当前位置:首页 » 无线网络 » 无线传感器网络仿真研究现状
扩展阅读
恒大金服网络异常怎么办 2025-07-25 07:18:55
如何把网络设置到最快 2025-07-25 07:18:43

无线传感器网络仿真研究现状

发布时间: 2022-07-23 19:45:50

① 求问目前无线传感器网络研究方向主要的存在的问题是

目前无线传感器网络研究方向很多,比如路由问题,定位,安全,节约能源等问题。
国内缺乏相应的比较好的成品,没有多少能拿出来实际能用的产品,大多在理论理究阶段。

② 目前无线传感器网络与物联网研究中面临哪些挑战

无线传感器网络由于在物联网中担当链接传统网络重任,安全问题尤其突出。文章以无线传感器网络的结构、特征为基础,分析了物联网所面临的安全挑战,并研究了其中的关键

③ 急 急 急 求一篇关于《通信网络仿真研究》的论文

帮您下了两篇,希望对您有所帮助哦!祝您愉快!

1
题目:基于无线传感器网络仿真平台的研究
一、引言

传感器网络(WSN)日新月异,各种网络方案和协议日趋复杂,网络规模日趋庞大,对网络研究人员而言,掌握网络仿真的重要性是不言而喻的。WSN仿真能够在一个可控制的环境里研究WSN应用,包括操作系统和网络协议栈,能够仿真数量众多的节点,能够观察由不可预测的干扰和噪声引起的难以琢磨的节点间的相互作用,获取节点间详细的细节,从而提高节点投放后的网络成功率,减少投放后的网络维护工作。目前无线传感器网络使用的仿真工具主要有NS2、TinyOS、OPNET、OMNET++等等。其中TinyOS是专门针对无线传感器网络的特点而研究开发的。

二、无线传感器网络仿真简介

在传感器网络中,单个传感器节点有两个很突出的特点。一个特点是它的并发性很密集;另一个特点是传感器节点模块化程度很高.上述这些特点使得无线传感器网络仿真需要解决可扩展性与仿真效率、分布与异步特性、动态性、综合仿真平台等等问题。

三、无线传感器网络常用仿真工具

无线传感器网络常用仿真工具有NS2、OPNET、OMNET++、TinyOS,下面我们简要介绍它们各自的性能和特点。

3.1 NS2
NS是一种可扩展、以配置和可编程的时间驱动的仿真工具,它是由REAL仿真器发展而来.在NS的设计中,使用C++和OTCL两种程序设计语言, C++是一种相对运行速度较快但是转换比较慢的语言,所以C++语言被用来实现网络协议, 编写NS底层的仿真引擎; OTCL是运行速度较慢,但可以快速转换的脚本语言,正好和C++互补,所以OTCL语言被用来配置仿真中各种参数,建立仿真的整体结构, OTCL的脚本通过调用引擎中各类属性、方法,定义网络的拓扑,配置源节点、目的节点建立链接,产生所有事件的时间表,运行并跟踪仿真结果,还可以对结果进行相应的统计处理或制图.NS可以提供有线网络、无线网络中链路层及其上层精确到数据包的一系列行为仿真。NS中的许多协议都和真实代码十分接近,其真实性和可靠性是非常高的。

3.2 OPNET
OPNET是在MIT研究成果的基础上由MIL3公司开发的网络仿真软件产品。 OPNET的主要特点包括以下几个方面:(1)采用面向对象的技术,对象的属性可以任意配置,每一对象属于相应行为和功能的类,可以通过定义新的类来满足不同的系统要求; (2)OPNET提供了各种通信网络和信息系统的处理构件和模块;(3) OPNET采用图形化界面建模,为使用者提供三层(网络层、节点层、进程层)建模机制来描述现实的系统;(4) OPNET在过程层次中使用有限状态机来对其它协议和过程进行建模,用户模型及OPNET内置模型将会自动生成C语言实现可执行的高效、高离散事件的模拟流程;(5) OPNET内建了很多性能分析器,它会自动采集模拟过程的结果数据;(6)OPNET几乎预定义了所有常用的业务模型,如均匀分布、泊松分布、欧兰分等。

3.3 OMNET++
OMNET++是面向对象的离散事件模拟工具,为基于进程式和事件驱动两种方式的仿真提供了支持。 OMNET++采用混合式的建模方式,同时使用了OMNET++特有的ned(Network Discription,网络描述)语言和C++进行建模。OMNET++主要由六个部分组成:仿真内核库、网络描述语言的编译器、图形化的网络编译器、仿真程序的图形化用户接口、仿真程序的命令行用户接口和图形化的向量输出工具。OMNET++的主要模型拓扑描述语言NED,采用它可以完成一个网络模型的描述。 网络描述包括下列组件:输入申明、信道定义、系统模块定义、简单模块和复合模块定义。使用NED描述网络,产生.NED文件,该文件不能直接被C++编译器使用,需要首先采用OMNET++提供的编译工具NEDC将.NED文件编译成.cpp文件。最后,使用C++编译器将这些文件与用户和自己设计的简单模块程序连接成可执行程序。

3.4 TinyOS
TinyOS是专门针对传感器研发出的操作系统。在TinyOS上编程序使用的语言为nesC(C language for network embedded systems) 语言。

nesC语言是由C语言扩展而来的,意在把组件化/模块化思想和TinyOS基于事件驱动的执行模型结合起来。 nesC 组件有Mole(模块)和Configuration(连接配置文件)两种。在模块中主要实现代码的编制,在连接配置文件中主要是将各个组件和模块连接起来成为一个整体。

TinyOS程序采用的是模块化设计,所以它的程序核心往往都很小,能够突破传感器存储资源少的限制,这能够让TinyOS很有效的运行在无线传感器网络上并去执行相应的管理工作等。TinyOS的特点主要体现在以下几个方面:

(1)组件化编程(Componented-Based Architecture)。TinyOS的组件通常可以分为以下三类:硬件抽象组件、合成组件、高层次的软件组件;硬件抽象组件将物理硬件映射到TinyOS组件模型.合成硬件组件模拟高级硬件的行为.高层次软件模块完成控制、路由以及数据传输等。}

(2)事件驱动模式(Event-Driven Architecture)。事件驱动分为硬件驱动和软件事件驱动。硬件事件驱动也就是由一个硬件发出中断,然后进入中断处理函数。而软件驱动则是通过singal关键字发出一个事件。

(3)任务和事件并发模式(Tasks And Events Concurrency Model)。任务用在对于时间要求不是很高的应用中,任务之间是平等的,即在执行时是按顺序先后来的,而不能相互抢占,TinyOS对任务是按简单的FIFO队列进行处理的。事件用在对于时间的要求很严格的应用中,而且它可以占先优于任务和其他事件执行。

(4)分段执行(Split-Phase Operations)。在TinyOS中由于tasks 之间不能互相占先执行,所以TinyOS没有提供任何阻塞操作,为了让一个耗时较长的操作尽快完成,一般来说都是将对这个操作的需求和这个操作的完成分开来实现,以便获得较高的执行效率。

(5) 轻量级线程(lightweight thread)。轻量级线程(task, 即TinyOS中的任务)按FIFO方式进行调度,轻量级线程之间不允许抢占;而硬件处理线程(在TinyOS中,称为硬件处理器),即中断处理线程可以打断用户的轻量级线程和低优先级的中断处理线程,对硬件中断进行快速处理响应。

(6) 主动通信消息(active message)。每一个消息都维护一个应用层和处理器。当目标节点收到这个消息后,就会把消息中的数据作为参数,并传递给应用层的处理器进行处理。应用层的处理器一般完成消息数据的解包操作、计算处理或发送响应消息等工作。

TinyOS操作系统中常用的仿真平台主要是TOSSIM和Avrora

(1)TOSSIM(TinyOS simulation)是一个支持基于TinyOS的应用在PC机上运行的模拟器.TOSSIM运行和传感器硬件相同的代码,仿真编译器能直接从TinyOS应用的组件表中编译生成仿真程序。

