当前位置:首页 » 无线网络 » 模拟信号转网络信号电路
扩展阅读
手机内存卡文件恢复软件 2025-06-27 20:57:28

模拟信号转网络信号电路

发布时间: 2022-08-16 01:38:31

‘壹’ 摄像机模拟信号转换为网络信号

变成网络信号后上网线,进交换机,到另一端的视频网络解码器,还原出模拟信号可以实现,此模拟信号可以接DVR,矩阵,上电视墙。

‘贰’ 模拟信号变成数字信号需要哪三个过程

模拟信号数字化有三个基本过程:抽样、量化和编码。

抽样是指用每隔一定时间的信号样值序列来代替原来在时间上连续的信号,也就是在时间上将模拟信号离散化。

量化是用有限个幅度值近似原来连续变化的幅度值,把模拟信号的连续幅度变为有限数量的有一定间隔的离散值。

编码则是按照一定的规律,把量化后的值用二进制数字表示,然后转换成二值或多值的数字信号流。这样得到的数字信号可以通过电缆、微波干线、卫星通道等数字线路传输。在接收端则与上述模拟信号数字化过程相反,再经过后置滤波又恢复成原来的模拟信号。上述数字化的过程又称为脉冲编码调制。

抽样:所谓抽样就是每隔一定的时间间隔T,抽取话音信号的一个瞬时幅度值(抽样值),抽样后所得出的一系列在时间上离散的抽样值称为样值序列。抽样后的样值序列在时间上是离散的,可进行时分多路复用,也可将各个抽样值经过量化、编码变换成二进制数字信号。

量化:量化有两种方式,量化方式中,取整时只舍不入,即0~1伏间的所有输入电压都输出0伏,1~2伏间所有输入电压都输出1伏等。采用这种量化方式,输入电压总是大于输出电压,因此产生的量化误差总是正的,最大量化误差等于两个相邻量化级的间隔Δ。

编码:最简单的编码方式是二进制编码。具体说来,就是用n比特二进制码来表示已经量化了的样值,每个二进制数对应一个量化值,然后把它们排列,得到由二值脉冲组成的数字信息流。除了上述的自然二进制码,还有其他形式的二进制码,如格雷码和折叠二进制码等。

模拟信号和数字信号之间可以相互转换:

模拟信号一般通过PCM脉码调制(Pulse Code Molation)方法量化为数字信号,即让模拟信号的不同幅度分别对应不同的二进制值,例如采用8位编码可将模拟信号量化为2^8=256个量级,实用中常采取24位或30位编码;

数字信号一般通过对载波进行移相(Phase Shift)的方法转换为模拟信号。计算机、计算机局域网与城域网中均使用二进制数字信号,21世纪在计算机广域网中实际传送的则既有二进制数字信号,也有由数字信号转换而得的模拟信号。但是更具应用发展前景的是数字信号。

(2)模拟信号转网络信号电路扩展阅读

数字信号指自变量是离散的、因变量也是离散的信号,这种信号的自变量用整数表示,因变量用有限数字中的一个数字来表示。在计算机中,数字信号的大小常用有限位的二进制数表示。

由于数字信号是用两种物理状态来表示0和1的,故其抵抗材料本身干扰和环境干扰的能力都比模拟信号强很多;在现代技术的信号处理中,数字信号发挥的作用越来越大,几乎复杂的信号处理都离不开数字信号;或者说,只要能把解决问题的方法用数学公式表示,就能用计算机来处理代表物理量的数字信号。

模拟信号与数字信号的区别联系:不同的数据必须转换为相应的信号才能进行传输。

模拟数据(模拟量)一般采用模拟信号(Analog Signal),例如用一系列连续变化的电磁波(如无线电与电视广播中的电磁波),或电压信号(如电话传输中的音频电压信号)来表示;

数字数据(数字量)则采用数字信号(Digital Signal),例如用一系列断续变化的电压脉冲(如我们可用恒定的正电压表示二进制数1,用恒定的负电压表示二进制数0),或光脉冲来表示。

当模拟信号采用连续变化的电磁波来表示时,电磁波本身既是信号载体,同时作为传输介质;而当模拟信号采用连续变化的信号电压来表示时,它一般通过传统的模拟信号传输线路(例如电话网、有线电视网)来传输。

