现在无线WiFi已经成为了我们生活中不可缺少的一部分,走到哪,哪里就有WiFi。我为大家整理了无线WiFi的原理,供大家参考阅读!
无线WiFi的原理
无线WiFi俗称无线宽带,全称Wireless Fideliry。无线局域网又常被称作WiFi网络,这一名称来源于全球最大的无线局域网技术推广与产品认证组织——WiFi联盟(WiFi Alliance)。作为一种无线联网技术,WiFi早已得到了业界的关注。WiFi终端涉及手机、PC(笔记本电脑)、平板电视、数码相机、投影机等众多产品。目前,WiFi网络已应用于家庭、企业以及公众热点区域,其中在家庭中的应用是较贴近人们生活的一种应用方式。由于WiFi网络能够很好地实现家庭范围内的网络覆盖,适合充当家庭中的主导网络,家里的其他具备WiFi功能的设备,如电视机、影碟机、数字音响、数码相框、照相机等,都可以通过WiFi网络这个传输媒介,与后台的媒体服务器、电脑等建立通信连接,实现整个家庭的数字化与无线化,使人们的生活变得更加方便与丰富。目前,除了用户自行购置WiFi设备建立无线家庭网络外,运营商也在大力推进家庭网络覆盖。比如,中国电信的“我的E家”,将WiFi功能加入到家庭网关中,与有线宽带业务绑定。今后WiFi的应用领域还将不断扩展,在现有的家庭网、企业网和公众网的基础上向自动控制网络等众多新领域发展。
无线通信的简述
与有线传输相比,无线传输具有许多优点。或许最重要的是,它更灵活。无线信号可以从一个发射器发出到许多接收器而不需要电缆。所有无线信号都是随电磁波通过空气传输的,电磁波是由电子部分和能量部分组成的能量波。
在无线通信中频谱包括了9khz到300000Ghz之间的频率。每一种无线服务都与某一个无线频谱区域相关联。无线信号也是源于沿着导体传输的电流。电子信号从发射器到达天线,然后天线将信号作为一系列电磁波发射到空气中。
信号通过空气传播,直到它到达目标位置为止。在目标位置,另一个天线接收信号,一个接收器将它转换回电流。接收和发送信号都需要天线,天线分为全向天线和定向天线。在信号的传播中由于反射、衍射和散射的影响,无线信号会沿着许多不同的路径到达其目的地,形成多径信号。
无线通信的基本原理
无线通信是利用电波信号可以在自由空间中传播的特性进行信息交换的一种通信方式。在移动中实现的无线通信又通称为移动通信,人们把二者合称为无线移动通信。简单讲,无线通信是仅利用电磁波而不通过线缆进行的通信方式。
1,无线频谱
所有无线信号都是随电磁波通过空气传输的,电磁波是由电子部分和能量部分组成的能量波。声音和光是电磁波得两个例子。无线频谱(也就是说,用于广播、蜂窝电话以及卫星传输的波)中的波是不可见也不可听的——至少在接收器进行解码之前是这样的。
“无线频谱”是用于远程通信的电磁波连续体,这些波具有不同的频率和波长。无线频谱包括了9khz到300 000Ghz之间的频率。每一种无线服务都与某一个无线频谱区域相关联。例如,AM广播涉及无线通信波谱的低端频率,使用535到1605khz之间的频率。
无线频谱是所有电磁波谱的一个子集。在自然界中还存在频率更高或者更低的电磁波,但是他们没有用于远程通信。低于9kz的频率用于专门的应用,如野生动物跟踪或车库门开关。频率高于300 000Ghz的电磁波对人类来说是可见的,正是由于这个原因,他们不能用于通过空气进行通信。例如,我们将频率为428570Ghz的电磁波识别为红色。
当然,通过空气传播的信号不一定会保留在一个国家内。因此,全世界的国家就无线远程通信标准达成协议是非常重要的。ITU就是管理机构,它确定了国际无线服务的标准,包括频率分配、无线电设备使用的信号传输和协议、无线传输及接收设备、卫星轨道等。如果政府和公司不遵守ITU标准,那么在制造无线设备的国家之外就可能无法使用它们。
2,无线传输的特征
虽然有线信号和无线信号具有许多相似之处——例如,包括协议和编码的使用——但是空气的本质使得无线传输与有线传输有很大的不同。当工程师门谈到无线传输时,他们是将空气作为“无制导的介质”。因为空气没有提供信号可以跟随的固定路径,所以信号的传输是无制导的。
正如有线信号一样,无线信号也是源于沿着导体传输的电流。电子信号从发射器到达天线,然后天线将信号作为一系列电磁波发射到空气中。信号通过空气传播,直到它到达目标位置为止。在目标位置,另一个天线接收信号,一个接收器将它转换回电流。
注意,在无线信号的发送端和接收端都使用了天线,而要交换信息,连接到每一个天线上的收发器都必须调整为相同的频率。
3,天线
每一种无线服务都需要专门设计的天线。服务的规范决定了天线的功率输出、频率及辐射图。天线的“辐射图”描述了天线发送或接收的所有电磁能的三维区域上的相对长度。“定向天线”沿着一个单独的方向发送无线电信号。这种天线用在来源需要与一个目标位置(如在点对点连接中)通信时。定向天线还可能用在多个接收节点排列在一条线上时。或者,它可能用在维持信号的一定距离上的强度比覆盖一个较广的地理区域更重要时,因为天线可以使用它的能量在更多的方向发送信号,也可以在一个方向上发送更长的距离。使用定向天线无线服务的一些例子包括卫星下行线路和上行线路,无线LAN以及太空、海洋和航空导弹。
与之相比,“全向天线”在所有的方向上都与相同的强度和清晰度发送和接收无线信号。这种天线用在许多不同的接收器都必须能够获得信号时,或者用在接收器的位置高度易变时。电视台和广播站使用全向天线,大多数发送移动电话的发射塔也是如此。
无线信号传输中的一个重要考虑是天线可以将信号传输的距离,同时还使信号能够足够强,能够被接收机清晰地解释。无线传输的一个简单原则是,较强的信号将传输的比较弱的信号更远。
正确的天线位置对于确保无线系统的最佳性能也是非常重要的。用于远程信号传输的天线经常都安装在塔上或者高层的顶部。从高处发射信号确保了更少的障碍和更好的信号接收。
4,信号传播
