捕获容易和同步建立时间较短的地址码。人们的通常选择就是各种伪随机(PN)码。
---虽然码分多址都是利用了地址码的正交性来实现多址接入,但通常可根据扩频的不同实现手法,将码分多址分为以下几种:
5.1 直接序列码分多址(DS-CDMA)
---这是用得比较多的一种扩频多址方式。众所周知,DS-CDMA在现在的第二代移动通信中已经得到了成功应用;而且它还是第三代移动通信的核心技术,在IMT-2000的众多标准中,大部分都采用了DS-CDMA。此外,在军事通信和卫星通信中,DS-CDMA也都受到了青睐。
---从原理上来说,DS-CDMA是通过将携带信息的窄带信号与高速地址码信号相乘而获得的宽带扩频信号。收端需要用与发端同步的相同地址码信号去控制输入变频器的载频相位即可实现解扩。根据Shannon定理,在信号平均功率受限的白噪声信道中,系统的极限信息传输速率C(b/s)与信道带宽B(Hz)、信噪比S/N之间应满足如下的约束关系:
---C=Blb(1+S/N) (2)
---实际上,该式也体现了上述各变量之间的一种互换关系。也就说,在所需的最高信息传输速率C不变的条件下,通过应用地址码展宽信号带宽B,就可以在信噪比S/N很低的条件下实现可靠通信。DS-CDMA正是这一思想的应用。
---通过DS扩频,将信号功率谱在一个很宽的频谱上进行了“平均”;或者说是在背景噪声不变的情况下,信噪比S/N变得很低,好像是将信号在噪声中“隐藏”了起来。因此DS-CDMA系统具有抗窄带干扰、抗多径衰落和保密性好的优点。此外,关于DS-CDMA的优点还可以罗列很多:许多用户可以共享频率资源,无须复杂的频率分配和管理;具有“软容量”特性,即在一定限度内的用户数增加,只会使得信噪比下降,而不会终止通信,也就是说DS-CDMA没有绝对的容量限制,这一点也可由式2理解;具有“小区呼吸功能[1][2]”,即小区负荷量可以动态控制,相邻小区可通过覆盖范围的互动来重新分担负荷;可以通过“软切换[1][2]”实现移动台的越区管理,保证越区时通信的连续性。当然,DS-CDMA也存在一些问题,如多址干扰问题,这是由于不同地址码之间的非完全正交性而造成的,通信过程中不同用户的发射信号会相互干扰。多址干扰是DS-CDMA系统中相当严重的一个问题,这还需要人们通过对地址码选择的进一步研究来解决。此外,在DS-CDMA系统中还存在“远近效应[1][2]”,就是说离基站近的强信号用户会对远离基站的弱信号用户的通信形成干扰,本质上说这还是由于地址码的非完全正交性所致,但现阶段人们已通过在移动通信系统中引入“自动功率控制[1][2]”技术削弱了远近效应的影响。
5.2 跳频码分多址(FH-CDMA)
---跳频码分多址(FH-CDMA)在民用通信中并不多见,但在军事抗干扰通信中则是一种常见的通信方式。FH-CDMA的基本原理是优选一组正交跳频码(地址码/扩频码),为每个用户分配一个唯一的跳频码,并用该跳频码控制信号载频在一组分布较宽的跳频集中进行跳变。事实上,我们可以简单地将FH-CDMA看作是一种由跳频码控制的多进制频移键控(MFSK)。当然从每一时隙来看我们也可以将其视为一种FDMA;但与普通FDMA的最大不同是,FH-CDMA的频率分配是由一组相互正交的具有伪随机特性的跳频码来控制实现的,所以我们仍然将其归属于码分多址,同时它又是一种扩频多址。因为,虽然单独从每一跳变时隙的内部来看,FH-CDMA是一个窄带系统,但从一个较长时间的整体效应来看,FH-CDMA就是一个宽带扩频系统。从抗干扰的角度来区分FH-CDMA与上述的DS-CDMA,FH-CDMA就是一种依靠跳频码控制的快速“躲避式”抗干扰技术。