当数字信号采用断续变化的电压或光脉冲来表示时,一般则需要用双绞线、电缆或光纤介质将通信双方连接起来,才能将信号从一个节点传到另一个节点。

‘叁’ 将模拟信号转换成数字信号的电路称为

根据不同的实现原理可分为如下几种:1、双积分式A/D转换器 2、逐次逼近式A/D转换器 3、并行比较式A/D转换器等等 。 但是总的都是叫 A/D转换器

‘肆’ 模拟视频信号转换为网络视频信号的具体链接电路

用视频采辑卡

‘伍’ 电信号是如何转换为数字信号的,具体的电路实现需要哪些器件

电信号转换为数字信号过程:

网卡驱动从IP模块获取包之后,会将其复制到网卡内的缓冲区中,然后向MAC模块发送发送包的命令。接下来就轮到MAC模块进行工作了。首先,MAC模块会将包从缓冲区中取出,并在开头加上报头和起始帧分界符,在末尾加上用于检测错误的帧校验序列。

报头是一串像10101010这样1和0交替出现的比特序列,长度为56比特,它的作用是确定包的读取时机。当这些1010的比特序列被转换成电信号后,会形成波形,接收方在收到信号时,遇到这样的波形就可以判断读取数据的时机。

实际中遇到的信号大多为模拟信号,这些在时间和幅度上都连续变化的信号利用含有源电路和无源电路元件的电网络进行处理。这种途径称为模拟信号处理,例如无线电和电视接收机就属于这一类。

它们能够利用加法器,乘法器和逻辑元件的数字硬件或专用微处理器进行处理。然而需要将模拟信号转换成一种适合于数字硬件的某种形式,这种形式的信号称为数字信号。这种信号在时间的特定时刻取有限个数值中的一个,所以能用二进制数(或比特)来表示。

具体的电路实现需要A/D转换器,或简称ADC,通常是指一个将模拟信号转变为数字信号的电子元件。通常的模数转换器是将一个输入电压信号转换为一个输出的数字信号。

(5)模拟信号转网络信号电路扩展阅读:

对于一般的模拟信号,其时域与频域波形均为连续无限长,而若要对信号进行数字处理,必须先将模拟信号进行数字化,即变成计算机可以处理的有限长离散的序列。

数字化处理分两步,第一步是时域离散化,即时域采样(CTFT->DTFT),第二步是频域离散化,即频域采样(DTFT->DFT)。

模拟信号首先被等间隔地取样,这时信号在时间上就不再连续了,但在幅度上还是连续的。经过采样处理之后,模拟信号变成了离散时间信号。

(5)模拟信号转网络信号电路扩展阅读:网络-电信号

‘陆’ 模拟信号如何转为数字信号

模拟信号数字化有三个基本过程:

第一个过程是“抽样”,就是以相等的间隔时间来抽取模拟信号的样值,使连续的信号变成离散的信号。

第二个过程叫“量化”,就是把抽取的样值变换为最接近的数字值,表示抽取样值的大小。

第三个过程是“编码”,就是把量化的数值用一组二进制的数码来表示。经过这样三个过程可以完成模拟信号的数字化,这种方法叫作“脉冲编码”。

数字信号传送到接收端后,需要有一个还原的过程,即把收到的数字信号再变回模拟信号,为接收者所能理解。这个过程叫作“数模变换”,使之再现为声音或图像。

(6)模拟信号转网络信号电路扩展阅读

区别联系

(1)模拟信号与数字信号

不同的数据必须转换为相应的信号才能进行传输:模拟数据(模拟量)一般采用模拟信号(Analog Signal),例如用一系列连续变化的电磁波(如无线电与电视广播中的电磁波),或电压信号(如电话传输中的音频电压信号)来表示。

数字数据(数字量)则采用数字信号(Digital Signal),例如用一系列断续变化的电压脉冲(如我们可用恒定的正电压表示二进制数1,用恒定的负电压表示二进制数0),或光脉冲来表示。

当模拟信号采用连续变化的电磁波来表示时,电磁波本身既是信号载体,同时作为传输介质;而当模拟信号采用连续变化的信号电压来表示时,它一般通过传统的模拟信号传输线路(例如电话网、有线电视网)来传输。