在理想情况下,无线信号直接在从发射器到预期接收器的一条直线中传播。这种传播被称为“视线”(Line Of Sight,LOS),它使用很少的能量,并且可以接收到非常清晰的信号。不过,因为空气是无制导介质,而发射器与接收器之间的路径并不是很清晰,所以无线信号通常不会沿着一条直线传播。当一个障碍物挡住了信号的路线时,信号可能会绕过该物体、被该物体吸收,也可能发生以下任何一种现象:发射、衍射或者散射。物体的几何形状决定了将发生这三种现象中的那一种。
(1)反射、衍射和散射
无线信号传输中的“反射”与其他电磁波(如光或声音)的反射没有什么不同。波遇到一个障碍物并反射——或者弹回——到其来源。对于尺寸大于信号平均波长的物体,无线信号将会弹回。例如,考虑一下微波炉。因为微波的平均波长小于1毫米,所以一旦发出微波,它们就会在微波炉的内壁(通常至少有15cm长)上反射。究竟哪些物体会导致无线信号反射取决于信号的波长。在无线LAN中,可能使用波长在1~10米之间的信号,因此这些物体包括墙壁、地板天花板及地面。
在“衍射”中,无线信号在遇到一个障碍物时将分解为次级波。次级波继续在它们分解的方向上传播。如果能够看到衍射的无线电信号,则会发现它们在障碍物周围弯曲。带有锐边的物体——包括墙壁和桌子的角——会导致衍射。
“散射”就是信号在许多不同方向上扩散或反射。散射发生在一个无线信号遇到尺寸比信号的波长更小的物体时。散射还与无线信号遇到的表面的粗糙度有关。表面也粗糙,信号在遇到该表面是就越容易散射。在户外,树木会路标都会导致移动电话信号的散射。
另外,环境状况(如雾、雨、雪)也可能导致反射、散射和衍射
(2)多路径信号
由于反射、衍射和散射的影响,无线信号会沿着许多不同的路径到达其目的地。这样的信号被称为“多路径信号”。多路径信号的产生并不取决于信号是如何发出的。它们可能从来源开始在许多方向上以相同的辐射强度,也可能从来源开始主要在一个方向上辐射。不过,一旦发出了信号,由于反射、衍射和散射的影响,它们就将沿着许多路径传播。
无线信号的多路径性质既是一个优点又是一个缺点。一方面,因为信号在障碍物上反射,所以它们更可能到达目的地。在办公楼这样的环境中,无线服务依赖于信号在墙壁、天花板、地板以及家具上的反射,这样最终才能到达目的地。
多路径信号传输的缺点是因为它的不同路径,多路径信号在发射器与接收器之间的不同距离上传播。因此,同一个信号的多个实例将在不同的时间到达接收器,导致衰落和延时。
5,窄带、宽带及扩展频谱信号
传输技术根据它们的信号使用了无线频谱的部分大小而有所不同。一个重要区别就是无线使用窄带还是宽带信号传输。在“窄带”,发射器在一个单独的频率或者非常小的频率范围上集中信号能量。与窄带相反,“宽带”是指一种使用无线频谱的相对较宽频带的信号传输方式。
使用多个频率来传输信号被称为扩展频谱技术,换句话说,在传输过程中,信号从来不会持续停留在一个频率范围内。在较宽的频带上分布信号的一个结果是它的每一个频率需要的功率比窄带信号传输更小。信号强度的这种分布使扩展频谱信号更不容易干扰在同一个频带上传输的窄带信号。
在多个频率上分布信号的另一个结果是提高了安全性。因为信号是根据一个只有获得授权的发射器和接收器才知道的序列来分布的,所以未获授权的接收器更难以捕获和解码这些信号。
扩展频谱的一个特定实现是“跳频扩展频谱”(Frequency Hopping Spread Spectrum ,FHSS)。在FHSS传输中,信号与信道的接收器和发射器知道的同一种同步模式在一个频带的几个不同频率之间跳跃。另一种扩展频谱信号被称为“直接序列扩展频谱”(Direct Sequence Spread Spectrum,DSSS)。在DSSS中,信号的位同时分布在整个频带上。对每一位都进行了编码,这样接收器就可以在接收到这些位时重组原始信号。
6,固定和移动
每一种无线通信都属于以下两个类别之一:固定或移动。在“固定”无线系统中,发射器和接收器的位置是不变的。传输天线将它的能量直接对准接收器天线,因此,就有更多的能量用于该信号。对于必须跨越很长的距离或者复杂地形的情况,固定的无线连接比铺设电缆更经济。
不过,并非所有通信都适用固定无线。例如,移动用户不能使用要求他们保留在一个位置来接收一个信号的服务。相反,移动电话、寻呼、无线LAN以及 其它许多服务都在使用“移动”无线系统。在移动无线系统中,接收器可以位于发射器特定范围内部的任何地方。这就允许接收器从一个位置移动到另一个位置,同时还继续接受信号。
无线通信原理的发展现状
1,分类
无线通信主要包括微波通信和卫星通信。微波是一种无线电波,它传送的距离一般只有几十千米。但微波的频带很宽,通信容量很大。微波通信每隔几十千米要建一个微波中继站。卫星通信是利用通信卫星作为中继站在地面上两个或多个地球站之间或移动体之间建立微波通信联系。
2,热点技术
(1)4G
第四代移动电话行动通信标准,指的是第四代移动通信技术,外语缩写:4G。该技术包括TD-LTE和FDD-LTE两种制式(严格意义上来讲,LTE只是3.9G,尽管被宣传为4G无线标准,但它其实并未被3GPP认可为国际电信联盟所描述的下一代无线通讯标准IMT-Advanced,因此在严格意义上其还未达到4G的标准。只有升级版的LTE Advanced才满足国际电信联盟对4G的要求)。4G是集3G与WLAN于一体,并能够快速传输数据、高质量、音频、视频和图像等。4G能够以100Mbps以上的速度下载,比目前的家用宽带ADSL(4兆)快25倍,并能够满足几乎所有用户对于无线服务的要求。此外,4G可以在DSL和有线电视调制解调器没有覆盖的地方部署,然后再扩展到整个地区。很明显,4G有着不可比拟的优越性。
(2)ZigBee技术
ZigBee技术主要用于无线个域网(WPAN),是基于IEE802.15.4无线标准研制开发的,是一种介于RFID和蓝牙技术之间的技术提案,主要应用在短距离并且数据传输速率不高的各种电子设备之间。ZigBee协议比蓝牙、高速率个域网或802.11x无线局域网更简单使用,可以认为是蓝牙的同族兄弟。