(2)Avrora是一种专门为Atmel和Mica2节点上以AVR单片机语言编写的程序提供仿真分析的工具。它的主要特点如下:1) 为AVR单片机提供了cycle accurate级的仿真,使静态程序可以准确的运行。它可以仿真片上(chip-on)设备驱动程序,并为片外(off-chip)程序提供了有规则的接口;2)可以添加监测代码来报告仿真程序运行的性能,或者可以在仿真结束后收集统计数据,并产生报告;3)提供了一套基本的监控器来剖析程序,这有助于分析程序的执行模式和资源使用等等;4)Avrora可以用gdb调试程序;5) Avrora可以为程序提供一个程序流图,通过这个流程图可以清楚的表示机器代码程序的结构和组织;6) Avrora中提供了分析能量消耗的工具,并且可以设置设备的带电大小;7) Avrora可以用来限制程序的最大堆栈空间,它会提供一些关于目前程序中的最大的堆栈结构,和一些关于空间和时间消耗的信息报告。

3.5性能比较

TinyOS 用行为建模,可以仿真跨层协议;仿真程序移植到节点上,不需要二次编码。
通过对上述几种仿真软件的分析比较,我们可以清楚的看到各个仿真软件的特点、适用范围,我们可以根据研究需要选择适合的仿真软件,使得我们的学习研究可以事半功倍。

结束语

网络仿真技术为通信网络规划和优化提供了一种科学高效的方法。网络仿真在国内是近几年才发展起来的,但在国外网络仿真技术已经相当成熟,我们应该大胆地借鉴国外先进技术,促进国内网络仿真技术迅速发展。

参考文献
【1】于海斌,曾鹏等.智能无线传感器网络.科学出版社,2006,p283~p303,
【2】石怀伟,李明生,王少华,网络仿真技术与OPNET应用实践,计算机系统应用2006.第3期
【3】李玥,吴辰文,基于OMNeT++地TCP/IP协议仿真,兰州交通大学学报(自然科学版),2005年8月
【4】袁红林,徐晨,章国安,TOSSIM:无线传感器网络仿真环境,传感器与仪表仪器 ,2006年第22卷第7-1期

2

集群虚拟服务器的仿真建模研究

来源:电子技术应用 作者:杨建华 金笛 李烨 宁宇

摘要:阐述了集群虚拟服务器的工作原理和三种负载均衡方式,通过实例讨论了虚拟服务器的仿真和建模方法,创建了测试和仿真系统性能的输入和系统模型,并依据Q—Q图和累积分布函数校验了其概率分布。

关键词:集群虚拟服务器负载均衡仿真建模概率分布

随着互联网访问量和数据流量的快速增长,新的应用层出不穷。尽管Intemel服务器处理能力和计算强度相应增大,但业务量的发展超出了先前的估计,以至过去按最优配置建设的服务器系统也无法承担。在此情况下,如果放弃现有设备单纯将硬件升级,会造成现有资源的浪费。因此,当前和未来的网络服务不仅要提供更丰富的内容、更好的交互性、更高的安全性,还要能承受更高的访问量,这就需要网络服务具有更高性能、更大可用性、良好可扩展性和卓越的性价比。于是,集群虚拟服务器技术和负载均衡机制应运而生。

集群虚拟服务器可以将一些真实服务器集中在一起,组成一个可扩展、高可用性和高可靠性的统一体。负载均衡建立在现有网络结构之上,提供了一种廉价、有效和透明的方法建立服务器集群系统,扩展网络设备和服务器的带宽,增加吞吐量,加强网络数据处理能力。提高网络的灵活性和可用性。使用负载均衡机制.大量的并发访问或数据流量就可以分配到多台节点设备上分别处理。系统处理能力得到大幅度提高,大大减少用户等待应答的时间。

实际应用中,虚拟服务器包含的真实服务器越多,整体服务器的性能指标(如应答延迟、吞吐率等)越高,但价格也越高。在集群中通道或其他部分也可能会进入饱和状态。因此,有必要根据实际应用设计虚拟服务器的仿真模型,依据实际系统的测量数据确定随机变量的概率分布类型和参数,通过分位点一分位点图即Q-Q图(Quaantile-Quantile Plot)和累积分布函数(Cumulative Distribution Functions)等方法校验应答或传播延迟等性能指标的概率分布,通过仿真软件和工具(如Automod)事先分析服务器的运行状态和性能特点,使得集群系统的整体性能稳定,提高虚拟服务器设计的客观性和设计的可靠性,降低服务器建设的投资风险。

1 集群虚拟服务器的体系结构

一般而言,首先需要在集群虚拟服务器上建立互联网协议伪装(Internet Protocol Masquerading)机制,即IP伪装,接下来创立IP端口转发机制,然后给出在真实服务器上的相关设置。图1为集群虚拟服务器的通用体系结构。集群虚拟服务器通常包括:真实服务器(RealServers)和负载均衡器(Load Balmlcer)。

由于虚拟服务器的网络地址转换方式是基于IP伪装的,因此对后台真实服务器的操作系统没有特别要求,可以是windows操作系统,也可以是Lmux或其他操作系统。

负载均衡器是服务器集群系统的惟一入口点。当客户请求到达时,均衡器会根据真实服务器负载情况和设定的调度算法从真实服务器中选出一个服务器,再将该请求转发到选出的服务器,并记录该调度。当这个请求的其他报文到达后,该报文也会被转发到前面已经选出的服务器。因为所有的操作都在操作系统核心空间中完成,调度开销很小,所以负载均衡器具有很高的吞吐率。整个服务器集群的结构对客户是透明的,客户看到的是单一的虚拟服务器。

负载均衡集群的实现方案有多种,其中一种是Linux虚拟服务器LVS(Linux Virtual Server)方案。LVS实现负载均衡的技术有三种:网络地址转换(Network Address Translation)、直接路由(Direct Routing)和IP隧道(IP Yunneling)。

网络地址转换按照IETF标准,允许一个整体机构以一个公用IP地址出现在Inlemet上。通过网络地址转换,负载均衡器重写请求报文的目标地址,根据预设的调度算法,将请求分派给后端的真实服务器;真实服务器的应答报文通过均衡器时,报文的源地址被重写,把内部私有网络地址翻译成合法网络IP地址,再返回给客户,完成整个负载调度过程。

直接路由的应答连接调度和管理与网络地址转换的调度和管理相同,但它的报文是直接转发给真实服务器。在直接路由应答中,均衡器不修改、也不封装IP报文.而是将数据帧的媒体接入控制MAC(Medium Aceess Control)地址改为选出服务器的MAC地址,再将修改后的数据帧在局域网上发送。因为数据帧的MAC地址是选出的服务器,所以服务器肯定可以收到该数据帧,从中获得该IP报文。当服务器发现报文的目标地址在本地的网络设备时,服务器处理该报文,然后根据路由表应答报文,直接返回给客户。

IP隧道是将一个IP报文封装在另一个IP报文中的技术。该技术可以使目标为某个口地址的数据报文被封装和转发到另一个IP地址。用户利用IP隧道技术将请求报文封装转发给后端服务器,应答报文能从后端服务器直接返回给客户。这样做,负载均衡器只负责调度请求,而应答直接返回给客户,不需要再处理应答包,将极大地提高整个集群系统的吞吐量并有效降低负载均衡器的负载。IP隧道技术要求所有的服务器必须支持IP Yunnehng或lP.封装(Encapsulation)协议。

2 集群虚拟服务器报文延迟的确定

通过一个装有5台真实服务器并使用网络地址转换技术实现Linux虚拟服务器的实际系统,可以得到有关请求和应答报文的时戳(Time Stamp)文件n根据这些文件.能够计算出集群虚拟服务器的仿真和建模所需数据。