当数字信号采用断续变化的电压或光脉冲来表示时,一般则需要用双绞线、电缆或光纤介质将通信双方连接起来,才能将信号从一个节点传到另一个节点。

(2)模拟信号与数字信号之间的相互转换

模拟信号和数字信号之间可以相互转换:模拟信号一般通过PCM脉码调制(Pulse Code Molation)方法量化为数字信号,即让模拟信号的不同幅度分别对应不同的二进制值,例如采用8位编码可将模拟信号量化为2^8=256个量级,实用中常采取24位或30位编码;数字信号一般通过对载波进行移相(Phase Shift)的方法转换为模拟信号。

计算机、计算机局域网与城域网中均使用二进制数字信号,21世纪在计算机广域网中实际传送的则既有二进制数字信号,也有由数字信号转换而得的模拟信号。但是更具应用发展前景的是数字信号。

‘柒’ 怎样将模拟信号转化为数字信号,并输入到电脑中

计算机网络中模拟信号转数字信号是要用到调制解调器。调制解调器是一种计算机硬件,它能把计算机的数字信号翻译成可沿普通电话线传送的模拟信号,而这些模拟信号又可被线路另一端的另一个调制解调器接收,并译成计算机可懂的语言。这一简单过程完成了两台计算机间的通信。

【知识拓展】

把计算机收到的模拟信号转化为数字信号的过程,称为调制。

调制技术是把基带信号变换成传输信号的技术。它将模拟信号抽样量化后,以二进制数字信号“1”或“0”对光载波进行通断调制,并进行脉冲编码(PCM)。数字调制的优点是抗干扰能力强,中继时噪声及色散的影响不积累,因此可实现长距离传输。它的缺点是需要较宽的频带,设备也复杂。

被调制信号调制过的高频电振荡称为已调波或已调信号。已调信号通过信道传送到接收端,在接收端经解调后恢复成原始基带信号。解调是调制的反变换,是从已调波中提取调制信号的过程。在无线电通信中常采用双重调制。第一步用数字信号或模拟信号去调制第一个载波(称为副载波)。或在多路通信中用调制技术实现多路复用(频分多路复用和时分多路复用)。第二步用已调副载波或多路复用信号再调制一个公共载波,以便进行无线电传输。第二步调制称为二次调制。用基带信号调制高频载波,在无线电传输中可以减小天线尺寸,并便于远距离传输。应用调制技术,还能提高信号的抗干扰能力。

‘捌’ 模拟监控如何向网络监控转变

1.监控摄像机的转变

作为监控的最前端,网络模拟摄像机和网络摄像机是两类有很大区别的监控摄像设备。因此常规的转换方法是将现有的模拟的监控设备转换为网络设备--这是一种最简单的方法,但是与之相对应的是高昂的费用支出。

不过,模拟监控和网络监控未必就一定不可以实现共存,在一些监控系统的应用中,用户采用数字编码器将画面从模拟信号转换为数字信号进行传输和存储。然后将机房的控制设备换成网络设备,便可以进行对模拟摄像机的控制。当然上面提到的两种方法都是建立在高支出的基础上完成的。而对于一些财力不是很充沛的用户,可以在保持现有设备不发生整体变动的情况下,通过对于后端控制设备的调整而进行模拟与网络的兼容,这里我们将在后面的内容中做详细的介绍。

2.传输线路的调整

相比于传统的模拟监控,网络监控在线路上有着更多的便利。如果采用无线网络监控的模式,甚至更可以省去线路搭建的繁重工作。而在网络与模拟的过渡阶段。用户可以通过光纤将网络信号和模拟信号融为一体进行有效的传输,避免因介质,发射机和接受装置过多而造成的数据传输的混乱。以更安全,更少干扰,环境更简洁的环境下完成工作。

此外,在采用了共存计划之后,多插头,可设定地址,可编程的电源供应设备也可以在这种环境下发挥出更多的作用。

3.对于存储终端的挑战

目前,对于视频监控领域来说,系统后端的发展显然要比中前端更加的完善,而存储环节就是很好的证明。在传统的模拟监控系统中,DVR的存储功能就已经得到了大家的认可,而随着网络存储的诞生,它的这种优势则得到了更加广泛的扩展。再加上云计算技术的支持,可以说存储技术是视频监控由模拟向网络转换中发展最为迅速的一个环节。