(3)WLAN与WAPI
WLAN(无线局域网)是一种借助无线技术取代以往有线布线方式构成局域网的新手段,可提供传统有线局域网的所有功能,是计算机网络与无线通信技术相结合的产物。它是通用无线接入的一个子集,支持较高传输速率(2Mb/s~54Mb/s,甚至更高),利用射频无线电或红外线,借助直接序列扩频(DSSS)或跳频扩频(FHSS)、GMSK、OFDM等技术,甚至将来的超宽带传输技术UWBT,实现固定、半移动及移动的网络终端对Internet网络进行较远距离的高速连接访问。目前,原则上WLAN的速率尚较低,主要适用于手机、掌上电脑等小巧移动终端。1997年6月,IEEE推出了802.11标准,开创了WLAN先河,WLAN领域现在主要有IEEE802.11x系列与HiperLAN/x系列两种标准。
WAPI是WLAN Authentication and Privacy Infrastructure的缩写。WAPI作为我国首个在计算机网络通信领域的自主创新安全技术标准,能有效阻止无线局域网不符合安全条件的设备进入网络,也能避免用户的终端设备访问不符合安全条件的网络,实现了“合法用户访问合法网络”。WAPI安全的无线网络本身所蕴含的“可运营、可管理”等优势,已被以中国移动、中国电信为代表的极具专业能力的运营商积极挖掘并推广、应用,运营市场对WAPI的应用进一步促进了其他行业市场和消费者关注并支持WAPI。目前市场上已有50多款来自全球主要手机制造商的智能手机支持WAPI,包括诺基亚、三星、索爱、酷派。而中国三大电信运营商也都已开始或完成第一批WAPI热点的招标和竞标工作,以中国移动为例,到目前为止已实际部署了大概10万个WAPI热点。这意味着WAPI的生态系统已基本建成,WAPI商业化的大门已经打开。
(4)短距离无线通信(蓝牙、RFID、IrDA)
蓝牙(Bluetooth)技术,实际上是一种短距离无线电技术。利用蓝牙技术,能够有效地简化掌上电脑、笔试本电脑和移动电话手机等移动通信终端设备之间的通信,也能够成功地简化以上这些设备与因特网之间的通信,从而使这些现代通信设备与因特网之间的数据传输变得更加迅速高效,进而为无线通信拓宽道路。蓝牙采用分散式网络结构以及快跳频和短包技术,支持点对点及点对多点通信,工作在全球通用的2.4GHz ISM(即工业、科学、医学)频段,其数据速率为1Mbps,采用时分双工传输方案实现全双工传输。蓝牙技术为免费使用,全球通用规范,在现今社会中的应用范围相当广泛。
RFID是Radio Frequency Identification的缩写,即射频识别,俗称电子标签。射频识别技术是一项利用射频信号通过空间耦合(交变磁场或电磁场)实现无接触信息传递并通过所传递的信息达到识别目的的技术。目前RFID产品的工作频率有低频(125kHz~134kHz)、高频(13.56MHz)和超高频(860MHz~960MHz),不同频段的RFID产品有不同的特性。射频识别技术被广泛应用于工业自动化、商业自动化、交通运输控制管理、防伪等众多领域,例如WalMart、Tesco、美国国防部和麦德龙超市都在它们的供应链上应用RFID技术。在将来,超高频的产品会得到大量的应用。
IrDA是一种利用红外线进行点对点通信的技术,也许是第一个实现无线个人局域网(PAN)的技术。目前其软硬件技术都很成熟,在小型移动设备,如PDA、手机上广泛使用。事实上,当今每一个出厂的PDA及许多手机、笔记本电脑、打印机等产品都支持IrDA。IrDA的主要优点是无需申请频率的使用权,因而红外通信成本低廉。它还具有移动通信所需的体积小、功耗低、连接方便、简单易用的特点;且由于数据传输率较高,适于传输大容量的文件和多媒体数据。此外,红外线发射角度较小,传输安全性高。IrDA的不足在于它是一种视距传输,2个相互通信的设备之间必须对准,中间不能被其他物体阻隔,因而该技术只能用于2台(非多台)设备之间的连接(而蓝牙就没有此限制,且不受墙壁的阻隔)。IrDA目前的研究方向是如何解决视距传输问题及提高数据传输率。
(5)WiMAX
WiMAX全称为World Interoperability for Microwave Access,即全球微波接入互操作系统,可以替代现有的有线和DSL连接方式,来提供最后一英里的无线宽带接入,其技术标准为IEEE 802.16,其目标是促进IEEE 802.16的应用。相比其他无线通信系统,WiMAX的主要优势体现在具有较高的频谱利用率和传输速率上,因而它的主要应用是宽带上网和移动数据业务。
(6)超宽带无线接入技术UWB
UWB(Ultra Wideband)是一种无载波通信技术,利用纳秒至微微秒级的非正弦波窄脉冲传输数据。通过在较宽的频谱上传送极低功率的信号,UWB能在10米左右的范围内实现数百Mb/s至数Gb/s的数据传输速率。UWB具有抗干扰性能强、传输速率高、带宽极宽、消耗电能小、发送功率小等诸多优势,主要应用于室内通信、高速无线LAN、家庭网络、无绳电话、安全检测、位置测定、雷达等领域。
对于UWB技术,应该看到,它以其独特的速率以及特殊的范围,也将在无线通信领域占据一席之地。由于其高速、窄覆盖的特点,它很适合组建家庭的高速信息网络。它对蓝牙技术具有一定的冲击,但对当前的移动技术、WLAN等技术的威胁不大,反而可以成为其良好的补充。
(7)EnOcean
EnOcean无线通信标准被采纳为国际标准“ISO/IEC 14543-3-10”,这也是世界上唯一使用能量采集技术的无线国际标准。EnOcean能量采集模块能够采集周围环境产生的能量,从光、热、电波、振 动、人体动作等获得微弱电力。这些能量经过处理以后,用来供给EnOcean超低功耗的无线通讯模块,实现真正的无数据线,无电源线,无电池的通讯系统。 EnOcean无线标准ISO/IEC14543-3-10使用868MHz,902MHz,928MHz和315MHz频段,传输距离在室外是300 米,室内为30米。