为了确定随机变量分布类型和参数,应该统计下列延迟:(1)从客户到负载均衡器的传播延迟(Transport Delay);(2)负载均衡器的应答延迟(Response Delay);(3)从负载均衡器到真实服务器的传播延迟;(4)真实服务器的应答延迟;(5)从真实服务器到负载均衡器的传播延迟;f61负载均衡器对真实服务器的应答延迟;(7)从负载均衡器到客户的传播延迟。

在实际系统产生的时戳文件中,问接地描述了上述各延迟时间。文件包含的内容如下:

当一个服务请求到达集群虚拟服务器系统时,即产生带有惟一序列号的同步请求报文(Synchronized Request Package),将该报文转发到某一真实服务器,同时建立该服务器与客户端的连接,每个这样的连接都带有惟一的端口号;该服务器处理通过该连接的确认请求报文(Acknowledgement Request Package),直到服务器收到结束请求报文(Finished Request Package)。对每一种类型的请求报文,系统都给予一个相应的应答报文。因此,在不同的报文时戳文件中,如果两条记录具有相同的端口号、报文类型和序列号,则它们是同一个请求或应答报文,对相关的时戳相减即可得到集群虚拟服务器系统的仿真和建模所需的延迟数据。通过所编写的C++程序即可计算这些延迟。

3 系统仿真模型

上述的集群虚拟服务器实际系统的仿真模型如图2所示,在负载均衡器、各通道、5台真实服务器中通过或处理的均为请求或应答报文。

4 随机变量模型的确定

对具有随机变量的集群虚拟服务器进行仿真,必须确定其随机变量的概率分布,以便在仿真模型中对这些分布进行取样,得到所需的随机变量。

4.1 实际虚拟服务器的延迟数据概况

在实际虚拟服务器的负载均衡器、各通道和5台真实服务器中,对请求和应答报文都有一定的延迟。部分报文延迟的统计数据如表1所示。

由表l中的数据可见,报文延迟的中位数与均值差异较大,所以其概率分布不对称;变异系数不等于l,导致概率分布不会是指数分布,而可能是γ分布或其他分布。

4.2 随机变量的概率分布

图3为第一台真实服务器到负载均衡器之间的通道报文传播延迟直方图,其中t为报文延迟时间,h(t)为报文延迟区间数。由图3可知,通道内的报文传播延迟数据近似服从γ分布或对数正态分布。

描述γ分布需要两个参数:形状(Shape)参数α和比例(Scahj)参数口,这两个参数与均值M、方差V之间的关系是非线性的:

描述对数正态分布也需要形状参数σ和比例参数μ,这两个参数与均值M、方差V之问的关系也是非线性的:

式(1)~(4)都可以通过最大似然估计MLE(Maximum Likelihood Estimator)方法或最速下降法(Steepest Descent Method)求出。表2给出了甩这两种方法求出的从第一台真实服务器到负载均衡器之间通道内的报文延迟概率分布参数。

使用累积分布函数和Q-Q图可以校验并进一步确定上述通道内报文传播延迟的概率分布。取用表2中的参数,可以得到γ分布的累积分布函数,如图4所示,其中t为报文延迟时间,F(t)为报文延迟的累积分布函数。为作比较,实验分布也画在该图中。γ分布和对数正态分布的Q-Q图如图5所示。

由图4和图5可以看出,γ分布较好地拟合了该通道内的报文传播延迟数据分布。其他通道报文延迟直方图也有类似形状。经计算和分析,这些通道的报文传播延迟概率分布也近似服从γ分布。

根据表1中的数据以及相关的直方图都难以确定在负载均衡器和真实服务器中报文延迟的理论分布。因此,采用实验分布作为其模型。

5 模型仿真

在建立了图1所示的集群虚拟服务器的系统仿真模型并确定了其随机变量的分布特性后,可以采用由美国布鲁克斯自动化公司(Brooks Automation)开发的仿真软件Automod输入该模型,并通过在Automod环境中编程进行集群虚拟服务器的仿真和分析。

在Automod的仿真过程中,可以直接利用软件提供的资源(Resource)作为各种报文数据处理的单元;系统各部分的报文排队活动可以直接通过排队(Queue)实现;建立一个负载产生器,等效为在Inlemtet上使用虚拟服务器的客户。

通过采用Automod的属性变量(Attribute Variable)可以解决负载均衡器的双方向报文处理功能的问题。负载均衡器使用轮转调度算法(Round Robin Scheling),即假设所有真实服务器的处理性能均相同,依次将请求调度到不同的服务器。

验证仿真模型可以分别在实际虚拟服务器系统和Automod的仿真模型中从以下两方面进行对比:(1)在负载均衡器、各个真实服务器和通道中排队的应答或传播报文数量;(2)真实服务器及负载均衡器的cPU利用率。例如,当使用实际的应答或传播报文延迟数据时,在Automod的仿真模型中,如果设置一个较低的资源量,则在仿真过程中就会发现大部分的负载都被堵在真实服务器的排队中,即真实服务器处理报文的能力过低,无法与实际系统的状况相比;如果设置一个较高的资源量,则意味着服务器的并行处理能力增加,真实服务器的利用率提高,负载就很少或不会滞留在真实服务器的排队中。因此,在Automod中可以根据实际情况调整仿真模型的资源量大小。

如果在Automod中增加负载产生器的负载产生率,就等效为用户访问量增加,通过观察排队中的负载滞留比例,就可以发现系统的最大处理报文的能力以及系统各部分应答报文可能出现瓶颈之处。例如,将负载产生率增加一倍,虽然系统仍然可以处理所有的报文,但各台真实服务器的平均利用率将达80%左右。显然,这时系统应答报文的“瓶颈”为真实服务器,有必要在系统中增添一台新的真实服务器。

通过一个包括5台真实服务器的实际虚拟服务器系统。收集并计算了仿真和建模的样板数据。依据系统报文延迟的中位数、均值、变异系数和直方图等,确定了系统随机变量的概率分布;采用最大似然估计方法和最速下降法,得到了通道概率分布的具体参数;根据Q-Q图和累积分布函数进一步校验并最终确定通道的概率分布形式。使用Automod软件进行了仿真建模和编程,借助仿真结果可以发现虚拟服务器的最大处理能力和可能的“瓶颈”之处。通过及时定位系统“瓶颈”,可以有的放矢地进一步研究和改进系统,有效提高系统性能。所采用的仿真方法也可以用于其他领域的仿真建模或分析中。

