当前位置:首页 » 无线网络 » 神经网络图像信号融合
扩展阅读
无线网络怎么老是断掉 2025-10-01 09:25:40

神经网络图像信号融合

发布时间: 2022-10-19 18:59:12

‘壹’ 神经网络可以进行信息融合吗

如果信息融合对应说的是多变量线性或非线性函数的话,神经网络是拿手的。

‘贰’ 多传感器信息融合和神经网络(RBF)是什么关系

两者间不具有明显的关系,前者是一类需要解决的问题,即将处于不同层次或相同层次的传感器信息进行全局性或局部性的融合。(加权平均就是一种最简单的融合)。
神经网络(NN)是人工智能算法中的一种方法,其可以用于解决诸如多传感器信息融合这样的一类问题,其应用领域多种多样。
总而言之,两者间非必须的一种组合,但是两者相结合也是一种处理问题的方法。
RBF(radial
basis
functions)径向基网络也只是神经网络的一种类型,其是前馈型网络的一种。

‘叁’ 神经网络可以进行信息融合吗

信息融合,你能说具体些么。
看你想要实现到什么程度和预期目标

‘肆’ 如何通过人工神经网络实现图像识别

人工神经网络(Artificial Neural Networks)(简称ANN)系统从20 世纪40 年代末诞生至今仅短短半个多世纪,但由于他具有信息的分布存储、并行处理以及自学习能力等优点,已经在信息处理、模式识别、智能控制及系统建模等领域得到越来越广泛的应用。尤其是基于误差反向传播(Error Back Propagation)算法的多层前馈网络(Multiple-Layer Feedforward Network)(简称BP 网络),可以以任意精度逼近任意的连续函数,所以广泛应用于非线性建模、函数逼近、模式分类等方面。

目标识别是模式识别领域的一项传统的课题,这是因为目标识别不是一个孤立的问题,而是模式识别领域中大多数课题都会遇到的基本问题,并且在不同的课题中,由于具体的条件不同,解决的方法也不尽相同,因而目标识别的研究仍具有理论和实践意义。这里讨论的是将要识别的目标物体用成像头(红外或可见光等)摄入后形成的图像信号序列送入计算机,用神经网络识别图像的问题。

一、BP 神经网络

BP 网络是采用Widrow-Hoff 学习算法和非线性可微转移函数的多层网络。一个典型的BP 网络采用的是梯度下降算法,也就是Widrow-Hoff 算法所规定的。backpropagation 就是指的为非线性多层网络计算梯度的方法。一个典型的BP 网络结构如图所示。

我们将它用向量图表示如下图所示。

其中:对于第k 个模式对,输出层单元的j 的加权输入为

该单元的实际输出为

而隐含层单元i 的加权输入为

该单元的实际输出为

函数f 为可微分递减函数

其算法描述如下:
(1)初始化网络及学习参数,如设置网络初始权矩阵、学习因子等。
(2)提供训练模式,训练网络,直到满足学习要求。
(3)前向传播过程:对给定训练模式输入,计算网络的输出模式,并与期望模式比较,若有误差,则执行(4);否则,返回(2)。
(4)后向传播过程:a. 计算同一层单元的误差;b. 修正权值和阈值;c. 返回(2)

二、 BP 网络隐层个数的选择
对于含有一个隐层的三层BP 网络可以实现输入到输出的任何非线性映射。增加网络隐层数可以降低误差,提高精度,但同时也使网络复杂化,增加网络的训练时间。误差精度的提高也可以通过增加隐层结点数来实现。一般情况下,应优先考虑增加隐含层的结点数。

三、隐含层神经元个数的选择
当用神经网络实现网络映射时,隐含层神经元个数直接影响着神经网络的学习能力和归纳能力。隐含层神经元数目较少时,网络每次学习的时间较短,但有可能因为学习不足导致网络无法记住全部学习内容;隐含层神经元数目较大时,学习能力增强,网络每次学习的时间较长,网络的存储容量随之变大,导致网络对未知输入的归纳能力下降,因为对隐含层神经元个数的选择尚无理论上的指导,一般凭经验确定。