(8)Z-Wave
Z-Wave是由丹麦公司Zensys所主导的无线组网规格, Z-Wave是一种新兴的基于射频的、低成本、低功耗、高可靠、适于网络的短距离无线通信技术。工作频带为908.42MHz,868.42MHz信号的有效覆盖范围在室内是30m,室外可超过100m,适合于窄带宽应用场合。Z-Wave技术也是低功耗和低成本的技术,有力地推动着低速率无线个人区域网。
㈡ 无线宽带有哪几种接入方式
无线宽带集成了无线宽带(WLAN)和无线宽带(1X/3G)网络接入方式。
另外,根据覆盖范围将宽带无线接入划分为:无线个域网WPAN(WirelessPersonalAreaNetwork)、无线局域网WLAN、无线城域网WMAN、无线广域网WWAN。了解更多服务优惠点击下方的“官方网址”客服220为你解答。
FTTH即Fiber to The Home(光纤到户),是一种新型的家庭宽带接入方式,是指将光网络单元(ONU)安装在用户家里,由上端设备OLT通过光纤将信号传输到用户家中,需要连接一个光猫。
无线网络(如“无线网桥、无线AP”)即利用无线通讯技术,替代传统的网线或光纤把两个或多个不 同的网络连接起来,适合于无法或者不方便有线施工的场合使用,例如港口 、工地、货场、路口等。
与有线网络相比具有组网灵活、施工方便、成本低廉等优点。LSW系列网桥工作在5.8GHz的免申请无线执照的频段,支持点对点、点对多点、中继等模式,能够满足多数应用场景的需求。
㈢ 几种无线宽带接入技术的概念及主要应用
以LMDS、MMDS、Wi-Fi、WiMAX等技术为代表的宽带无线接入技术是宽带接入领域的一支生力军,与有线接入方式相比,这类技术具备启动资金少、初期投入少、建设周期短、提供服务快速,发展具备很大灵活性、可按用户需求动态分配系统资源,系统维护成本低等诸多优势。而其高速接入速率,甚至令一些有线接入技术也难以企及,为发展宽带数据综合业务提供了可能。近年来,随着信息技术的快速发展、市场需求的日益增长及电信市场竞争重心的转移,宽带无线接入技术在中国逐步兴起,市场规模迅速扩大,产业链雏形初步显现,发展前景非常广阔。
其中,Wi-Fi和WiMAX技术备受关注。Wi-Fi已经在我国普遍应用于酒店、园区、校园。其潜在用户很庞大,关键是我们如何去探索一种多赢的商业模式,让其迅速健康的发展起来。
而在传输距离以及传输带宽上,WiMAX(IEEE802.16)技术在众多无线宽带接入技术中备受业界关注。由于其高速上传数据的距离和容量有了很大的提高,所以WiMAX不仅仅可以为无线城域网提供第一公里和最后一公里的接入,而且还是广域网宽带服务的理想选择。对于运营商、Wi-Fi服务商和广域移动运营商,WiMAX可以提供具有成本效益的网络解决方案。在低端市场和园区市场中,WiMAX是扩展DSL和有线服务最理想的选择。当然,WiMAX还有很多新的应用在不断创新中。
㈣ 无线wifi什么原理是什么
Wi-Fi是一个无线网络通信技术的品牌,由Wi-Fi联盟所持有。我为大家整理了无线WiFi的相关内容,供大家参考阅读!
无线WiFi的技术原理
无线网络在无线局域网的范畴是指“无线相容性认证”,实质上是一种商业认证,同时也是一种无线联网技术,以前通过网线连接电脑,而Wi-Fi则是通过无线电波来连网;常见的就是一个无线路由器,那么在这个无线路由器的电波覆盖的有效范围都可以采用Wi-Fi连接方式进行联网,如果无线路由器连接了一条ADSL线路或者别的上网线路,则又被称为热点。
无线WiFi的主要功能
无线网络上网可以简单的理解为无线上网,几乎所有智能手机、平板电脑和笔记本电脑都支持Wi-Fi上网,是当今使用最广的一种无线网络传输技术。实际上就是把有线网络信号转换成无线信号,就如在开头为大家介绍的一样,使用无线路由器供支持其技术的相关电脑,手机,平板等接收。手机如果有Wi-Fi功能的话,在有Wi-Fi无线信号的时候就可以不通过移动联通的网络上网,省掉了流量费。
无线网络无线上网在大城市比较常用,虽然由Wi-Fi技术传输的无线通信质量不是很好,数据安全性能比蓝牙差一些,传输质量也有待改进,但传输速度非常快,可以达到54Mbps,符合个人和社会信息化的需求。Wi-Fi最主要的优势在于不需要布线,可以不受布线条件的限制,因此非常适合移动办公用户的需要,并且由于发射信号功率低于100mw,低于手机发射功率,所以Wi-Fi上网相对也是最安全健康的。
但是Wi-Fi信号也是由有线网提供的,比如家里的ADSL,小区宽带等,只要接一个无线路由器,就可以把有线信号转换成Wi-Fi信号。国外很多发达国家城市里到处覆盖着由政府或大公司提供的Wi-Fi信号供居民使用,我国也有许多地方实施”无线城市“工程使这项技术得到推广。在4G牌照没有发放的试点城市,许多地方使用4G转Wi-Fi让市民试用。
无线WiFi的应用领域
网络媒体
由于无线网络的频段在世界范围内是无需任何电信运营执照的,因此WLAN无线设备提供了一个世界范围内可以使用的,费用极其低廉且数据带宽极高的无线空中接口。用户可以在Wi-Fi覆盖区域内快速浏览网页,随时随地接听拨打电话。而其它一些基于WLAN的宽带数据应用,如流媒体、网络游戏等功能更是值得用户期待。有了Wi-Fi功能我们打长途电话(包括国际长途)、浏览网页、收发电子邮件、音乐下载、数码照片传递等,再无需担心速度慢和花费高的问题。Wi-FiWi-Fi技术与蓝牙技术一样,同属于在办公室和家庭中使用的短距离无线技术。
掌上设备
无线网络在掌上设备上应用越来越广泛,而智能手机就是其中一份子。与早前应用于手机上的蓝牙技术不同,Wi-Fi具有更大的覆盖范围和更高的传输速率,因此Wi-Fi手机成为了2010年移动通信业界的时尚潮流。
日常休闲