5.3 跳时码分多址(TH-CDMA)
---跳时码分多址(TH-CDMA)同样主要是用在军事抗干扰通信领域。与FH-CDMA不同的是,TH-CDMA用一组正交跳时码控制各个用户的通信信号在一帧时间内的不同位置进行伪随机跳变;所以,TH-CDMA可以看作是一种由伪随机码控制的多进制脉位调制(MPPM)。显然TH-CDMA是一种码分多址;同时由于信号在时域的压缩意味着信号在频域的扩展,所以TH-CDMA也是一种扩频多址。为了进一步提高抗干扰性能,TH-CDMA通常都是与其他扩频技术如跳频混合使用。
5.4 混合码分多址(HCDMA)
---混合码分多址(HCDMA)是指码分多址之间或是码分多址与其他多址方式之间混合使用的多址方式,以达到克服单一多址方式使用的弱点,而获得优势互补的效果。组合的具体方式多种多样,如在码分多址方式之间的常用组合形式有:跳频与跳时相结合的FH/TH-CDMA、跳频与直接序列相结合的FH/DS-CDMA、跳时与直接序列相结合的TH/DS-CDMA;而码分多址与其他多址方式的组合形式有:FDMA与DS-CDMA相结合的FD/DS-CDMA、TDMA与DS-CDMA相结合的TD/DS-CDMA以及TDMA与FH-CDMA相结合的TD/FH-CDMA,等等。
6.分组无线电(PR)/随机多址(RA)
---分组无线电(PR)是基于数据通信的思想,将需要传送的信息进行分组打包,所有用户在需要接入信道的随机时刻,将数据包发送出去;而当有多个用户同时进行信息发送时就会产生碰撞,PR系统具有有效的碰撞检测机制让碰撞用户重发直至通信成功。当前移动通信中的GPRS商用网络就是PR的成功应用,有人称之为移动通信的第2.5代;作为PR的一种具体实现,ALOHA协议早在1973年就被用于卫星通信[8]。PR网络是Ad Hoc无线网络[7]的前身。由于各用户需要发送信息而接入信道的时刻是随机的,所以这种多址方式又被称为随机多址(RA)。当然也有不少文献(如[6][8])将多址方式RA看作是一种将可用信道切割之后如何分配给用户的一种信道分配方式,这样它就属于信道的一种随机分配方式。根据PR的原理,PR解决通信资源共享的方法是在多个用户之间引入简单的竞争与裁决机制。此外,PR中用户的随机接入与竞争行为必然是在信号空间的特定维上进行的;而且从PR的发展来看,这种竞争行为还可能发生在多维的信号子空间之中。为了适应PR的竞争与裁决机制,人们已经制定了多种协议,其中最早也是用得最多的便是各种形式的ALOHA协议[1][6]。但需要说明的是,PR协议的选择要考虑具体的业务模型和网络业务量的大小,还没有一种协议总是最佳的。
6.1 纯ALOHA(P-ALOHA)
---纯ALOHA(P-ALOHA)协议就是对于用户竞争发射的时间没有任何限制,用户在需要发射的任何时间即刻发射,然后等待反馈回来的碰撞检测信号,如果碰撞发生就再等候一个随机的时间进行重发。显然,当用户数增加时,因碰撞概率的增加就会引入较长的平均时延。设R为归一化信道流量(单位Erlang),P-ALOHA的吞吐量
