当前位置:首页 » 无线网络 » 信号转导网络的节点

信号转导网络的节点

发布时间: 2023-03-20 05:11:51

信号传导的信号转导定义

简单地说 ,可以把各种信号通过细胞膜进入细胞 ,逐步引起细胞物质主要是蛋白质变化的过程 ,称为信号传导。它是一个多酶级联反应过程 ,各条信号通路之间通过细胞间信号蛋白的相互作用在体内组成一高度有序的调控网络。哺乳动物维持正常的活动需要多种信号转导通路以维持机体细胞对信号刺激反应的完整性和协调性。
负责细胞外信号转导到细胞内部的传导物则主要可分6种,包括离子通道闸门(gate ion channel)、受体酵素(receptor enzyme)、弯曲形受体(serpentine receptor)、类固醇受体(steroid receptor)、粘着受体(adhesion receptor),以及本身不含酵素的受体。

㈡ 信号转导影响基因表达的关键节点是什么

转录因子的活化及核转位。

㈢ 交换节点包括什么

通信传送网络中的节点,是信号的交叉连接点,是业务分插交汇点,是网络管理系统的切入点,是信号功率的放大点和传输中的数字信号的再生点。有了节点,网络才是可运营,可管理的。对用户的服务也是通过节点进行的。赢利是通过节点获得的。节点的经济性能将直接影响到网络的经济性能。

当网络发展到自动交换光网络时相应的管理、控制和交换功能也是通过节点功能实施的。网络的升级主要体现在节点配置的升级。

网络的很大一部分技术性能和经济性能是由节点设备的性能保证和实现的。新技术的采用一般体现在新的节点设备的开发和应用。所以除了必须研究网络的总体性能外,为达到ASON的实现,达成智能光网络的实施,必须研究网络节点设备。

智能光网络的一切特征通过智能光网络的节点设备反映出来。

一方面,从设备的组成看,智能光网络节点设备的最基本的特点有:

传送功能比传统设备更强:能提供多个(至少两个方向)的光接口;有充足的交叉连接容量来支持各个方向净荷的不同尺寸的颗粒的交换、分插、集散(grooming)功能;交叉连接颗粒可以是波长,也可以是SDH 的VC-n或VC-n-Xc,也可以是搏差两者结合;能支持多种保护或/和恢复功能。

管理功能比传统设备更智能化:有强大的管理功能,网络管理通过网元管理功能管理设备,且共同组成管理平面。

同传统的设备不同,有不断完善的控制功能:处理管理控制协议的识别,传送和根据控制需要的相应的交叉或交换。网络的控制平面由各设备的控制功能组合而成。

具有以上的基本的必备的特点的设备是智能光网络节点设备。在此以外,智能光网络节点设备还可以有更多的功能,如:多种业务接口;基于第二握银敬层或第三层协议的包交换;高度智能化的网管操作,如一次完成多站设备的配置;支持子拓扑的应用,等。

另一方面,从设备在网络的地位看,设备体现出网络节点智能化的需要。通信传送网络中的节点,是对信号实施交叉连接的交汇点,是实现业务分插的交汇点,是网络管理系段慎统的
信号切入点,是对信号进行放大的功率增益点,是传输中的数字信号的再生点。传统的节点也能完成上述要求。智能光网络节点设备通过控制平面对网络的交叉或交
换实现智能化的控制,为网络带来新的面貌。这样节点的运行经济性能比传统网络更高,节点的经济性能直接影响到网络的经济性能。其中节点交换机是节点设备中
的一种!