2010年无线网络的覆盖范围在国内越来越广泛,高级宾馆、豪华住宅区、飞机场以及咖啡厅之类的区域都有Wi-Fi接口。当我们去旅游、办公时,就可以在这些场所使用我们的掌上设备尽情网上冲浪了。厂商只要在机场、车站、咖啡店、图书馆等人员较密集的地方设置“热点”,并通过高速线路将因特网接入上述场所。这样,由于“热点”所发射出的电波可以达到距接入点半径数十米至100米的地方,用户只要将支持Wi-Fi的笔记本电脑或PDA或手机或psp或ipodtouch等拿到该区域内,即可高速接入因特网。
在家也可以买无线路由器设置局域网然后就可以痛痛快快的无线上网了。
无线网络和3G技术的区别就是3G在高速移动时传输质量较好,但静态的时候用Wi-Fi上网足够了。
无线网络的规模商业化应用,在世界范围内罕见成功先例。问题集中在两个方面:一是大型运营商对这一模式的不认可;二是本身缺乏有效的商业模式。但基于无线网络技术的无线局域网已经日趋普及,这意味将来可以十分方便的应用。一旦存在Wi-Fi网络的公众场合,解决了运营商的互联互通、高收费、漫游性的问题,Wi-Fi将来从一个成功的技术转化为成功的商业。
客运列车
2014年11月28日14时20分,中国首列开通WiFi服务的客运列车——广州至香港九龙T809次直通车从广州东站出发,标志中国铁路开始WiFi(无线网络)时代。
列车WiFi开通后,不仅可观看车厢内部局域网的高清影院、玩社区游戏,还能直达外网,刷微博、发邮件,以10-50兆的带宽速度与世界联通。
公共厕所
公厕免费WIFI
重庆南岸区2016年将修建20座带有免费WIFI功能的公厕 。
无线WiFi的产生背景
无线网络是IEEE定义的无线网技术,在1999年IEEE官方定义802.11标准的时候,IEEE选择并认定了CSIRO发明的无线网技术是世界上最好的无线网技术,因此CSIRO的无线网技术标准,就成为了2010年Wi-Fi的核心技术标准。
无线网络技术由澳洲政府的研究机构CSIRO在90年代发明并于1996年在美国成功申请了无线网技术专利。(US Patent Number 5,487,069)发明人是悉尼大学工程系毕业生Dr John O'Sullivan领导的一群由悉尼大学工程系毕业生组成的研究小组 。IEEE曾请求澳洲政府放弃其无线网络专利,让世界免费使用Wi-Fi技术,但遭到拒绝。澳洲政府随后在美国通过官司胜诉或庭外和解,收取了世界上几乎所有电器电信公司(包括苹果、英特尔、联想、戴尔、AT&T、索尼、东芝、微软、宏碁、华硕,等等)的专利使用费。2010年我们每购买一台含有Wi-Fi技术的电子设备的时候,我们所付的价钱就包含了交给澳洲政府的Wi-Fi专利使用费。
2010年全球每天估计会有30亿台电子设备使用无线网络技术,而到2013年底CSIRO的无线网专利过期之后,这个数字预计会增加到50亿。
无线网络被澳洲媒体誉为澳洲有史以来最重要的科技发明,其发明人John O'Sullivan被澳洲媒体称为”Wi-Fi之父“并获得了澳洲的国家最高科学奖和全世界的众多赞誉,其中包括欧盟机构,欧洲专利局,European Patent Office(EPO)颁发的European Inventor Award 2012,即2012年欧洲发明者大奖。
无线WiFi的组成结构
一般架设无线网络的基本配备就是无线网卡及一台AP,如此便能以无线的模式,配合既有的有线架构来分享网络资源,架设费用和复杂程度远远低于传统的有线网络。如果只是几台电脑的对等网,也可不要AP,只需要每台电脑配备无线网卡。AP为Access Point简称,一般翻译为“无线访问接入点”,或“桥接器”。它主要在媒体存取控制层MAC中扮演无线工作站及有线局域网络的桥梁。有了AP,就像一般有线网络的Hub一般,无线工作站可以快速且轻易地与网络相连。特别是对于宽带的使用,Wi-Fi更显优势,有线宽带网络(ADSL、小区LAN等)到户后,连接到一个AP,然后在电脑中安装一块无线网卡即可。普通的家庭有一个AP已经足够,甚至用户的邻里得到授权后,则无需增加端口,也能以共享的方式上网。
硬件设备
随着无线网络的不断兴起和发展,2010年无线网络模块的应用领域相当广泛!
但是Wi-Fi模块毕竟是一高频性质的产品,它不象普通的消费类电子产品,生产设计的时候会有一些莫名其妙的现象和问题,让一些没有高频设计经验的工程师费劲心思,有相关经验的从业人员,往往也是需要借助昂贵的设备来协助分析。
对于无线网络部分的处理,有直接把Wi-Fi部分Layout到PCB主板上去的设计,这种设计,需要勇气和技术,因为本身模块的价格不高,主板对应的产品价格不菲,当有Wi-Fi部分产生的问题,调试更换比较麻烦,直接报废可惜;所以很多设计都愿意采用模块化的Wi-Fi部分,这样可以直接让Wi-Fi部分模块化,处理起来方便,而且模块可以直接拆卸,对于产品的设计风险和具体的耗损也有很大帮助。
具体的硬件设计应该和相关Wi-Fi模块咨询时,要考虑清楚以下方面:
通信接口方面:2010年基本是采用USB接口形式,PCIE和SDIO的也有少部分,PCIE的市场份额应该不大,多合一的价格昂贵,而且实用性不强,集成的很多功能都不会使用,其实也是一种浪费。
供电方面:多数是用5V直接供电,有的也会利用主板设计中的电源共享,直接采用3.3V供电。
天线的处理形式:可以有内置的PCB板载天线或者陶瓷天线;也可以通过I-PEX接头,连接天线延长线,然后让天线外置。
规格尺寸方面:这个可以根据具体的设计要求,最小的有nano型号(可以直接做nano无线网卡);有可以做到迷你型的12*12左右(通常是外置天线方式采用);通常是25*12左右的设计多点(基本是板载天线和陶瓷天线多,也有外置天线接头)。
跟主板连接的形式:可以直接SMT,也可以通过2.54的排针来做插件连接(这种组装/维修方便)。
软件的调试要结合具体的方案主控,毕竟Wi-Fi部分仅仅是一个无线的收发而已。很多用户在咨询的时候,很容易混淆!可以说,2013年Wi-Fi模块应用最火爆的领域就是MID市场,同时传统的一些网络领域应用市场也有渗透,比如一些工业控制领域/网络播放领域/甚至一些遥控领域也有在考虑的,基本上是能用到网络的部分都希望尝试无线化!