---T=Re-2R (3)
6.2 时隙ALOHA(S-ALOHA)
---与P-ALOHA相比,时隙ALOHA(S-ALOHA)主要的改进是将时间轴以时隙为单位进行划分,要求用户发信的时刻必须是某个任意时隙的开始。显然,时隙的划分就要求S-ALOHA系统必须要解决一个时钟同步问题。S-ALOHA避免了在P-ALOHA协议下不同用户数据分组之间可能发生的部分碰撞问题,它实际是在传输延迟与吞吐量之间的一种折中,文献[1]和[6]还给出了相应的曲线图。与式3给出的P-ALOHA不同,S-ALOHA将吞吐量T提高为
---T=Re-R (4)
---6.3 载波检测多址(CSMA)
---载波检测多址(CSMA)是对ALOHA协议的进一步改进。CSMA要求用户在发射信息之前先侦听一下信道是否空闲(是否有载波),若忙则还需根据协议的具体规定进行等待。CSMA又有如下的一些演变形式。
● 1-持续CSMA:用户在发射前侦听信道,若信道空闲则以概率1发送;若信道忙则持续侦听等待直到信道空闲。
● 非持续CSMA:与1-持续CSMA不同的是,用户在侦听到信道忙时将不再继续侦听信道,而是等待一个随机长的时间后重复上述侦听过程,直到信道空闲再发射。
● p-持续CSMA:该协议用于时隙信道。用户若侦听到信道空闲,则以概率p在第一个可用时隙内发送信息,而以概率1-p在下一个时隙内发送。
● 具有碰撞检测的CSMA(CSMA/CD):这是对CSMA的又一改进,若多个用户在侦听到信道空闲后同时发射,它们就会检测到碰撞并随即终止发射,在等待一个随机时间后再次尝试。
● 数据检测多址(DSMA):这是CSMA的一种特例,用户可以在前向信道中检测是否有其他用户占用信道,若信道空闲则可以进行信息的发送。
6.4 ALOHA协议的其他扩展形式
---此外,ALOHA协议还有多种扩展形式,现分述如下。
● 预留ALOHA(R-ALOHA):预留ALOHA(R-ALOHA)是在S-ALOHA的基础上,对时隙赋予了优先级,而且能够为特定的用户永久预留或是按请求预留用于发射的时隙。
● 分组预留多址(PRMA):分组预留多址(PRMA)与R-ALOHA类似,它可以让每一个TDMA时隙传输语音或数据,其中语音优先。为了提高系统效率,PRMA可以应用语音激活检测技术(VAD),以充分利用语音的非连续性。
● 时频多址(FTMA):时频多址(FTMA)[9]是在S-ALOHA的基础上发展而来的;但与其不同的是,FTMA将各个用户原先只在一维时间轴上的竞争发射引入到时频二维。FTMA在将时间轴划分为时隙的同时也将可用的频带划分为“频槽”,二者的组合就是“时频槽”。每个用户的信息发送总是在某个“时频槽”上进行的,多个用户便形成了在二维时频槽上的竞争发射;只有在同一时频槽上的不同用户发射才会发生碰撞。文献[9]从理论上得出了结论:与S-ALOHA相比,FTMA在提高系统吞吐量的同时获得了更好的稳定性和时延特性。FTMA协议的主要应用是VAST网络。
● 扩频ALOHA:扩频ALOHA[10]是在原P-ALOHA或是S-ALOHA协议的基础上,将每个用户的信号在频域进行扩展。扩频ALOHA的扩频方法与DS-CDMA类似,也是采用高速的扩频码,所以单从单个信息包的发送信号形式看扩频ALOHA类似于DS-CDMA;但扩频ALOHA的最大不同是所有用户均使用相同的扩频码,也就是说,扩频ALOHA的扩频码不再具有地址码的功能。扩频ALOHA具有较好的抗碰撞和抗干扰性能,同时可以降低信道的平均功率。扩频ALOHA的主要应用领域有VAST网、PCN和LAN等。