四、神经网络图像识别系统
人工神经网络方法实现模式识别,可处理一些环境信息十分复杂,背景知识不清楚,推理规则不明确的问题,允许样品有较大的缺损、畸变,神经网络方法的缺点是其模型在不断丰富完善中,目前能识别的模式类还不够多,神经网络方法允许样品有较大的缺损和畸变,其运行速度快,自适应性能好,具有较高的分辨率。
神经网络的图像识别系统是神经网络模式识别系统的一种,原理是一致的。一般神经网络图像识别系统由预处理,特征提取和神经网络分类器组成。预处理就是将原始数据中的无用信息删除,平滑,二值化和进行幅度归一化等。神经网络图像识别系统中的特征提取部分不一定存在,这样就分为两大类:① 有特征提取部分的:这一类系统实际上是传统方法与神经网络方法技术的结合,这种方法可以充分利用人的经验来获取模式特征以及神经网络分类能力来识别目标图像。特征提取必须能反应整个图像的特征。但它的抗干扰能力不如第2类。② 无特征提取部分的:省去特征抽取,整副图像直接作为神经网络的输入,这种方式下,系统的神经网络结构的复杂度大大增加了,输入模式维数的增加导致了网络规模的庞大。此外,神经网络结构需要完全自己消除模式变形的影响。但是网络的抗干扰性能好,识别率高。
当BP 网用于分类时,首先要选择各类的样本进行训练,每类样本的个数要近似相等。其原因在于一方面防止训练后网络对样本多的类别响应过于敏感,而对样本数少的类别不敏感。另一方面可以大幅度提高训练速度,避免网络陷入局部最小点。
由于BP 网络不具有不变识别的能力,所以要使网络对模式的平移、旋转、伸缩具有不变性,要尽可能选择各种可能情况的样本。例如要选择不同姿态、不同方位、不同角度、不同背景等有代表性的样本,这样可以保证网络有较高的识别率。
构造神经网络分类器首先要选择适当的网络结构:神经网络分类器的输入就是图像的特征向量;神经网络分类器的输出节点应该是类别数。隐层数要选好,每层神经元数要合适,目前有很多采用一层隐层的网络结构。然后要选择适当的学习算法,这样才会有很好的识别效果。在学习阶段应该用大量的样本进行训练学习,通过样本的大量学习对神经网络的各层网络的连接权值进行修正,使其对样本有正确的识别结果,这就像人记数字一样,网络中的神经元就像是人脑细胞,权值的改变就像是人脑细胞的相互作用的改变,神经网络在样本学习中就像人记数字一样,学习样本时的网络权值调整就相当于人记住各个数字的形象,网络权值就是网络记住的内容,网络学习阶段就像人由不认识数字到认识数字反复学习过程是一样的。神经网络是按整个特征向量的整体来记忆图像的,只要大多数特征符合曾学习过的样本就可识别为同一类别,所以当样本存在较大噪声时神经网络分类器仍可正确识别。在图像识别阶段,只要将图像的点阵向量作为神经网络分类器的输入,经过网络的计算,分类器的输出就是识别结果。

五、仿真实验
1、实验对象
本实验用MATLAB 完成了对神经网络的训练和图像识别模拟。从实验数据库中选择0~9 这十个数字的BMP 格式的目标图像。图像大小为16×8 像素,每个目标图像分别加10%、20%、30%、40%、50%大小的随机噪声,共产生60 个图像样本。将样本分为两个部分,一部分用于训练,另一部分用于测试。实验中用于训练的样本为40个,用于测试的样本为20 个。随机噪声调用函数randn(m,n)产生。
2、网络结构
本试验采用三层的BP 网络,输入层神经元个数等于样本图像的象素个数16×8 个。隐含层选24 个神经元,这是在试验中试出的较理想的隐层结点数。输出层神经元个数就是要识别的模式数目,此例中有10 个模式,所以输出层神经元选择10 个,10 个神经元与10 个模式一一对应。
3、基于MATLAB 语言的网络训练与仿真
建立并初始化网络

1
2
3
4
5
6
7
8

% ================
S1 = 24;% 隐层神经元数目S1 选为24
[R,Q] = size(numdata);
[S2,Q] = size(targets);
F = numdata;
P=double(F);
net = newff(minmax(P),[S1 S2],{'logsig'
'logsig'},'traingda','learngdm')