但是,网络本身的弊端也在影响着视频监控网络化的发展步伐。比如,我们如何保障我们在网络存储工具中信息的安全?在存储出现故障时,我们如何能够更多的减轻我们的损失?或者,我们如何规划我们的存储数据的保存需求,还需在今后的技术发展中去着力面对。

4.控制终端需求的满足

此前我们提到过,在模拟向网络转换的过程中,最常见的方式是将新的控制设备来代替原有的及设备。虽然这是一种比较有效的方式,但是它的投入同样庞大。因此,为了减轻投入成本,不少的用户采用了兼容共存的方式。即将系统键盘与VMS进行连接,从而避免了对系统中模拟部分造成的影响。这是因为VMS能够实现与模拟矩阵切换器和网络摄像机实现直接的对接。从而可以保证二者工作中的互不干扰。

这种系统的搭建模式可以在摄像终端,控制平台和布线等条件都不做改变的情况下,使模拟系统与网络系统实现很好的共融。以至于用户只需通过增加网络摄像机,数字监控和VMS设备就可以解决IP监控的问题。

在当前模拟监控已经应用十分广泛的情况下,网络监控的转型确实不是一件容易的事情。无论在投入还是系统上,都要做出很大的改变。不过,随着网络功能的日益广泛,监控系统应用中对网络依赖的逐渐加大。这样的转型终究会给用户带来更多的便利。

‘玖’ 模拟信号转化为数字信号的原理

数字信号和模拟信号

如何降低数字信号和模拟信号间的相互干扰呢?在设计之前必须了解电磁兼容(EMC)的两个基本原则:第一个原则是尽可能减小电流环路的面积;第二个原则是系统只采用一个参考面。相反,如果系统存在两个参考面,就可能形成一个偶极天线(注:小型偶极天线的辐射大小与线的长度、流过的电流大小以及频率成正比);而如果信号不能通过尽可能小的环路返回,就可能形成一个大的环状天线(注:小型环状天线的辐射大小与环路面积、流过环路的电流大小以及频率的平方成正比)。在设计中要尽可能避免这两种情况。
有人建议将混合信号电路板上的数字地和模拟地分割开,这样能实现数字地和模拟地之间的隔离。尽管这种方法可行,但是存在很多潜在的问题,在复杂的大型系统中问题尤其突出。最关键的问题是不能跨越分割间隙布线,一旦跨越了分割间隙布线,电磁辐射和信号串扰都会急剧增加。在PCB设计中最常见的问题就是信号线跨越分割地或电源而产生EMI问题。
如图1所示,我们采用上述分割方法,而且信号线跨越了两个地之间的间隙,信号电流的返回路径是什么呢?假定被分割的两个地在某处连接在一起(通常情况下是在某个位置单点连接),在这种情况下,地电流将会形成一个大的环路。流经大环路的高频电流会产生辐射和很高的地电感,如果流过大环路的是低电平模拟电流,该电流很容易受到外部信号干扰。最糟糕的是当把分割地在电源处连接在一起时,将形成一个非常大的电流环路。另外,模拟地和数字地通过一个长导线连接在一起会构成偶极天线。