无线WiFi的网络协议
一个Wi-Fi联接点网络成员和结构站点(Station),网络最基本的组成部分。
基本服务单元(Basic Service Set,BSS)是网络最基本的服务单元。最简单的服务单元可以只由两个站点组成。站点可以动态地联结(Associate)到基本服务单元中。
分配系统(Distribution System,DS)。分配系统用于连接不同的基本服务单元。分配系统使用的媒介(Medium)逻辑上和基本服务单元使用的媒介是截然分开的,尽管它们物理上可能会是同一个媒介,例如同一个无线频段。
接入点(Access Point,AP)。接入点既有普通站点的身份,又有接入到分配系统的功能。
扩展服务单元(Extended Service Set,ESS)。由分配系统和基本服务单元组合而成。这种组合是逻辑上,并非物理上的--不同的基本服务单元物有可能在地理位置相去甚远。分配系统也可以使用各种各样的技术。
关口(Portal),也是一个逻辑成分。用于将无线局域网和有线局域网或其它网络联系起来。
这儿有3种媒介,站点使用的无线的媒介,分配系统使用的媒介,以及和无线局域网集成一起的其它局域网使用的媒介。物理上它们可能互相重叠。
IEEE802.11只负责在站点使用的无线的媒介上的寻址(Addressing)。分配系统和其它局域网的寻址不属无线局域网的范围。
IEEE802.11没有具体定义分配系统,只是定义了分配系统应该提供的服务(Service)。整个无线局域网定义了9种服务,5种服务属于分配系统的任务,分别为,联接(Association),结束联接(Diassociation),分配(Distribution),集成(Integration),再联接(Reassociation)。
4种服务属于站点的任务,分别为,鉴权(Authentication),结束鉴权(Deauthentication),隐私(Privacy), MAC数据传输(MSDU delivery)。
无线WiFi的认证种类
前Wi-Fi联盟所公布的认证种类有:
*WPA/WPA2:WPA/WPA2是基于IEEE802.11a、802.11b、802.11g的单模、双模或双频的产品所建立的测试程序。内容包含通讯协定的验证、无线网络安全性机制的验证,以及网络传输表现与相容性测试。
*WMM(Wi-Fi MultiMedia):当影音多媒体透过无线网络的传递时,要如何验证其带宽保证的机制是否正常运作在不同的无线网络装置及不同的安全性设定上是WMM测试的目的。
* WMM Power Save:在影音多媒体透过无线网络的传递时,如何透过管理无线网络装置的待命时间来延长电池寿命,并且不影响其功能性,可以透过WMM Power Save的测试来验证。
*WPS(Wi-Fi Protected Setup):这是一个2007年年初才发布的认证,目的是让消费者可以透过更简单的方式来设定无线网络装置,并且保证有一定的安全性。当前WPS允许透过Pin Input Config(PIN)、Push Button Config(PBC)、USB Flash Drive Config(UFD)以及Near Field Communication 、Contactless Token Config(NFC)的方式来设定无线网络装置。
*ASD(Application Specific Device):这是针对除了无线网络存取点(Access Point)及站台(Station)之外其他有特殊应用的无线网络装置,例如DVD播放器、投影机、打印机等等。
*CWG(Converged Wireless Group):主要是针对Wi-Fi mobile converged devices 的RF 部分测量的测试程序。
无线WiFi的发展前景
融合3G
从覆盖范围、传输速率、基本业务类别、可移动速率、前向扩展、演进走向等多方面综合分析,3G与WLAN是一种可以扬长避短的互补关系。
对于GPRS、CDMA1x、1xRTT、EV-DO、EV-DV等技术而言,上下链路数据业务的对称性是Wi-Fi的一个明显优势。对于3G室内的2Mbit数据速率,Wi-Fi也具有绝对的优势,它当前采用的是802.11b标准,理论数据速率可达11Mbit,实际的物理层数据速率支持1、2、5.5、11Mbit可调,覆盖范围从100-300m。随着802.11g/a、802.16e、802.11i、WiMAX等技术、协议标准的制定和完善,加上Wi-Fi联盟对市场快速的反应能力,Wi-Fi正在进入一个快速发展的阶段。其中,作为802.11b发展的后继标准802.16(WiMAX Worldwide Interoperability for Microwave Access全球微波接入互操作性),已经在2003年1月正式获得批准,虽然它采用了与802.11b不同的频段(10-66GHz),但是作为一项无线城域网(WMAN)技术,它可以和802.11b/g/a无线接入热点互为补充,构筑一个完全覆盖城域的宽带无线技术。Wi-Fi/WiMAX作为Cable和DSL的无线扩展技术,它的移动性与灵活性为移动用户提供了真正的无线宽带接入服务,实现了对传统宽带接入技术的带宽特性和QoS服务质量的延伸。
对于Wi-Fi技术而言,漫游、切换、安全、干扰等方面都是运营商组网时需考虑的重点。随着骨干传输网容量和传输速率的提高,无论采用平面或者两层的架构都不会影响到用户的宽带快速接入;随着IAPP以及MobileIP技术的完善、IPv6的发展也可以最终解决漫游和切换的问题;802.11i标准的产生将提供更多的包括WPA2、多媒体认证等安全策略;不断成熟的组网方案和干扰预检测机制都可以减少频率资源开发带来的干扰。
Wi-Fi/WiMAX的市场目标是成为宽带无线接入城域网技术,基本目标是要提供一种城域网领域点对多点的多厂商环境下可有效地互操作的宽带无线接入手段,以实现满足3G标准的以无线广域网WWAN为基本模式、以公众语音及多媒体数据为内容、在全球范围内漫游的个人手机终端的基本市场定位。Wi-Fi/WiMAX也可以作为3G无线广域/城域、多点基站互联支持手段的补充。