这里numdata 为训练样本矩阵,大小为128×40, targets 为对应的目标输出矩阵,大小为10×40。
newff(PR,[S1 S2…SN],{TF1 TF2…TFN},BTF,BLF,PF)为MATLAB 函数库中建立一个N 层
前向BP 网络的函数,函数的自变量PR 表示网络输入矢量取值范围的矩阵[Pmin max];S1~SN 为各层神经元的个数;TF1~TFN 用于指定各层神经元的传递函数;BTF 用于指定网络的训练函数;BLF 用于指定权值和阀值的学习函数;PF 用于指定网络的性能函数,缺省值为‘mse’。
设置训练参数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

net.performFcn = 'sse'; %平方和误差
性能函数
net.trainParam.goal = 0.1; %平方和误
差目标
net.trainParam.show = 20; %进程显示
频率
net.trainParam.epochs = 5000;%最大训
练步数
net.trainParam.mc = 0.95; %动量常数
网络训练
net=init(net);%初始化网络
[net,tr] = train(net,P,T);%网络训练
对训练好的网络进行仿真
D=sim(net,P);
A = sim(net,B);

B 为测试样本向量集,128×20 的点阵。D 为网络对训练样本的识别结果,A 为测试样本的网络识别结果。实验结果表明:网络对训练样本和对测试样本的识别率均为100%。如图为64579五个数字添加50%随机噪声后网络的识别结果。

六、总结
从上述的试验中已经可以看出,采用神经网络识别是切实可行的,给出的例子只是简单的数字识别实验,要想在网络模式下识别复杂的目标图像则需要降低网络规模,增加识别能力,原理是一样的。

‘伍’ CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别

如下:

1、DNN:存在着一个问题——无法对时间序列上的变化进行建模。然而,样本出现的时间顺序对于自然语言处理、语音识别、手写体识别等应用非常重要。对了适应这种需求,就出现了另一种神经网络结构——循环神经网络RNN。

2、CNN:每层神经元的信号只能向上一层传播,样本的处理在各个时刻独立,因此又被称为前向神经网络。

3、RNN:神经元的输出可以在下一个时间戳直接作用到自身,即第i层神经元在m时刻的输入,除了(i-1)层神经元在该时刻的输出外,还包括其自身在(m-1)时刻的输出!

介绍

神经网络技术起源于上世纪五、六十年代,当时叫感知机(perceptron),拥有输入层、输出层和一个隐含层。输入的特征向量通过隐含层变换达到输出层,在输出层得到分类结果。早期感知机的推动者是Rosenblatt。

在实际应用中,所谓的深度神经网络DNN,往往融合了多种已知的结构,包括卷积层或是LSTM单元。

‘陆’ 神经网络的特点

不论何种类型的人工神经网络,它们共同的特点是,大规模并行处理,分布式存储,弹性拓扑,高度冗余和非线性运算。因而具有很髙的运算速度,很强的联想能力,很强的适应性,很强的容错能力和自组织能力。这些特点和能力构成了人工神经网络模拟智能活动的技术基础,并在广阔的领域获得了重要的应用。例如,在通信领域,人工神经网络可以用于数据压缩、图像处理、矢量编码、差错控制(纠错和检错编码)、自适应信号处理、自适应均衡、信号检测、模式识别、ATM流量控制、路由选择、通信网优化和智能网管理等等。
人工神经网络的研究已与模糊逻辑的研究相结合,并在此基础上与人工智能的研究相补充,成为新一代智能系统的主要方向。这是因为人工神经网络主要模拟人类右脑的智能行为而人工智能主要模拟人类左脑的智能机理,人工神经网络与人工智能有机结合就能更好地模拟人类的各种智能活动。新一代智能系统将能更有力地帮助人类扩展他的智力与思维的功能,成为人类认识和改造世界的聪明的工具。因此,它将继续成为当代科学研究重要的前沿。