了解电流回流到地的路径和方式是优化混合信号电路板设计的关键。许多设计工程师仅仅考虑信号电流从哪儿流过,而忽略了电流的具体路径。如果必须对地线层进行分割,而且必须通过分割之间的间隙布线,可以先在被分割的地之间进行单点连接,形成两个地之间的连接桥,然后通过该连接桥布线。这样,在每一个信号线的下方都能够提供一个直接的电流回流路径,从而使形成的环路面积很小。
采用光隔离器件或变压器也能实现信号跨越分割间隙。对于前者,跨越分割间隙的是光信号;在采用变压器的情况下,跨越分割间隙的是磁场。还有一种可行的办法是采用差分信号:信号从一条线流入从另外一条信号线返回,这种情况下,不需要地作为回流路径。
要深入探讨数字信号对模拟信号的干扰必须先了解高频电流的特性。高频电流总是选择阻抗最小(电感最低),直接位于信号下方的路径,因此返回电流会流过邻近的电路层,而无论这个临近层是电源层还是地线层。 在实际工作中一般倾向于使用统一地,而将PCB分区为模拟部分和数字部分。模拟信号在电路板所有层的模拟区内布线,而数字信号在数字电路区内布线。在这种情况下,数字信号返回电流不会流入到模拟信号的地。
只有将数字信号布线在电路板的模拟部分之上或者将模拟信号布线在电路板的数字部分之上时,才会出现数字信号对模拟信号的干扰。出现这种问题并不是因为没有分割地,真正的原因是数字信号的布线不适当。 PCB设计采用统一地,通过数字电路和模拟电路分区以及合适的信号布线,通常可以解决一些比较困难的布局布线问题,同时也不会产生因地分割带来的一些潜在的麻烦。在这种情况下,元器件的布局和分区就成为决定设计优劣的关键。如果布局布线合理,数字地电流将限制在电路板的数字部分,不会干扰模拟信号。对于这样的布线必须仔细地检查和核对,要保证百分之百遵守布线规则。否则,一条信号线走线不当就会彻底破坏一个本来非常不错的电路板。
在将A/D转换器的模拟地和数字地管脚连接在一起时,大多数的A/D转换器厂商会建议:将AGND和DGND管脚通过最短的引线连接到同一个低阻抗的地上(注:因为大多数A/D转换器芯片内部没有将模拟地和数字地连接在一起,必须通过外部管脚实现模拟和数字地的连接),任何与DGND连接的外部阻抗都会通过寄生电容将更多的数字噪声耦合到IC内部的模拟电路上。按照这个建议,需要把A/D转换器的AGND和DGND管脚都连接到模拟地上,但这种方法会产生诸如数字信号去耦电容的接地端应该接到模拟地还是数字地的问题。
如果系统仅有一个A/D转换器,上面的问题就很容易解决。如图3中所示,将地分割开,在A/D转换器下面把模拟地和数字地部分连接在一起。采取该方法时,必须保证两个地之间的连接桥宽度与IC等宽,并且任何信号线都不能跨越分割间隙。
如果系统中A/D转换器较多,例如10个A/D转换器怎样连接呢?如果在每一个A/D转换器的下面都将模拟地和数字地连接在一起,则产生多点相连,模拟地和数字地之间的隔离就毫无意义。而如果不这样连接,就违反了厂商的要求。
最好的办法是开始时就用统一地。如图4所示,将统一的地分为模拟部分和数字部分。这样的布局布线既满足了IC器件厂商对模拟地和数字地管脚低阻抗连接的要求,同时又不会形成环路天线或偶极天线而产生EMC问题。
如果对混合信号PCB设计采用统一地的做法心存疑虑,可以采用地线层分割的方法对整个电路板布局布线,在设计时注意尽量使电路板在后边实验时易于用间距小于1/2英寸的跳线或0欧姆电阻将分割地连接在一起。注意分区和布线,确保在所有的层上没有数字信号线位于模拟部分之上,也没有任何模拟信号线位于数字部分之上。而且,任何信号线都不能跨越地间隙或是分割电源之间的间隙。要测试该电路板的功能和EMC性能,然后将两个地通过0欧姆电阻或跳线连接在一起,重新测试该电路板的功能和EMC性能。比较测试结果,会发现几乎在所有的情况下,统一地的方案在功能和EMC性能方面比分割地更优越。

分割地的方法还有用吗?
在以下三种情况可以用到这种方法:一些医疗设备要求在与病人连接的电路和系统之间的漏电流很低;一些工业过程控制设备的输出可能连接到噪声很大而且功率高的机电设备上;另外一种情况就是在PCB的布局受到特定限制时。
在混合信号PCB板上通常有独立的数字和模拟电源,能够而且应该采用分割电源面。但是紧邻电源层的信号线不能跨越电源之间的间隙,而所有跨越该间隙的信号线都必须位于紧邻大面积地的电路层上。在有些情况下,将模拟电源以PCB连接线而不是一个面来设计可以避免电源面的分割问题。