在仿真模型中,负载均衡方式和调度算法还需要进一步增加,以便于比较不同的虚拟服务器系统。样本数据也需要进一步扩充,以避免报文延迟的自相关性。

④ 无线传感器网络节点部署问题研究

无线传感器网络是近几年发展起来的一种新兴技术,在条件恶劣和无人坚守的环境监测和事件跟踪中显示了很大的应用价值。节点部署是无线传感器网络工作的基础,对网络的运行情况和寿命有很大的影响。部署问题涉及覆盖、连接和节约能量消耗3个方面。该文重点讨论了网络部署中的覆盖问题,综述了现有的研究成果,总结了今后的热点研究方向,为以后的研究奠定了基础。
基于虚拟势场的有向传感器网络覆盖增强算法
陶 丹+, 马华东, 刘 亮
(智能通信软件与多媒体北京市重点实验室(北京邮电大学),北京 100876)
A Virtual Potential Field Based Coverage-Enhancing Algorithm for Directional Sensor Networks
TAO Dan+, MA Hua-Dong, LIU Liang
(Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia (Beijing University of Posts and Telecommunications), Beijing 100876, China)
+ Corresponding author: Phn: +86-10-62282277, Fax: +86-10-62283523, E-mail: [email protected], http://www.bupt.e.cn
Tao D, Ma HD, Liu L. A virtual potential field based coverage-enhancing algorithm for directional sensor networks. Journal of Software, 2007,18(5):11521163. http://www.jos.org.cn/1000-9825/18/1152.htm
Abstract: Motivated by the directional sensing feature of video sensor, a direction adjustable sensing model is proposed first in this paper. Then, the coverage-enhancing problem in directional sensor networks is analyzed and defined. Moreover, a potential field based coverage-enhancing algorithm (PFCEA) is presented. By introcing the concept of “centroid”, the pending problem is translated into the centroid points’ uniform distribution problem. Centroid points repel each other to eliminate the sensing overlapping regions and coverage holes, thus enhance the whole coverage performance of the directional sensor network. A set of simulation results are performed to demonstrate the effectiveness of the proposed algorithm.
Key words: directional sensor network; directional sensing model; virtual potential field; coverage enhancement
摘 要: 首先从视频传感器节点方向性感知特性出发,设计了一种方向可调感知模型,并以此为基础对有向传感器网络覆盖增强问题进行分析与定义;其次,提出了一种基于虚拟势场的有向传感器网络覆盖增强算法PFCEA (potential field based coverage-enhancing algorithm).通过引入“质心”概念,将有向传感器网络覆盖增强问题转化为质心均匀分布问题,以质心点作圆周运动代替传感器节点传感方向的转动.质心在虚拟力作用下作扩散运动,以消除网络中感知重叠区和盲区,进而增强整个有向传感器网络覆盖.一系列仿真实验验证了该算法的有效性.
关键词: 有向传感器网络;有向感知模型;虚拟势场;覆盖增强
中图法分类号: TP393 文献标识码: A
覆盖作为传感器网络中的一个基本问题,反映了传感器网络所能提供的“感知”服务质量.优化传感器网络覆盖对于合理分配网络的空间资源,更好地完成环境感知、信息获取任务以及提高网络生存能力都具有重要的意义[1].目前,传感器网络的初期部署有两种策略:一种是大规模的随机部署;另一种是针对特定的用途进行计划部署.由于传感器网络通常工作在复杂的环境下,而且网络中传感器节点众多,因此大都采用随机部署方式.然而,这种大规模随机投放方式很难一次性地将数目众多的传感器节点放置在适合的位置,极容易造成传感器网络覆盖的不合理(比如,局部目标区域传感器节点分布过密或过疏),进而形成感知重叠区和盲区.因此,在传感器网络初始部署后,我们需要采用覆盖增强策略以获得理想的网络覆盖性能.
目前,国内外学者相继开展了相关覆盖增强问题的研究,并取得了一定的进展[25].从目前可获取的资料来看,绝大多数覆盖问题研究都是针对基于全向感知模型(omni-directional sensing model)的传感器网络展开的[6],
即网络中节点的感知范围是一个以节点为圆心、以其感知距离为半径的圆形区域.通常采用休眠冗余节点[2,7]、
重新调整节点分布[811]或添加新节点[11]等方法实现传感器网络覆盖增强.
实际上,有向感知模型(directional sensing model)也是传感器网络中的一种典型的感知模型[12],即节点的感知范围是一个以节点为圆心、半径为其感知距离的扇形区域.由基于有向感知模型的传感器节点所构成的网络称为有向传感器网络.视频传感器网络是有向传感器网络的一个典型实例.感知模型的差异造成了现有基于全向感知模型的覆盖研究成果不能直接应用于有向传感器网络,迫切需要设计出一系列新方法.
在早期的工作中[13],我们率先开展有向传感器网络中覆盖问题的研究,设计一种基本的有向感知模型,用以刻画视频传感器节点的方向性感知特性,并研究有向传感器网络覆盖完整性以及通信连通性问题.同时,考虑到有向传感器节点传感方向往往具有可调整特性(比如PTZ摄像头的推拉摇移功能),我们进一步提出一种基于图论和计算几何的集中式覆盖增强算法[14],调整方案一经确定,网络中所有有向传感器节点并发地进行传感方向的一次性调整,以此获得网络覆盖性能的增强.但由于未能充分考虑到有向传感器节点局部位置及传感方向信息,因而,该算法对有向传感器网络覆盖增强的能力相对有限.
本文将基本的有向感知模型扩展为方向可调感知模型,研究有向传感器网络覆盖增强问题.首先定义了方向可调感知模型,并分析随机部署策略对有向传感器网络覆盖率的影响.在此基础上,分析了有向传感器网络覆盖增强问题.本文通过引入“质心”概念,将待解决问题转化为质心均匀分布问题,提出了一种基于虚拟势场的有向传感器网络覆盖增强算法PFCEA(potential field based coverage-enhancing algorithm).质心在虚拟力作用下作扩散运动,逐步消除网络中感知重叠区和盲区,增强整个网络覆盖性能.最后,一系列仿真实验验证了PFCEA算法的有效性.
1 有向传感器网络覆盖增强问题
本节旨在分析和定义有向传感器网络覆盖增强问题.在此之前,我们对方向可调感知模型进行简要介绍.
1.1 方向可调感知模型
不同于目前已有的全向感知模型,方向可调感知模型的感知区域受“视角”的限制,并非一个完整的圆形区域.在某时刻t,有向传感器节点具有方向性感知特性;随着其传感方向的不断调整(即旋转),有向传感器节点有能力覆盖到其传感距离内的所有圆形区域.由此,通过简单的几何抽象,我们可以得到有向传感器节点的方向可调感知模型,如图1所示.
定义1. 方向可调感知模型可用一个四元组P,R, ,
表示.其中,P=(x,y)表示有向传感器节点的位置坐标;R表示节
点的最大传感范围,即传感半径;单位向量 = 为扇形感知区域的中轴线,即节点在某时刻t时的传感方向; 和 分别是单位向量 在X轴和Y轴方向上的投影分量;表示边界距离传感向量 的传感夹角,2代表传感区域视角,记作FOV.
特别地,当=时,传统的全向感知模型是方向可调感知模型的一个特例.
若点P1被有向传感器节点vi覆盖成立,记为viP1,当且仅当满足以下条件:
(1) ,其中, 代表点P1到该节点的欧氏距离;
(2) 与 间夹角取值属于[,].
判别点P1是否被有向传感器节点覆盖的一个简单方法是:如果 且 ,那么,点P1
被有向传感器节点覆盖;否则,覆盖不成立.另外,若区域A被有向传感节点覆盖,当且仅当区域A中任何一个点都被有向传感节点覆盖.除非特别说明,下文中出现的“节点”和“传感器节点”均满足上述方向可调感知模型.
1.2 有向传感器网络覆盖增强问题的分析与定义
在研究本文内容之前,我们需要作以下必要假设:
A1. 有向传感器网络中所有节点同构,即所有节点的传感半径(R)、传感夹角()参数规格分别相同;
A2. 有向传感器网络中所有节点一经部署,则位置固定不变,但其传感方向可调;
A3. 有向传感器网络中各节点都了解自身位置及传感方向信息,且各节点对自身传感方向可控.
假设目标区域的面积为S,随机部署的传感器节点位置满足均匀分布模型,且目标区域内任意两个传感器节点不在同一位置.传感器节点的传感方向在[0,2]上也满足均匀分布模型.在不考虑传感器节点可能落入边界区域造成有效覆盖区域减小的情况下,由于每个传感器节点所监控的区域面积为R2,则每个传感器节点能监测整个目标区域的概率为R2/S.目标区域被N个传感器节点覆盖的初始概率p0的计算公式为(具体推导过程参见文献[14])
(1)
由公式(1)可知,当目标区域内网络覆盖率至少达到p0时,需要部署的节点规模计算公式为
(2)
当网络覆盖率分别为p0和p0+p时,所需部署的传感器节点数目分别为ln(1p0)/,ln(1(p0+p))/.其中, =ln(SR2)lnS.因此,传感器节点数目差异N由公式(3)可得,
(3)
当目标区域面积S、节点传感半径R和传感夹角一定时,为一常数.此时,N与p0,p满足关系如图2所示(S=500500m2,R=60m,=45º).从图中我们可以看出,当p0一定时,N随着p的增加而增加;当p一定时,N随着p0的增加而增加,且增加率越来越大.因此,当需要将覆盖率增大p时,则需多部署N个节点(p0取值较大时(80%),p取值每增加1%,N就有数十、甚至数百的增加).如果采用一定的覆盖增强策略,无须多部署节点,就可以使网络覆盖率达到p0+p,大量节省了传感器网络部署成本.
设Si(t)表示节点vi在传感向量为 时所覆盖的区域面积.运算操作Si(t)Sj(t)代表节点vi和节点vj所能覆盖到的区域总面积.这样,当网络中节点传感向量取值为 时,有向传感器网络覆盖率可表
示如下:
(4)
因此,有向传感器网络覆盖增强问题归纳如下:
问题:求解一组 ,使得对于初始的 ,有 取值
接近最大.