‘柒’ 神经网络可以进行信息融合吗

传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。目前对于信息融合有多种不同的定义。其中美国国防部JDL(Joint Directors of Laboratories)的定义为:把来自许多传感器和信息源的数据和信息加以联合(Association)、相关(Combination)、组合(Correlation),以获得精确的位置估计(Position Estimation)和身份估计(Identity Estimation),以及对战场情况威胁及其重要程度进行适时的完整评价。学者Edward Waltz和James Llinas的定义为:是一种多层次的、多方面的处理过程,这个过程是对多源数据进行检测、结合、相关、估计和组合以达到精确的状态估计和身份估计,以及完整、及时的态势评估(situation assessment)和威胁估计

最广泛的定义是指把来自多传感器的数据和信息,根据既定的规则,分析、结合为一个全面的情报,并在此基础上为用户提供需求信息,诸如:决策、任务和航迹等。

信息融合最初是针对多传感器系统中多源异构信息的处理和集成而开展的一个研究领域,随着多传感器系统的广泛应用,便出现了多传感器信息的处理和使用问题,多传感器数据融合技术应运而生,它是利用计算机技术对按时序获得的若干传感器的观测信息,以及数据库和知识库的信息,在一定准则下加以自动汇集、相关、分析、综合为一种表示形式,以完成所需要的估计和决策任务所进行的信息处理过程。

由于多传感器信息的冗余性、互补性、时效性和低代价,使得多传感器信息融合系统克服了单一传感器的局限,从而具有较强的鲁棒性和较高的置信度。

数据融合由多传感器融合问题发展而来,目前已不局限于传感器数据的融合,目前的数据融合技术不仅涵盖了声、光、电等物理层的处理,而且涉及了数据库、网页、视频、资讯、自然语言等较高层次的信息整合。

‘捌’ 图像分割模型U—Net融合浅层特征的方式是什么

摘要 提出一种将残差结构与U-Net网络融合的视盘分割方法。残差模块的跳跃连接能将浅层特征传递给更深一层网络,实现浅层特征的重复使用,增强了图像细节学习。将该方法在两个公开数据集Messidor和Kaggle上进行验证,在干扰较多的Kaggle数据集上,其AUC和MAP分别达到0.952 1和0.838 8,证明该方法可同时学习图像细节特征和全局结构特征,能更好地区分眼底视盘与亮病灶