Wi-Fi/WiMAX的发展方向包括:网络技术,覆盖更大的范围,从热点到热区到整个城市;Wi-Fi手持终端和VoWLAN业务必然成为潜在的应用模式;基于IP的Wi-Fi/WiMAX的交换技术和开放的业务平台,将使WLAN网络更智能、更易管理;基于多层次的安全策略(WEP、WPA、WPA2、AES、等)提供不同等级的安全方案,将使企业、个人用户可以根据不同的性价比来选择满足自己需要的安全策略。
1.基于全IP的网络架构
不管是商用的还是正在试验的(CDMA2000/WCDMAR99/R4/TD-SCDMA)3G标准都不是基于全IP的网络,比如CDMA2000是基于ANSI-41;WCDMA99/TD-SCDMA是基于传统的GSM-MAP、R4软交换的承载和控制分离方式,而直到R5引入了IMS才实现全IP的核心网。显然全IP的核心网络也是3G发展的方向,采用基于全IP的核心网不但可以与无线接入方式独立地发展,还可以支持包括Wi-Fi/WiMAX、WCDMA、Bluetooth等多种无线接入方式。在3G的R6中已经开始把WLAN和3G一同考虑了。
2.共用开放的业务平台和运营支撑系统
Wi-Fi/WiMAX和3G不同的承载特性(吞吐量、延时、QoS、对称性等)为用户享受语音、数据、多媒体业务提供更多的接入方式选择;它们可通过共用开放的业务平台融合不同的业务引擎实现网络间互通;根据网络服务区内的性能,用户可以手工或者自动选择接入那个网络;同时支持WLAN和3G网络的运营支撑系统,可以对双网实现统一的运营管理、计费、甚至用户身份认证,最大限度降低网络建设、维护成本。
㈤ 无线宽带技术 到底和国外的差距有多大
宽带的无线接入技术具备启动资金少、建设的周期短、提供服务快速、具备很大的灵活性、可根据需求动态分配系统资源、系统维护成本低等优势。近年来,随着现代信息技术的发展、市场需求的增长和通信行业的竞争目标转移,促进了宽带无线接入技术在中国的兴起,市场化的规模迅速扩大。从总体的无线宽带接入技术来看,和国外的无线宽带接入技术相比,还是有一定的差距。
传统宽带瓶颈促进无线宽带技术发展
传统的宽带固定接入最大的瓶颈就是缺乏灵活性和地理环境的限制,在现代信息化时代,信息的传播速度超过以往任何时代的,信息的快速、准确能很大程度的提高商业、民用等工作效率和经济效益。现代信息的时效性在商业上表现的非常突出,一条信息可能在几个小时甚至几分钟未作处理就失去了他的价值。如果在外面出差未能及时处理这信息将会造成一定的损失,固定宽带技术因为地理环境的限制而无法随时接入,无线宽带接入对这种环境约束小,能够在无线网络覆盖的范围内及时连接网络处理时效性的问题。
随着通信技术和新业务的发展,市场和技术的相互作用,未来通信领域的新特点也显现出来。用户感觉到固网宽带接入完全能满足他们家庭和办公等固定环境需求,所以对移动宽带服务便觉得并不感兴趣。然而传统的移动通信仅仅只能满足简单的语音、短信和低数据业务。无线宽带的接入能提供传统用户的语音、视频和更高速率业务的需求。移动通信和无线宽带技术也在融合
,只不过国内的速度相比国外发展了很多。
移动宽带化方面,
3GPP/3GPP2已经制定了1xEV-DO、HSDPA/HSUPA等技术标准,在移动环境下实现宽带数据传输。在宽带移动化方面,
IEEE802工作组先后制定了WLAN和WiMAX等技术规范,意图能沿着固定、游牧/便携、移动这样的演进路线逐步实现宽带移动化,其中IEEE 802.16 WiMAX是宽带移动的重要里程碑,促进了移动宽带的演进和发展。无线宽带的高速接入速率,甚至连一些有线接入技术也难以相比,为发展宽带数据综合业务提供有力条件。
在LMDS、MMDS、Wi-Fi、WiMAX、3G等技术当中,Wi-Fi和WiMAX技术备受关注。目前Wi-Fi已经在我国开始应用于酒店、社区、校园之中。其用户的潜在的需要大,加快实现无线宽带的接入,让无线的应用迅速健康的发展起来。在传输距离和传输带宽上。
WiMAX(IEEE802.16)技术在在众多的无线技术当中备受关注,它在高速上传数据的距离和容量上有很大的提高,所以WiWAX不仅仅可以为无线城域网提供第一公里和最后一公里的接入,而且还是广域网宽带服务都是理想的选择。WiMAX可以提供具有成本效益的网络解决方案。在低端市场和园区市场中,WiMAX是扩展DSL和有线服务最理想的选择。当然,WiMAX还有很多新的应用在不断创新中。
宽带无线接入技术落后国外水平
目前,国内的无线宽带接入技术应用落后国外,国内目前3G网络的建设和国外现在3G网络的普遍形成对比。3G是支持高速无线通信的ITU规范,这一遍布全球的无线连接与GSM、TDMA和CDMA相兼容,从而为语音通信和互联网连接提供最理想能力。
中国3G需求不足一直被认为是3G的障碍,然而事实却是目前移动网络带宽和传输速度成为新业务开展的最大瓶颈。在去年的时候美国第三大电信运营商SprintNextel宣布将采用WiMAX/WiBro无线技术部署其4G无线宽带网络,韩国独立研发的新一代移动通信技术WiBro将打入通信技术的宗主国--世界最大的通信市场美国。
美国明年将建设第一个大规模WiMAX网,实际下载速度将达每秒2-4MB,较目前CDMA20001xEVDO网络快4倍。然而国内的3G网络预计在明年奥运前投入使用。4G技术集3G与WLAN于一体,能够传输高质量视频图像,其传输质量与高清电视不分伯仲。802.11x就是4G,尽管目前对于4G的概念尚未有明确定义,但按照国际电联的说法,4G系统能够以100Mbps的速度下载,上传速度也能达到20Mbps,并能够满足几乎所有用户对于无线服务的需求。
巨大的市场无线通信市场将拉近国外无线宽带技术的距离
宽带的无线接入与连接技术种类各有优点和缺点,把各个技术融合将成为未来宽带无线接入的趋势。在中国现代信息的迅速发展,人口密集和经济发达地区,城市建设发生了翻天覆地的变化,传统的立杆光纤、电缆甚至是地埋的光纤、电缆都受到城市的美化和建设的限制个阻碍,无线宽带接入到普及越来越成为中国社会的需要。
从设备的投资上来看,像偏远的农村宽带有线接入的设施投资巨大,造成运营成本增大,收益也不见效果,并且还可能因为一些环境、地理的条件会更加增大投资。而且像这种投资几乎有点不太现实,如果通过无线宽带接入,实现起来不管是投资方面还是灵活性方面都非常有优势。