Fig.2 The relation among p0, p and N
图2 p0,p和N三者之间的关系
2 基于虚拟势场的覆盖增强算法
2.1 传统虚拟势场方法
虚拟势场(virtual potential field)的概念最初应用于机器人的路径规划和障碍躲避.Howard等人[8]和Pori等人[9]先后将这一概念引入到传感器网络的覆盖增强问题中来.其基本思想是把网络中每个传感器节点看作一个虚拟的电荷,各节点受到其他节点的虚拟力作用,向目标区域中的其他区域扩散,最终达到平衡状态,即实现目标区域的充分覆盖状态.Zou等人[15]提出了一种虚拟力算法(virtual force algorithm,简称VFA),初始节点随机部署后自动完善网络覆盖性能,以均匀网络覆盖并保证网络覆盖范围最大化.在执行过程中,传感器节点并不移动,而是计算出随机部署的传感器节点虚拟移动轨迹.一旦传感器节点位置确定后,则对相应节点进行一次移动操作.Li等人[10]为解决传感器网络布局优化,在文献[15]的基础上提出了涉及目标的虚拟力算法(target involved virtual force algorithm,简称TIVFA),通过计算节点与目标、热点区域、障碍物和其他传感器之间的虚拟力,为各节点寻找受力平衡点,并将其作为该传感器节点的新位置.
上述利用虚拟势场方法优化传感器网络覆盖的研究成果都是基于全向感知模型展开的.假定传感器节点间存在两种虚拟力作用:一种是斥力,使传感器节点足够稀疏,避免节点过于密集而形成感知重叠区域;另一种是引力,使传感器节点保持一定的分布密度,避免节点过于分离而形成感知盲区[15].最终利用传感器节点的位置移动来实现传感器网络覆盖增强.
2.2 基于虚拟势场的有向传感器网络覆盖增强算法
在实际应用中,考虑到传感器网络部署成本,所有部署的传感器节点都具有移动能力是不现实的.另外,传感器节点位置的移动极易引起部分传感器节点的失效,进而造成整个传感器网络拓扑发生变化.这些无疑都会增加网络维护成本.因而,本文的研究工作基于传感器节点位置不变、传感方向可调的假设.上述假设使得直接利用虚拟势场方法解决有向传感器网络覆盖增强问题遇到了麻烦.在传统的虚拟势场方法中,传感器节点在势场力的作用下进行平动(如图3(a)所示),而基于本文的假设,传感器节点表现为其扇形感知区域在势场力的作用下以传感器节点为轴心进行旋转(如图3(b)所示).
为了简化扇形感知区域的转动模型,我们引入“质心(centroid)”的概念.质心是质点系中一个特定的点,它与物体的平衡、运动以及内力分布密切相关.传感器节点的位置不变,其传感方向的不断调整可近似地看作是扇形感知区域的质心点绕传感器节点作圆周运动.如图3(b)所示,一个均匀扇形感知区域的质心点位于其对称轴上且与圆心距离为2Rsin/3.每个传感器节点有且仅有一个质心点与其对应.我们用c表示传感器节点v所对应的质心点.本文将有向传感器网络覆盖增强问题转化为利用传统虚拟势场方法可解的质心点均匀分布问题,如图4所示.

Fig.3 Moving models of sensor node
图3 传感器节点的运动模型

Fig.4 The issue description of coverage enhancement in directional sensor networks
图4 有向传感器网络覆盖增强问题描述
2.2.1 受力分析
利用虚拟势场方法增强有向传感器网络覆盖,可以近似等价于质心点-质心点(c-c)之间虚拟力作用问题.我们假设质心点-质心点之间存在斥力,在斥力作用下,相邻质心点逐步扩散开来,在降低冗余覆盖的同时,逐渐实现整个监测区域的充分高效覆盖,最终增强有向传感器网络的覆盖性能.在虚拟势场作用下,质心点受来自相邻一个或多个质心点的斥力作用.下面给出质心点受力的计算方法.
如图5所示,dij表示传感器节点vi与vj之间的欧氏距离.只有当dij小于传感器节点传感半径(R)的2倍时,它们的感知区域才存在重叠的可能,故它们之间才存在产生斥力的作用,该斥力作用于传感器节点相应的质心点ci和cj上.
定义2. 有向传感器网络中,欧氏距离不大于节点传感半径(R)2倍的一对节点互为邻居节点.节点vi的邻居节点集合记作i.即i={vj|Dis(vi,vj)2R,ij}.
我们定义质心点vj对质心点vi的斥力模型 ,见公式(5).
(5)
其中,Dij表示质心点ci和cj之间的欧氏距离;kR表示斥力系数(常数,本文取kR=1);ij为单位向量,指示斥力方向(由质心点cj指向ci).公式(5)表明,只有当传感器节点vi和vj互为邻居节点时(即有可能形成冗余覆盖时),其相应的质心点ci和cj之间才存在斥力作用.质心点所受斥力大小与ci和cj之间的欧氏距离成反比,而质心点所受斥力方向由ci和cj之间的相互位置关系所决定.
质心点ci所受合力是其受到相邻k个质心点排斥力的矢量和.公式(6)描述质心点ci所受合力模型 .
(6)
通过如图6所示的实例,我们分析质心点的受力情况.图中包括4个传感器节点:v1,v2,v3和v4,其相应的质心
点分别为c1,c2,c3和c4.以质心点c1为例,由于d122R,故 ,质心点c1仅受到来自质心点c3和c4的斥力,其所受合力 .传感器节点传感方向旋转导致质心点的运动轨迹并不是任意的,而是固定绕传感器节点作圆周运动.因此,质心点的运动仅仅受合力沿圆周切线方向分量 的影响.