‘玖’ 神经网络算法和卡尔曼滤波可以同时应用于信息融合吗

可以的,可以预先用卡尔曼对信号进行滤波 ,去除一定的噪声 然后再进行样本神经网络训练,不过网络实际用时也需先进行卡尔曼滤波

‘拾’ 人工神经网络的发展趋势

人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。神经计算机的研究发展很快,已有产品进入市场。光电结合的神经计算机为人工神经网络的发展提供了良好条件。
神经网络在很多领域已得到了很好的应用,但其需要研究的方面还很多。其中,具有分布存储、并行处理、自学习、自组织以及非线性映射等优点的神经网络与其他技术的结合以及由此而来的混合方法和混合系统,已经成为一大研究热点。由于其他方法也有它们各自的优点,所以将神经网络与其他方法相结合,取长补短,继而可以获得更好的应用效果。目前这方面工作有神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集理论、分形理论、证据理论和灰色系统等的融合。
下面主要就神经网络与小波分析、混沌、粗集理论、分形理论的融合进行分析。
与小波分析的结合
1981年,法国地质学家Morlet在寻求地质数据时,通过对Fourier变换与加窗Fourier变换的异同、特点及函数构造进行创造性的研究,首次提出了小波分析的概念,建立了以他的名字命名的Morlet小波。1986年以来由于YMeyer、S.Mallat及IDaubechies等的奠基工作,小波分析迅速发展成为一门新兴学科。Meyer所着的小波与算子,Daubechies所着的小波十讲是小波研究领域最权威的着作。
小波变换是对Fourier分析方法的突破。它不但在时域和频域同时具有良好的局部化性质,而且对低频信号在频域和对高频信号在时域里都有很好的分辨率,从而可以聚集到对象的任意细节。小波分析相当于一个数学显微镜,具有放大、缩小和平移功能,通过检查不同放大倍数下的变化来研究信号的动态特性。因此,小波分析已成为地球物理、信号处理、图像处理、理论物理等诸多领域的强有力工具。
小波神经网络将小波变换良好的时频局域化特性和神经网络的自学习功能相结合,因而具有较强的逼近能力和容错能力。在结合方法上,可以将小波函数作为基函数构造神经网络形成小波网络,或者小波变换作为前馈神经网络的输入前置处理工具,即以小波变换的多分辨率特性对过程状态信号进行处理,实现信噪分离,并提取出对加工误差影响最大的状态特性,作为神经网络的输入。
小波神经网络在电机故障诊断、高压电网故障信号处理与保护研究、轴承等机械故障诊断以及许多方面都有应用,将小波神经网络用于感应伺服电机的智能控制,使该系统具有良好的跟踪控制性能,以及好的鲁棒性,利用小波包神经网络进行心血管疾病的智能诊断,小波层进行时频域的自适应特征提取,前向神经网络用来进行分类,正确分类率达到94%。
小波神经网络虽然应用于很多方面,但仍存在一些不足。从提取精度和小波变换实时性的要求出发,有必要根据实际情况构造一些适应应用需求的特殊小波基,以便在应用中取得更好的效果。另外,在应用中的实时性要求,也需要结合DSP的发展,开发专门的处理芯片,从而满足这方面的要求。
混沌神经网络
混沌第一个定义是上世纪70年代才被Li-Yorke第一次提出的。由于它具有广泛的应用价值,自它出现以来就受到各方面的普遍关注。混沌是一种确定的系统中出现的无规则的运动,混沌是存在于非线性系统中的一种较为普遍的现象,混沌运动具有遍历性、随机性等特点,能在一定的范围内按其自身规律不重复地遍历所有状态。混沌理论所决定的是非线性动力学混沌,目的是揭示貌似随机的现象背后可能隐藏的简单规律,以求发现一大类复杂问题普遍遵循的共同规律。
1990年Kaihara、T.Takabe和M.Toyoda等人根据生物神经元的混沌特性首次提出混沌神经网络模型,将混沌学引入神经网络中,使得人工神经网络具有混沌行为,更加接近实际的人脑神经网络,因而混沌神经网络被认为是可实现其真实世界计算的智能信息处理系统之一,成为神经网络的主要研究方向之一。
与常规的离散型Hopfield神经网络相比较,混沌神经网络具有更丰富的非线性动力学特性,主要表现如下:在神经网络中引入混沌动力学行为;混沌神经网络的同步特性;混沌神经网络的吸引子。
当神经网络实际应用中,网络输入发生较大变异时,应用网络的固有容错能力往往感到不足,经常会发生失忆现象。混沌神经网络动态记忆属于确定性动力学运动,记忆发生在混沌吸引子的轨迹上,通过不断地运动(回忆过程)一一联想到记忆模式,特别对于那些状态空间分布的较接近或者发生部分重叠的记忆模式,混沌神经网络总能通过动态联想记忆加以重现和辨识,而不发生混淆,这是混沌神经网络所特有的性能,它将大大改善Hopfield神经网络的记忆能力。混沌吸引子的吸引域存在,形成了混沌神经网络固有容错功能。这将对复杂的模式识别、图像处理等工程应用发挥重要作用。