7.多址技术与调制技术在未来移动通信中的融合
---CDMA(DS-CDMA)是第三代移动通信的核心技术之一,而OFDM(正交频分复用)则被认为是第四代移动通信的核心技术。OFDM源于多载波调制(MCM)技术,实际是MCM的一种,但与其不同的是OFDM要求用于调制的多路载波相互正交。正是由于子载波之间的正交性,OFDM允许各子信道的频谱相互交叠而不致相互干扰;这一点也是与传统FDMA极为不同的地方。显然,OFDM的频谱利用率较高,此外还具有抗衰落和抗码间干扰能力强等特点[11];特别地,OFDM被认为是适应于以多媒体业务为中心的未来移动通信对无线环境中宽带、高速数据传输需求的理想调制技术。实际上,OFDM已经被广泛应用于DAB、DVB、ADSL、VDSL和IEEE 802.11a之中,此外无线城域网标准IEEE 802.16和802.16a也都是基于OFDM技术的。
---OFDM与多址技术的融合往往可以起到优势互补的作用,是未来移动通信技术应用的方向。具体的融合方案有多种,比较多的是OFDM与DS-CDMA的融合,而这又有三种[12]:MC-CDMA、MC-DS-CDMA和MT-CDMA。此外还有FH-OFDM(慢跳频与OFDM的融合)和TDMA-OFDM(TDMA与OFDM的融合)。CDMA多址技术名称: CDMA多址技术 主题词或关键词: 信息科学 先进技术 内容 引入文件 引入文件 CDMA多址技术 目前的数字移动通信网的主要多址方式是TDMA、TDMA系统(GSM,DAMPS)在频谱效率上约是模拟系统的3倍,容量有限;在话音质量上13kbit/s编码也很难达到有线电话水平;TDMA系统的业务综合能力较高,能进行数据和话音的综合,但终端接入速率有限(最高9.6kbit/s);TDMA系统无软切换功能,因而容易掉话,影响服务质量;TDMA系统的国际漫游协议还有待进一步的完善和开发。因而 TDMA并不是现代蜂窝移动通信的最佳无线接人,而CDMA多址技术完全适合现代移动通信网所要求的大容量、高质量、综合业务、软切换、国际漫游等。 CDMA多址技术的原理是基于扩频技术,即将需传送的具有一定信号带宽信息数据,用一个带宽远大于信号带宽的高速伪随机码进行调制,使原数据信号的带宽被扩展,再经载波调制并发送出去。接收端由使用完全相同的伪随机码,与接收的带宽信号作相关处理,把宽带信号换成原信息数据的窄带信号即解扩,以实现信息通信。 一、CDMA蜂窝移动通信网的特点 与FDMA和TDMA相比,CDMA具有许多独特的优点,其中一部分是扩频通信系统所固有的,另一部分则是由软切换和功率控制等技术所带来的。CDMA移动通信网是由扩频、多址接入、蜂窝组网和频率再用等几种技术结合而成,含有频域、时域和码域三维信号处理的一种协作,因此它具有抗干扰性好,抗多径衰落,保密安全性高,同频率可在多个小区内重复使用,所要求的载干比(C/I)小于l,容量和质量之间可做权衡取舍等属性。这些属性使 CDMA比其它系统有非常重要的优势。 1.系统容量大 理论上CDMA移动网比模拟网大20倍。 2.系统容量的灵活配置 在CDMA系统中,用户数的增加相当于背景噪声的增加,造成话音质量的下降。