混合信号PCB设计是一个复杂的过程,设计过程要注意以下几点:
1.将PCB分区为独立的模拟部分和数字部分。 2.合适的元器件布局。 3.A/D转换器跨分区放置。 4.不要对地进行分割。在电路板的模拟部分和数字部分下面敷设统一地。 5.在电路板的所有层中,数字信号只能在电路板的数字部分布线。 6.在电路板的所有层中,模拟信号只能在电路板的模拟部分布线。 7.实现模拟和数字电源分割。 8.布线不能跨越分割电源面之间的间隙。 9.必须跨越分割电源之间间隙的信号线要位于紧邻大面积地的布线层上。 10.分析返回地电流实际流过的路径和方式。 11.采用正确的布线规则

模拟地和数字地是不是要隔开,最后用一点连接起来?

1.我觉的是这样的,最后要用个电阻连起来(0欧),也可以用磁珠,从资料上看还是用电阻好。

有不对的地方请指教

2.我以前所做PCB的数字地与模拟地都是用一个0欧电阻相连,

这是我个人经验呀

3.数字电路接地和模拟电路接地最好的用磁珠串在一起!

4.我所见大部分是用一点连接

5.用0 ohm电阻连接和直接用一点连接有什么差别吗?

我看到的扳子一般是用FB连接的

6.个人认为,地平面单点连接就可以了,电源用派型滤波电路连进来

因为模拟区还是有一些信号线要出去的,所以地平面就不能完全割断,否则就跨分割了

还望高手指教!

7.应该外接个0欧姆的电阻的,我见过的板子几乎都是这样接的

8.一般情况下模拟地和数字地分开用什么连接只要别全部混在一起就好,
又是时候又需要混在一起,这个没准的,通常小系统的密度大的板子,
我看直接共地会更好,我这都是从高手那听说的!

9.我个人觉得不需要0欧姆电阻的

如果用0欧姆电阻,它的通流能力还是蛮强的,因为0欧姆电阻上压降很小,所以流过较大电流时功耗也不大

10.偶的设计曾经用模数分开、单点FB连通的方式,效果还可以。

现在做的设计是统一地平面,尚未测试,不知道行不行。

不过,最好的设计是模数器件分区放置,而不一定要分割地平面。

个人认为:如果害怕数字信号干扰模拟信号,可以采用保护线的做法

11.数字和模拟两部分之间,如果互连信号太多,而且分布不集中、没规则,不要分割地。

数字、模拟电路布局分配在各自区域,地则是统一起来。

(个人意见,不对之处还望大家指正!)

12.字和模拟两部分之间,如果互连信号太多,而且分布不集中、没规则,不要分割地。

数字、模拟电路布局分配在各自区域,地则是统一起来。

同意这个观点,但是不明白为什么不分割也可以?请假高手.

13.在单面板和双面板中没有地平面层,所以为减少数字和模拟之间干扰要采取单一节点连接,避免多节点。

在4层以上的板,都有地平面,保持地信号的完整和信号回路最短是关键。在高速数字电路中,信号是选择最近的下面平面作为回路的。

分割地是在一定程度上延续过去的概念,从理论上讲,信号跨越分割线会导致信号地回路增大,影响地信号。由于分割地也不连续。但是电路的复杂程度增加,数字模拟芯片越来越多混合在一起,要想让所有的信号都避免跨越分割线是非长困难的。这就出现了统一地的方法,将数字电路放在一个区,模拟电路放在一个区,中间放数模电路,采取统一地,地信号会更完整。

根本的目的是保持地的连续和信号完整,分割地只是我们曾经使用过的一个手段,现在采取统一地也是一个新的手段。从新的研究来看,统一地是比较好的选择,但是需要仔细布局。

14.本人认为那不是0欧电阻,而是磁株。

15.我经常做的是LCDTV的主板,大多板子我都是不分地的,

只是placement时注意分模块放置就好了,

往往不分比分了好,而且设计后面也省事.

15.我也这么认为,最好不分,数字,模拟部分布局和走线分数字,
模拟部分,地则统一

16.其实在一个电路系统里,只有一个参考平面,一个地。如果有两个地的话,那么整个系统怎么联系呢?

17.觉得还是完整的地平面好,数字器件模拟期间尽量分开放,

效果是不错的,我们在电脑主板上不分割地了