Fig.6 The force on centroid
图6 质心点受力
2.2.2 控制规则(control law)
本文基于一个虚拟物理世界研究质心点运动问题,其中作用力、质心点等都是虚拟的.该虚拟物理世界的构建是建立在求解问题特征的基础上的.在此,我们定义控制规则,即规定质心点受力与运动之间的关系,以达到质心点的均匀分布.
质心点在 作用下运动,受到运动学和动力学的双重约束,具体表现如下:
(1) 运动学约束
在传统传感器网络中利用虚拟势场方法移动传感器节点的情况下,由于传感器节点向任意方向运动的概率是等同的,我们大都忽略其所受的运动学约束[8].而在转动模型中,质心点的运动不是任意方向的,受合力沿圆
周切线方向分量 的影响,只能绕其传感器节点作圆周运动.
质心点在运动过程中受到的虚拟力是变化的,但对传感器网络系统来说,传感器节点之间每时每刻都交换邻居节点位置及传感方向信息是不现实的.因此,我们设定邻居节点间每隔时间步长t交换一次位置及传感方向信息,根据交换信息计算当前时间步长质心点所受合力,得出转动方向及弧长.同时,问题求解的目的在于将节点的传感方向调整至一个合适的位置.在此,我们不考虑速度和加速度与转动弧长之间的关系.
(2) 动力学约束
动力学约束研究受力与运动之间的关系.本运动模型中的动力学约束主要包含两方面内容:
• 每个时间步长t内,质心点所受合力与转动方向及弧长之间的关系;
• 质心点运动的静止条件.
在传统传感器网络中利用虚拟势场方法移动传感器节点的情况下,在每个时间步长内,传感器节点的运动速度受限于最大运动速度vmax,而不是随传感器节点受力无止境地增加.通过此举保证微调方法的快速收敛.在本转动模型中,我们同样假设质心点每次固定以较小的转动角度进行转动,通过多次微调方法逐步趋向最优解,即在每个时间步长t内,质心点转动的方向沿所受合力在圆周切线方向分量,转动大小不是任意的,而是具有固定转动角度.采用上述方法的原因有两个:
• 运动过程中,质心点受力不断变化,且变化规律很难用简单的函数进行表示,加之上述运动学约束和问题特征等因素影响,我们很难得出一个简明而合理的质心点所受合力与转动弧长之间的关系.
• 运动过程中,质心点按固定角度进行转动,有利于简化计算过程,减少节点的计算负担.同时,我们通过分析仿真实验数据发现,该方法具有较为理想的收敛性(具体讨论参见第3.2节).
固定转动角度取值不同对PFCEA算法性能具有较大的影响,这在第3.3节中将加以详细的分析和说明.
当质心点所受合力沿圆周切线方向分量为0时,其到达理想位置转动停止.如图7所示,我们假定质心点在圆周上O点处合力切向分量为0.由于质心点按固定转动角度进行转动,因此,它
未必会刚好转动到O点处.当质心点处于图7中弧 或 时,会
因合力切向分量不为0而导致质心点围绕O点附近往复振动.因此,为避免出现振动现象,加速质心点达到稳定状态,我们需要进一步限定质心点运动的停止条件.
当质心点围绕O点附近往复振动时,其受合力的切向分量很
小.因此,我们设定受力门限,当 (本文取=10e6),即可认
定质心点已达到稳定状态,无须再运动.经过数个时间步长t后,当网络中所有质心点达到稳定状态时,整个传感器网络即达到稳定状态,此时对应的一组 ,该
组解通常为本文覆盖增强的较优解.
2.3 算法描述
基于上述分析,本文提出了基于虚拟势场的网络覆盖增强算法(PFCEA),该算法是一个分布式算法,在每个传感器节点上并发执行.PFCEA算法描述如下:
输入:节点vi及其邻居节点的位置和传感方向信息.
输出:节点vi最终的传感方向信息 .
1. t0; //初始化时间步长计数器
2. 计算节点vi相应质心点ci初始位置 ;
3. 计算节点vi邻居节点集合i,M表示邻居节点集合中元素数目;
4. While (1)
4.1 tt+1;
4.2 ;
4.3 For (j=0; j<M; j++)
4.3.1 计算质心点cj对ci的当前斥力 ,其中,vji;
4.3.2 ;
4.4 计算质心点ci当前所受合力 沿圆周切线分量 ;
4.5 确定质心点ci运动方向;
4.6 If ( ) Then
4.6.1 质心点ci沿 方向转动固定角度;
4.6.2 调整质心点ci至新位置 ;
4.6.3 计算节点vj指向当前质心点ci向量并单位化,得到节点vi最终的传感方向信息 ;
4.7 Sleep (t);
5. End.
3 算法仿真与性能分析
我们利用VC6.0自行开发了适用于传感器网络部署及覆盖研究的仿真软件Senetest2.0,并利用该软件进行了大量仿真实验,以验证PFCEA算法的有效性.实验中参数的取值见表1.为简化实验,假设目标区域中所有传感器节点同构,即所有节点的传感半径及传感夹角规格分别相同.
Table 1 Experimental parameters
表1 实验参数
Parameter Variation
Target area S 500500m2
Area coverage p 0~1
Sensor number N 0~250
Sensing radius Rs 0~100m
Sensing offset angel  0º~90º
3.1 实例研究
在本节中,我们通过一个具体实例说明PFCEA算法对有向传感器网络覆盖增强.在500500m2的目标区域内,我们部署传感半径R=60m、传感夹角=45º的传感器节点完成场景监测.若达到预期的网络覆盖率p=70%, 通过公式(1),我们可预先估算出所需部署的传感器节点数目,
.
针对上述实例,我们记录了PFCEA算法运行不同时间步长时有向传感器网络覆盖增强情况,如图8所示.

(a) Initial coverage, p0=65.74%
(a) 初始覆盖,p0=65.74% (b) The 10th time step, p10=76.03%
(b) 第10个时间步长,p10=76.03%

(c) The 20th time step, p20=80.20%
(c) 第20个时间步长,p20=80.20% (d) The 30th time step, p30=81.45%
(d) 第30个时间步长,p30=81.45%
Fig.8 Coverage enhancement using PFCEA algorithm
图8 PFCEA算法实现覆盖增强
直观看来,质心点在虚拟斥力作用下进行扩散运动,逐步消除网络中感知重叠区和盲区,最终实现有向传感器网络覆盖增强.此例中,网络传感器节点分别经过30个时间步长的调整,网络覆盖率由最初的65.74%提高到81.45%,网络覆盖增强达15.71个百分点.
图9显示了逐个时间步长调整所带来的网络覆盖增强.我们发现,随着时间步长的增加,网络覆盖率也不断增加,且近似满足指数关系.当时间步长达到30次以后,网络中绝大多数节点的传感方向出现振动现象,直观表现为网络覆盖率在81.20%附近在允许的范围振荡.此时,我们认定有向传感器网络覆盖性能近似增强至最优.
网络覆盖性能可以显着地降低网络部署成本.实例通过节点传感方向的自调整,在仅仅部署105个传感器节点的情况下,最终获得81.45%的网络覆盖率.若预期的网络覆盖率为81.45%,通过公式(1)的计算可知,我们至少需要部署148个传感器节点.由此可见,利用PFCEA算法实现网络覆盖增强的直接效果是可以节省近43个传感器节点,极大地降低了网络部署成本.
3.2 收敛性分析
为了讨论本文算法的收敛性,我们针对4种不同的网络节点规模进行多组实验.我们针对各网络节点规模随机生成10个拓扑结构,分别计算算法收敛次数,并取平均值,实验数据见表2.其他实验参数为R=60m,=45º, =5º.
Table 2 Experimental data for convergence analysis
表2 实验数据收敛性分析

(%)
(%)

1 50 41.28 52.73 24
2 70 52.74 64.98 21
3 90 60.76 73.24 28
4 110 65.58 78.02 27
分析上述实验数据,我们可以得出,PFCEA算法的收敛性即调整的次数,并不随传感器网络节点规模的变化而发生显着的改变,其取值一般维持在[20,30]范围内.由此可见,本文PFCEA算法具有较好的收敛性,可以在较短的时间步长内完成有向传感器网络的覆盖增强过程.
3.3 仿真分析
在本节中,我们通过一系列仿真实验来说明4个主要参数对本文PFCEA算法性能的影响.它们分别是:节点规模N、传感半径R、传感夹角和(质心点)转动角度.针对前3个参数,我们与以往研究的一种集中式覆盖增强算法[14]进行性能分析和比较.
A. 节点规模N、传感半径R以及传感角度
我们分别取不同节点规模进行仿真实验.从图10(a)变化曲线可以看出,当R和一定时,N取值较小导致网络初始覆盖率较小.此时,随着N的增大,p取值呈现持续上升趋势.当N=200时,网络覆盖率增强可达14.40个百分点.此后,p取值有所下降.这是由于当节点规模N增加导致网络初始覆盖率较高时(如60%),相邻多传感器节点间形成覆盖盲区的概率大为降低,无疑削弱了PFCEA算法的性能.另外,部分传感器节点落入边界区域,也会间接起到削弱PFCEA算法性能的作用.
另外,传感半径、传感角度对PFCEA算法性能的影响与此类似.当节点规模一定时,节点传感半径或传感角度取值越小,单个节点的覆盖区域越小,各相邻节点间形成感知重叠区域的可能性也就越小.此时,PFCEA算法对网络覆盖性能改善并不显着.随着传感半径或传感角度的增加,p不断增加.当R=70m且=45º时,网络覆盖率最高可提升15.91%.但随着传感半径或传感角度取值的不断增加,PFCEA算法带来的网络覆盖效果降低,如图10(b)、图10(c)所示.