但对用户数并无限制,操作者可在容量和话音质量之间折衷考虑。另外,多小区之间可根据话务量和干扰情况自动均衡。 3.系统性能质量更佳 这里指的是CDMA系统具有较高的话音质量,声码器可以动态地调整数据传输速率,并根据适当的门限值选择不同的电平级发射。同时门限值根据背景噪声的改变而变,这样即使在背景噪声较大的情况下,也可以得到较好的通话质量。另外,CDMA系统“掉话”的现象明显减少,CDMA系统采用软切换技术,“先连接再断开”,这样完全克服了硬切换容易掉话的缺点。 4.频率规划简单 用户按不同的序列码区分,所以不相同CDMA载波可在相邻的小区内使用,网络规划灵活,扩展简单。 5.延长手机电池寿命 采用功率控制和可变速率声码器,手机电池使用寿命延长。 6.建网成本下降。 二、CDMA移动通信网的关键技术 1.功率控制技术 功率控制技术是CDMA系统的核心技术。CDMA系统是一个自扰系统,所有移动用户都占用相同带宽和频率,“远近效用”问题特别突出。CDMA功率控制的目的就是克服“远近效用”,使系统既能维护高质量通信,又不对其他用户产生干扰。功率控制分为前向功率控制和反向功率控制,反向功率控制又可分为仅由移动台参与的开环功率控制和移动台、基站同时参与的闭环功率控制。 (l)反向开环功率控制。它是移动台根据在小区中接受功率的变化,调节移动台发射功率以达到所有移动台发出的信号在基站时都有相同的功率。它主要是为了补偿阴影、拐弯等效应,所以它有一个很大的动态范围,根据IS-95标准,它至少应该达到正负32dB的动态范围。 (2)反向闭环功率控制。闭环功率控制的设计目标是使基站对移动台的开环功率估计迅速做出纠正,以使移动台保持最理想的发射功率。 (3)前向功率控制。在前向功率控制中,基站根据测量结果调整每个移动台的发射功率,其目的是对路径衰落小的移动台分派较小的前向链路功率,而对那些远离基站的和误码率高的移动台分派较大的前向链路功率。 2.PN码技术 PN码的选择直接影响到CDMA系统的容量、抗干扰能力、接入和切换速度等性能。CDMA信道的区分是靠PN码来进行的,因而要求PN码自相关性要好,互相关性要弱,实现和编码方案简单等。目前的CDMA系统就是采用一种基本的PN序列-m序列作为地址码,利用它的不同相位来区分不同用户。 3.RAKE接收技术 移动通信信道是一种多径衰落信道,RAKE接收技术就是分别接收每一路的信号进行解调,然后叠加输出达到增强接收效果的目的,这里多径信号不仅不是一个不利因素,而且在 CDMA系统变成一个可供利用的有利因素。 4.软切换技术 先连接,再断开称之为软切换。CDMA系统工作在相同的频率和带宽上,因而软切换技术实现起来比TDMA系统要方便容易得多; 5.话音编码技术 目前CDMA系统的话音编码主要有两种,即码激励线性预测编码(CELP)8kbit/s和13bit/s。8kbit/s的话音编码达到GSM系统的13bit/s的话音水平甚至更好。13bit/s的话音编码已达到有线长途话音水平。CELP采用与脉冲激励线性预测编码相同的原理,只是将脉冲位置和幅度用一个矢量码表代替。 6、声码器速率的自适应阈值技术 CDMA系统使用了确定声码器速率的自适应阈值,自适应阈值可以根据背景声学噪音电平的变化改变声码器的数据速率。这些阈值的使用压制了背景声学噪声,因而在噪声环境下也能提供清晰的话音。