混沌神经网络受到关注的另一个原因是混沌存在于生物体真实神经元及神经网络中,并且起到一定的作用,动物学的电生理实验已证实了这一点。
混沌神经网络由于其复杂的动力学特性,在动态联想记忆、系统优化、信息处理、人工智能等领域受到人们极大的关注。针对混沌神经网络具有联想记忆功能,但其搜索过程不稳定,提出了一种控制方法可以对混沌神经网络中的混沌现象进行控制。研究了混沌神经网络在组合优化问题中的应用。
为了更好的应用混沌神经网络的动力学特性,并对其存在的混沌现象进行有效的控制,仍需要对混沌神经网络的结构进行进一步的改进和调整,以及混沌神经网络算法的进一步研究。
基于粗集理论
粗糙集(Rough Sets)理论是1982年由波兰华沙理工大学教授Z.Pawlak首先提出,它是一个分析数据的数学理论,研究不完整数据、不精确知识的表达、学习、归纳等方法。粗糙集理论是一种新的处理模糊和不确定性知识的数学工具,其主要思想就是在保持分类能力不变的前提下,通过知识约简,导出问题的决策或分类规则。目前,粗糙集理论已被成功应用于机器学习、决策分析、过程控制、模式识别与数据挖掘等领域。
粗集和神经网络的共同点是都能在自然环境下很好的工作,但是,粗集理论方法模拟人类的抽象逻辑思维,而神经网络方法模拟形象直觉思维,因而二者又具有不同特点。粗集理论方法以各种更接近人们对事物的描述方式的定性、定量或者混合性信息为输入,输入空间与输出空间的映射关系是通过简单的决策表简化得到的,它考虑知识表达中不同属性的重要性确定哪些知识是冗余的,哪些知识是有用的,神经网络则是利用非线性映射的思想和并行处理的方法,用神经网络本身结构表达输入与输出关联知识的隐函数编码。
在粗集理论方法和神经网络方法处理信息中,两者存在很大的两个区别:其一是神经网络处理信息一般不能将输入信息空间维数简化,当输入信息空间维数较大时,网络不仅结构复杂,而且训练时间也很长;而粗集方法却能通过发现数据间的关系,不仅可以去掉冗余输入信息,而且可以简化输入信息的表达空间维数。其二是粗集方法在实际问题的处理中对噪声较敏感,因而用无噪声的训练样本学习推理的结果在有噪声的环境中应用效果不佳。而神经网络方法有较好的抑制噪声干扰的能力。
因此将两者结合起来,用粗集方法先对信息进行预处理,即把粗集网络作为前置系统,再根据粗集方法预处理后的信息结构,构成神经网络信息处理系统。通过二者的结合,不但可减少信息表达的属性数量,减小神经网络构成系统的复杂性,而且具有较强的容错及抗干扰能力,为处理不确定、不完整信息提供了一条强有力的途径。
目前粗集与神经网络的结合已应用于语音识别、专家系统、数据挖掘、故障诊断等领域,将神经网络和粗集用于声源位置的自动识别,将神经网络和粗集用于专家系统的知识获取中,取得比传统专家系统更好的效果,其中粗集进行不确定和不精确数据的处理,神经网络进行分类工作。
虽然粗集与神经网络的结合已应用于许多领域的研究,为使这一方法发挥更大的作用还需考虑如下问题:模拟人类抽象逻辑思维的粗集理论方法和模拟形象直觉思维的神经网络方法更加有效的结合;二者集成的软件和硬件平台的开发,提高其实用性。
与分形理论的结合
自从美国哈佛大学数学系教授Benoit B. Mandelbrot于20世纪70年代中期引入分形这一概念,分形几何学(Fractal geometry)已经发展成为科学的方法论--分形理论,且被誉为开创了20世纪数学重要阶段。现已被广泛应用于自然科学和社会科学的几乎所有领域,成为现今国际上许多学科的前沿研究课题之一。
由于在许多学科中的迅速发展,分形已成为一门描述自然界中许多不规则事物的规律性的学科。它已被广泛应用在生物学、地球地理学、天文学、计算机图形学等各个领域。
用分形理论来解释自然界中那些不规则、不稳定和具有高度复杂结构的现象,可以收到显着的效果,而将神经网络与分形理论相结合,充分利用神经网络非线性映射、计算能力、自适应等优点,可以取得更好的效果。
分形神经网络的应用领域有图像识别、图像编码、图像压缩,以及机械设备系统的故障诊断等。分形图像压缩/解压缩方法有着高压缩率和低遗失率的优点,但运算能力不强,由于神经网络具有并行运算的特点,将神经网络用于分形图像压缩/解压缩中,提高了原有方法的运算能力。将神经网络与分形相结合用于果实形状的识别,首先利用分形得到几种水果轮廓数据的不规则性,然后利用3层神经网络对这些数据进行辨识,继而对其不规则性进行评价。
分形神经网络已取得了许多应用,但仍有些问题值得进一步研究:分形维数的物理意义;分形的计算机仿真和实际应用研究。随着研究的不断深入,分形神经网络必将得到不断的完善,并取得更好的应用效果。?