(c) The effect of sensing offset angle , other parameters meet N=100, R=40m, =5º
(c) 传感角度的影响,其他实验参数满足:N=100,R=40m,=5º

⑤ 无线传感器网络面临的挑战有哪些

无线通信和低功耗嵌入式技术的飞速发展,孕育出无线传感器网络(Wireless Sensor Networks, WSN),并以其低功耗、低成本、分布式和自组织的特点带来了信息感知的一场变革,无线传感器网络是由部署在监测区域内大量的廉价微型传感器节点,通过无线通信方式形成的一个多跳自组织网络。

信息安全
很显然,现有的传感节点具有很大的安全漏洞,攻击者通过此漏洞,可方便地获取传感节点中的机密信息、修改传感节点中的程序代码,如使得传感节点具有多个身份ID,从而以多个身份在传感器网络中进行通信,另外,攻击还可以通过获取存储在传感节点中的密钥、代码等信息进行,从而伪造或伪装成合法节点加入到传感网络中。一旦控制了传感器网络中的一部分节点后,攻击者就可以发动很多种攻击,如监听传感器网络中传输的信息,向传感器网络中发布假的路由信息或传送假的传感信息、进行拒绝服务攻击等。
对策:由于传感节点容易被物理操纵是传感器网络不可回避的安全问题,必须通过其它的技术方案来提高传感器网络的安全性能。如在通信前进行节点与节点的身份认证;设计新的密钥协商方案,使得即使有一小部分节点被操纵后,攻击者也不能或很难从获取的节点信息推导出其它节点的密钥信息等。另外,还可以通过对传感节点软件的合法性进行认证等措施来提高节点本身的安全性能。
根据无线传播和网络部署特点,攻击者很容易通过节点间的传输而获得敏感或者私有的信息,如:在使用WSN监控室内温度和灯光的场景中,部署在室外的无线接收器可以获取室内传感器发送过来的温度和灯光信息;同样攻击者通过监听室内和室外节点间信息的传输,也可以获知室内信息,从而非法获取出房屋主人的生活习惯等私密信息。[6]
对策:对传输信息加密可以解决窃听问题,但需要一个灵活、强健的密钥交换和管理方案,密钥管理方案必须容易部署而且适合传感节点资源有限的特点,另外,密钥管理方案还必须保证当部分节点被操纵后(这样,攻击者就可以获取存储在这个节点中的生成会话密钥的信息),不会破坏整个网络的安全性。由于传感节点的内存资源有限,使得在传感器网络中实现大多数节点间端到端安全不切实际。然而在传感器网络中可以实现跳-跳之间的信息的加密,这样传感节点只要与邻居节点共享密钥就可以了。在这种情况下,即使攻击者捕获了一个通信节点,也只是影响相邻节点间的安全。但当攻击者通过操纵节点发送虚假路由消息,就会影响整个网络的路由拓扑。解决这种问题的办法是具有鲁棒性的路由协议,另外一种方法是多路径路由,通过多个路径传输部分信息,并在目的地进行重组。
传感器网络是用于收集信息作为主要目的的,攻击者可以通过窃听、加入伪造的非法节点等方式获取这些敏感信息,如果攻击者知道怎样从多路信息中获取有限信息的相关算法,那么攻击者就可以通过大量获取的信息导出有效信息。一般传感器中的私有性问题,并不是通过传感器网络去获取不大可能收集到的信息,而是攻击者通过远程监听WSN,从而获得大量的信息,并根据特定算法分析出其中的私有性问题。因此攻击者并不需要物理接触传感节点,是一种低风险、匿名的获得私有信息方式。远程监听还可以使单个攻击者同时获取多个节点的传输的信息。
对策:保证网络中的传感信息只有可信实体才可以访问是保证私有性问题的最好方法,这可通过数据加密和访问控制来实现;另外一种方法是限制网络所发送信息的粒度,因为信息越详细,越有可能泄露私有性,比如,一个簇节点可以通过对从相邻节点接收到的大量信息进行汇集处理,并只传送处理结果,从而达到数据匿名化。
拒绝服务攻击(DoS)
专门的拓扑维护技术研究还比较少,但相关研究结果表明优化的拓扑维护能有效地节省能量并延长网络生命周期,同时保持网络的基本属性覆盖或连通。本节中,根据拓扑维护决策器所选维护策略

在无线传感器网络的研究中,能效问题一直是热点问题。当前的处理器以及无线传输装置依然存在向微型化发展的空间,但在无线网络中需要数量更多的传感器,种类也要求多样化,将它们进行链接,这样会导致耗电量的加大。如何提高网络性能,延长其使用寿命,将不准确性误差控制在最小将是下一步研究的问题。
采集与管理数据

在今后,无线传感器网络接收的数据量将会越来越大,但是当前的使用模式对于数量庞大的数据的管理和使用能力有限。如何进一步加快其时空数据处理和管理的能力,开发出新的模式将是非常有必要的。
无线通讯的标准问题

标准的不统一会给无线传感器网络的发展带来障碍,在接下来的发展中,要开发出无线通讯标准。

⑥ 论文:无线传感器网络系统仿真技术 实时视频采集技术及其应用

无线传感器网络研究

摘 要
传感器网络是通过微型传感器之间的相互协作,实现对目标区域的高效监测。随着传感器网络的发展,它将会对未来的生活和军事带来巨大的影响,同时,传感器网络受到传感器节点的计算能力,存储能力,通信带宽,能源的限制,存在很多技术难点。因此,传感器网络是一项极具挑战性的技术。
本文从理论出发,涉及了无线传感器网络中两个热点问题——路由算法和融合操作。文章对目前流行的路由算法进行分析比较,在此基础上提出了贪婪-扩散路由算法;另外,从理论上研究了无线传感器网络中的三种数据缓存机制以及SQL操作的实现过程。
研究最后在tinyos平台实现了无线传感器网络的贪婪—扩散路由算法和AVE, MIN, MAX三种SQL融合操作,并在tossim模拟器上对网络运行情况进行模拟,结果表明结合简单融合操作的贪婪-扩散路由算法的路由健壮性较强,数据流量较小。

关键字:无线传感器网络,DD算法,RR结构,贪婪-扩散,SQL操作

目 录
摘 要 1
ABSTRACT 2
第1章 前 言 5
1.1 片上多处理器的意义 5
1.2 片上多处理器的研究现状 5
1.3 传感器网络的研究意义 6
1.3.1 传感器网络的应用 6
1.3.2 研究传感器网络的必要性 7
1.4 论文组织 8
1.5 加快经费扩大司法 8
第2章 传感器网络的整体分析 9
2.1 传感器网络的基本概念 9
2.1.1 传感器节点的组成及工作方式 10
2.1.2 Wsns的工作原理 11
2.1.3 Wsns中的重点问题 12
2.2 Wsns的特点及协议栈 13
2.2.1 Wsns的特点 13
2.2.2 Wsns的协议栈 13
2.3 Wsns的关键技术 15
第3章 贪婪-扩散算法的提出 16
3.1 Wsns中路由协议的基本理论 17
3.2 路由算法 18
3.2.1 扩散法 18
3.2.2 SPIN协议 19
3.2.3 LEACH协议 20
3.2.4 DD算法 21
3.3 各路由算法的比较分析 23
3.4 贪婪-扩散算法 24
第4章 融合中的缓存机制和SQL融合操作 27
4.1 数据融合的基本理论 27
4.2 数据缓存机制 30
4.2.1 外部存储和本地存储 30
4.2.2 以数据为中心的存储 31
H(ki)=RR j 32
4.3 SQL融合操作 33
第5章 贪婪-扩散算法与SQL操作的实现 36
5.1 各功能模块的设计 36
5.1.1 数据模型 36
5.1.2 贪婪-扩散算法的设计 36
5.1.3 扩散法的设计 38
5.1.4 SQL操作的设计 38
5.1.5 测试程序的设计 39
5.2 逻辑原理图 40
5.3 开发工具介绍 41
5.4 主要功能模块的具体实现 43
5.4.1 数据的收发模块 43
5.4.2 Broad配件 46
5.4.3 路由模块 48
5.4.4 SQL融合模块 54
5.5 模拟结果 56
第6章 结论及展望 59
6.1 结论 59
6.2 未来的展望 59
致 谢 61
参考文献 62