㈥ lac rac 更新分别是什么意思

有必要和大家说清楚下基本概念:
1、位置区(LAC)、路由区(RAC)和UMTS登记区-----(URA)的概念只出现在移动性状态管理中,与LA和RA没有关系。
2、UMTS中位置区和路由区的概念和GSM(语音)及GPRS/EDGE(数据)中的是一致的,MSC负责位置区的管理、SGSN负责路由区的管理,保存了当前漫游用户(含本局)的位置信息,以便正确寻呼到用户。
3、LAC,RAC是多个CELL的组合,通过一定的标识符加以标识,位置区LA(Location Area)的标识符是LAI,路由区RA(Routing Area)的标识符是RAI,RA是包含在LA内的。
LAI由MCC、MNC和LAC组成、而RAI由MCC、MNC、LAC和RAC组成,所以RA应小于等于LA。在网络初期,RA和LA的区域应相等,随着数据业务量的增加,RA分裂数增加,等同寻呼量大时候必须要做的LAC分裂。
4、移动台在作话音呼叫时,跨LAC移动将发生位置区更新;在数据呼叫时,跨RAC移动时将发生路由区的更新过程。系统寻呼时,根据业务类型寻呼是在LAC内或RAC内发生寻呼的。小区(cell)是移动台可以识别的当前在系统中所能驻扎的最小单位,小区可以是扇区(Sector)的概念也可以不是。服务区(Serivce Area)是移动台所能获得业务提供的最大区域范围。
5、针对现网来说,用户驻留小区必属于一个BSC(RNC),此BSC/RNC必然是属于一个LAC(RAC),如果在LAC边缘地区,或者城市边缘区域,这些相关参数设置不合理就会造成频繁的LUD,这些可以通过调整LAC范围和MSC的C/S参数解决。
在UMTS中移动台进入休眠状态时,会选择一个URA或一个小区内,进入URA-PCH状态进行休眠,取决于移动性管理的当前状态。事实上,系统关心的通信过程还是LA和RA的更新过程。
另外UMTS的USIM卡上包含了与用户有关的信息,包括IMSI、MSISDN、密钥、服务列表和临时识别符(动态数据)等,这些都可以在一些测试手机中可以查到具体信息,可以辅助了解UE具体行为。
6、针对无线来说:LAC负责控制寻呼信道的负荷,在同一MSC下,LAC划分是与地理状态,话务量和CELL分布情况密切相关,并且会相应调整。具体来说,LAC区域设置不宜过小,其边界应尽可能避开话务密集区,以减少乒乓登记及2次 PAGING发生的几率(如果区域规划的过大,则寻呼信道负荷过重,同时增加了Iub口的信令流量。如果区域规划的过小,则UE会频繁地发生位置/路由区更新,增加了系统的信令开销和手机的耗电。另外,在高话务的大城市,如果存在两个以上的位置区,可以利用市区中山体、河流等地形因素来作为位置区的边界,减少两个位置区下不同小区的交叠深度。如果不存在这样的地理环境,位置区的划分尽量不要以街道为界,边界不要放在话务量很高的地方(比如商场)。一般要求位置区边界不与街道平行或垂直,而是斜交。在市区和城郊交界区域,一般将位置区的边界放在外围一线的基站处,而不是放在话务密集的城郊结合部,避免结合部用户频繁位置更新。)--这些可以通过前台看出,也可以结合LU口去监控网络状态
7、一般来说无线优化人员在寻呼相关参数确定后,就能知道寻呼信道的最大负载能力,确定寻呼间隔时长,寻呼信道分配以及寻呼重分配次数,还需要考虑到寻呼冗余,避免出现信道拥塞,话务溢出。

㈦ RA是什么意思

RA的中文翻译是Royal Academician <英>皇家艺术院会员;助研金。

词汇分析

释义:<英>皇家艺术院会员;助研金

拓展资料

1、To observe the long-term result of Biqi capsule on rheumatoid arthritis ( RA).

犤目的犦观察中药痹祺胶囊治疗类风湿关节炎(RA)的远期疗效。

2、The influence of GCS on bone metabolism in RA requires further study.

GCS在RA病人骨新陈代谢的影响还需要进一步的实验研究。

3、Diseases like RA and lupus are more common in women and sometimes have heart disease manifestations.

像RA和狼疮之类在妇女身上更常见的疾病有时候会出现心脏病迹象。

4、This introction of RA has brought significant changes in the message bindings provided by Process Server.

RA的引入为Process Server提供的消息绑定带来了重大变化。

5、Conclusions ACCP is valuable for RA diagnosis.

结论accp对ra有较高的诊断价值。

㈧ DVB协议中RA,DA是什么意思

这里的RA solution指的就是radio access solution。无线接入方案。
DA
多巴胺(dopamine);黑质多巴胺;配电自动化(Distribution Automation)