㈣ 简述细胞信号转导的几条通路

受体介导细胞信号通路包括: a.CAMP信号通路:由CM上的五种组分组成——激活型激素受体,Rs;与GDP结合的活化型调蛋白,Gs;腺苷酸环化酶,c;与GDP结合的抑制型调节蛋白,Gi;抑制型激素受体,Ri。

激素配体+Rs→Rs构象改变暴露出与Gs结合位点→与Gs结合→Gs2变化排斥GDP结合GTP而活化→使三聚体Gs解离出α和βγ→暴露出α与腺苷酸环化酶结合位点→与A环化E结合并使之活化→将ATP→CAMP→激活靶酶和开启基因表达→GTP水解,α恢复构象与A环化酶解离→C的环化作用终止→α和βγ结合回复。

b.PIP2信号通路:胞外signal+膜受体→PIP2IP3+DAG,IP3→内源钙→细胞溶质,胞内Ca2+浓度升高→启动Ca2+信号系统,DAGCM上活化蛋白激酶PKC→DG/PKC信号传递passwa。


(4)信号转导网络的节点扩展阅读

细胞信号转导特点是:①高度亲和力,②高度特异性,③可饱和性

1、受体:位于细胞膜上或细胞内,能特异性识别生物活性分子并与之结合,进而引起生物学效应的特殊蛋白质,膜受体多为镶嵌糖蛋白:胞内受体全部为DNA结合蛋白。受体在细胞信息传递过程中起极为重要的作用。

2、G蛋白:即鸟苷酸结合蛋白,是一类位于细胞膜胞浆面、能与GDP或GTP结合的外周蛋白,由α、β、γ三个亚基组成。以三聚体存在并与GDP结合者为非活化型。当α亚基与GTP结合并导致βγ二聚体脱落时则变成活化型,可作用于膜受体的不同激素,通过不同的G蛋白介导影响质膜上某些离子通道或酶的活性,继而影响细胞内第二信使浓度和后续的生物学效应。

㈤ 什么是节点站移动基站

节点是相山谈对传输而言,在目前大谈移动通信系统中,一般BSC与MSC安装在中心节点,基站的业务直接通过传输网络传送到中心节点滚唯碰。每个基站一般为1至2个E1。

㈥ 典型的无线传感器网络节点有哪些

无线传感器网络是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,其目的是协作地感知、采集、处理和传输网络覆盖地理区域内感知对象的监测信息,并报告给用户。
它的英文是Wireless
Sensor
Network,
简称WSN。
大量的传感器节点将探测数据,通过汇聚节点经其它网络发送给了用户。
在这个定义中,传感器网络实现了数据采集、处理和传输的三种功能,而这正对应着现代信息技术的三大基础技术,即传感器技术、计算机技术和通信技术。
典型的无线传感器网络一般包括三个节点:传感器节点(Sensor
node)、汇聚节点(Sink
node)和任务管理节点。
详细内容可以去飞瑞敖论坛查找。

㈦ 细胞内信号转导通路有什么特点啊

1,信号转导分子存在的暂时性,对细胞的刺激不能持续不断地进行,否则细胞没有时间去思考该如何响应。因此,许多信号蛋白质的半率期都很短

2,信号转导分子活性的可逆性变化,被激活的各种信号转导分子在完成任务后又回复钝化状态,准备接受下一波的刺激。它们不会总处在兴奋状态。

3,信号转导分子激活机制的类同性,磷酸化和去磷酸化是绝大多数信号分子可逆地激活的共同机制

4,信号转导通路的连贯性,信号转导通路上的各个反应相互衔接,形成一个级联反应过程,有序地依次进行,直至完成。其间,任何步骤的中断或者出错,都将给细胞,乃至机体带来重大的灾难性后果;

5,作用的一过性与效果的永久性的有机统一,刺激经由信号转导通路所造成细胞增殖、分裂、分化、成熟、恶变、转化,或者自我凋亡等等效果是无可挽回的,信号转导过程受到严格的调节控制。

6,网络化,细胞内存在有一张由许多个信号转导通路组成的网。就是细胞内的信息高速公路,在这张网中,各条通路相互沟通,相互串连,相互影响,相互制约,相互协调,相互作用。

7,专一性,不同的刺激能够产生特殊的细胞响应,细胞能够对不同的刺激作出不同的反应。