⑦ 无线传感器网络 ns2仿真

随着无线通信技术、低功耗处理器和芯片集成工艺的飞速发展,无线传感器网络应运而生了。由于其成本低、适应性强,功能强大等特点,无线传感器网络(WSNs)在军事、环保、生产、医药和智能空间等领域都具有广阔的应用前景,其通信协议研究面临许多新的挑战。本文着重分析了路由协议和MAC协议两大网络协议的分类,并提出未来的研究方向。

关键词:无线传感器网络,通信协议,路由协议,MAC协议

已经发送了.......

⑧ 传感器的发展中,无线传感器网络的发展分为哪些阶段

无线传感器

无线传感器的组成模块封装在一个外壳内,在工作时它将由电池或振动发电机提供电源,构成无线传感器网络节点。它可以采集设备的数字信号通过无线传感器网络传输到监控中心的无线网关,直接送入计算机,进行分析处理。如果需要,无线传感器也可以实时传输采集的整个时间历程信号。

发展历程

早在上世纪70年代,就出现了将传统传感器采用点对点传输、连接传感控制器而构成传感器网络雏形,我们把它归之为第一代传感器网络。随着相关学科的的不断发展和进步,传感器网络同时还具有了获取多种信息信号的综合处理能力,并通过与传感控制器的相联,组成了有信息综合和处理能力的传感器网络,这是第二代传感器网络。而从上世纪末开始,现场总线技术开始应用于传感器网络,人们用其组建智能化传感器网络,大量多功能传感器被运用,并使用无线技术连接CONTROLENGINEERING China版权所有,无线传感器网络逐渐形成。

无线传感器网络是新一代的传感器网络,具有非常广泛的应用前景,其发展和应用,将会给人类的生活和生产的各个领域带来深远影响。发达国家如美国,非常重视无线传感器网络的发展CONTROLENGINEERING China版权所有,IEEE正在努力推进无线传感器网络的应用和发展,波士顿大学(BostonUnversity)还于最近创办了传感器网络协会(Sensor Network Consortium),期望能促进传感器联网技术开发。除了波士顿大学,该协会还包括BP、霍尼韦尔(Honeywell)、Inetco Systems、Invensys、L-3Communications、Millennial Net、Radianse、Sensicast Systems及Textron Systems。美国的《技术评论》杂志在论述未来新兴十大技术时,更是将无线传感器网络列为第一项未来新兴技术,《商业周刊》预测的未来四大新技术中,无线传感器网络也列入其中。可以预计,无线传感器网络的广泛是一种必然趋势,它的出现将会给人类社会带来极大的变革。

应用现状

虽然无线传感器网络的大规模商业应用CONTROLENGINEERING China版权所有,由于技术等方面的制约还有待时日,但是最近几年,随着计算成本的下降以及微处理器体积越来越小,已经为数不少的无线传感器网络开始投入使用。目前无线传感器网络的应用主要集中在以下领域:

1 环境的监测和保护

随着人们对于环境问题的关注程度越来越高,需要采集的环境数据也越来越多,无线传感器网络的出现为随机性的研究数据获取提供了便利,并且还可以避免传统数据收集方式给环境带来的侵入式破坏。比如,英特尔研究实验室研究人员曾经将32个小型传感器连进互联网,以读出缅因州"大鸭岛"上的气候,用来评价一种海燕巢的条件。无线传感器网络还可以跟踪候鸟和昆虫的迁移,研究环境变化对农作物的影响,监测海洋、大气和土壤的成分等。此外,它也可以应用在精细农业中控制工程网版权所有,来监测农作物中的害虫、土壤的酸碱度和施肥状况等。

2 医疗护理

无线传感器网络在医疗研究、护理领域也可以大展身手。

⑨ 无线传感器国内外研究现状请高人指点,谢谢

更小、更廉价的低功耗计算设备代表的“后 PC 时代”冲破了传统台式计算机和高性能服务器的设计模式;普遍的网络化带来的计算处理能力是难以估量的;微机电系统(micro-electro-mechanism system,简称 MEMS)的迅速发展奠定了设计和实现片上系统(system on chip,简称 SOC)的基础.以上 3 方面的高度集成又孕育出了许多新的信息获取和处理模式,传感器网络就是其中一例.随机分布的集成有传感器、 数据处理单元和通信模块的微小节点通过自组织的方式构成网络,借助于节点中内置的形式多样的传感器测量所在周边环境中的热、红外、声纳、雷达和地震波信号,从而探测包括温度、湿度、噪声、光强度、压力、土壤成分、移动物体的大小、速度和方向等众多我们感兴趣的物质现象.在通信方式上,虽然可以采用有线、无线、红外和光等多种形式,但一般认为短距离的无线低功率通信技术最适合传感器网络使用,为明确起见,一般称作无线传感器网络.但也不绝对,Berkeley 的 Smart Dust因为可以像尘埃一样悬浮在空中,有效地避免了障碍物的遮挡,因此采用光作为通信介质. 无线传感器网络与传统的无线网络(如 WLAN 和蜂窝移动电话网络)有着不同的设计目标,后者在高度移动的环境中通过优化路由和资源管理策略最大化带宽的利用率,同时为用户提供一定的服务质量保证.在无线传感器网络中,除了少数节点需要移动以外,大部分节点都是静止的.因为它们通常运行在人无法接近的恶劣甚至危险的远程环境中,能源无法替代,设计有效的策略延长网络的生命周期成为无线传感器网络的核心问题.当然,从理论上讲,太阳能电池能持久地补给能源,但工程实践中生产这种微型化的电池还有相当的难度.在无线传感器网络的研究初期,人们一度认为成熟的Internet技术加上Ad-hoc路由机制对传感器网络的设计是足够充分的,但深入的研究表明:传感器网络有着与传统网络明显不同的技术要求.前者以数据为中心,后者以传输数据为目的.为了适应广泛的应用程序,传统网络的设计遵循着“端到端”的边缘论思想,强调将一切与功能相关
的处理都放在网络的端系统上,中间节点仅仅负责数据分组的转发,对于传感器网络,这未必是一种合理的选择.一些为自组织的 Ad-hoc 网络设计的协议和算法未必适合传感器网络的特点和应用的要求.节点标识(如地址等)的作用在传感器网络中就显得不是十分重要,因为应用程序不怎么关心单节点上的信息;中间节点上与具体应用相关的数据处理、融合和缓存也显得很有必要.在密集性的传感器网络中,相邻节点间的距离非常短,低功耗的多跳通信模式节省功耗,同时增加了通信的隐蔽性,也避免了长距离的无线通信易受外界噪声干扰的影响.这些独特的要求和制约因素为传感器网络的研究提出了新的技术问题.

这是引用软件学报《无线传感器网络》的一段话。
国内做的好的无线传感器网络/物联网:中科院、国防科大、哈工大、西北工业大学等等
国外相当好的:UC Berkeley、mit 、 贝尔实验室、韩国诸多院校、香港科技大学(这个大家都是这么归类的,不是我卖国)等。
提问者可以上中国知网搜EI源刊看一看国内研究现状
再上google学术搜索wsn,如果有条件就直接去sci的搜索平台搜一下研究现状。