中国人口众多,随着社会经济的发展,以后电脑将成为每个家庭必需品,上网人群的不断增加,对宽带接入的前景非常乐观,市场潜力之巨大。如果利用宽带无线接入技术降低运营成本,降低上网费用,无疑是在推动中国社会的发展,也促进宽带无线技术的发展。在如今市场竞争激烈的社会,如何降低运营成本来提高经济效益,对运营商都有着重大的意义。从全球的通信行业来看,通信技术的宽带化、无线化都成了以后发展的一大趋势。
由于市场前景的可观,宽带无线接入技术的实现比较容易,在实现宽带无线接入后,相对应的研究无线宽带接入技术,来突破新的传输速率、距离和其他可观条件的影响等技术。
㈥ 无线宽带是什么
无线宽带业务是指在有中国电信无线网络覆盖的地方,用户可通过中国电信无线宽带客户端软件,选择无线宽带(WLAN)或无线宽带(4G)、无线宽带(3G)或无线宽带(1X)网络接入方式上网,用户随时随地都能享受高速的宽带上网服务,并享受中国电信提供的丰富增值服务。随选宽带,想快就快,中国电信贵州客服公众号回复关键词“随选宽带”可以直接办理,方便快捷。客服222为你解答。
㈦ 什么是宽带宽带和wifi有什么区别
宽带(Broadband)是指一种高速传输数据的通信技术,其特点是传输速率高、带宽宽广、信息损失少、可进行多媒体数据传做稿输等。常见的宽带接入方式包括DSL、光纤、有线电视等。宽带通常需要使用调制解调器(modem)进行接入,以便将数字信息转换为适合传输的格式。
WiFi(Wireless Fidelity)则是一种无线局域网技术,它通过无线信号传输数据,无需使用网络线连接枯模,方便移动设备的使用。WiFi技术使用的频段在2.4GHz和5GHz之间,允许设备在一定距离内无线通信。
宽带和WiFi都是用于连接互联网的方式,但它们的主要区别在于传输媒介不同。宽带使用有线的方式连接,WiFi则通过无线连接。宽带的速度相对更稳定,但需要有线没胡缓连接,而WiFi的速度可能受到物理障碍和干扰的影响,但更加方便移动设备的使用。
㈧ 无线宽带接入的简介
无线宽带接入分为固定接入和移动接入两种。无线宽带接入技术代表了宽带接入技术的一种新的不可忽视的发展趋势。
无线宽带接入技术的进展
无线宽带接入技术主要有两类技术体系,一类是蜂窝移动通信技术,以3G、HSDPA、HSUPA、LTE、AIE、4G等方向发展;另一类无线技术是以MMDS、WiFi、WiBro、WiMAX、MCWill技术。适合游牧/移动宽带无线接入应用的系统基本采用OFDMA。OFDMA结合了时分和频分多址技术,客户终端可以在上行链路中只使用几个子载频,所以将发射功率集中在这几个迟缓子载频内,能够提高信噪比十几分贝,满足笔记本电脑0dB天线室内接收需求。
1.1移动蜂窝宽带接入技术
移动数据业务基本是一个专网,下载速率在lOOkbit/s以下。智能手机可以接入互联网,但是性能不理想没有形成主流应用。3GPP和3GPP2都已认识到他们目前的系统提供互联网接入业务的局限性,试图在原来的体系框架内,首先在下行链路中采用分组接入技术,大幅度提高IP数据下载和流媒体速率。3G系统在支持IP数据业务时频谱效率低的原因是,其面向连接固定带宽的结构不适应突发式IP数据业务的需求。为此,3GPP在R5系统中增加了高速下行分组接入(HSDPA)(被称为3.5G),速率可以达到10Mbit/s以上,随后将进一步在R6中增加高速上行分组接入(HSUPA),核心网也在向全IP网演化。为了能够与WiMAX竞争,3GPP在2004年底发展了长期演化(LTE)计划(被称为3.9G)。
1.2无线宽带接入技术
宽带无线接入(Broadband Wireless Access,BWA)技术目前还没有通用的定义,一般是指把高效率的无线技术应用于宽带接入网络中,以无线方式向用户提供宽带接入的技术。IEEE 802标准组负责制定无限宽带接入BWA各种技术规范,根据覆盖范围将宽带无线接入划分为:无线个域网WPAN(Wireless Personal Area Network)、无线局域网WLAN、无线城域网WMAN、无线广域网WWAN。
无线宽带接入技术主要包括:
以IEEE 802.20为代表的无线广域网(Wireless Wide Area Network,WWAN)技术;
以WiMAX(IEEE 802.16)为代表的无线城域网(Wireless Metropolitan Area Network,WMAN)技术;
以Wi-Fi(IEEE 802.11)为代表的无线局域网(Wireless Local Area Network,WLAN)技术;
以UWB(IEEE 802.15.3)为代表的无线个域网(Wireless Personal Area Network,WPAN)技术。
这些新兴的宽带无线接入技术是宽带接入领域的一支生力军,与有线接入方式相比,这类技术具备启动资金少、初期投入少、建设周期短、提供服务快速,发展具备很大的灵活性,可按用户需求动态分配系统资源,系统维护成本低等诸多优势。
近年来,随着信息技术的快速发展,市场需求的日益增长及电信市场竞争重心的转移,宽带无线接入技术在中国逐步兴起,市场规模迅速扩大,产业链逐步完善,发展前景非常广阔。
其中比较有代表性的是WiFi和WiMAX技术,虽然在商业上还不成功,WiFi已经有了大规模的应用,这里就不作介绍,其中相关技术有Wibro和WcWill技术。
McWiLL(Multi—Carrier Wireless Internet LocalLoop)是信威公司的专有技术,目前正在开发属于SCDMA R4和R5版本的McWiLL,它是继SCDMA无线本地环路接入系统之后针对高速数据传输的需要而开发的一种无线宽带城域网接入系统。该标准在网络设备和用户设备都已经有比较成熟的应用,答旦运但是私有标准预计会阻碍发展,而WiBro就已经作为WiMAX的一个子集加入到了WiMAX阵营。
1.3两类无线宽带技术的比较
WiMAX面向的是宽带无线接入市场,3G移动通信清梁面向的是以手机为主的蜂窝移动通信系统,一般来说它们之间是互补的关系。但是当3GPP面向宽带无线接入市场发展HSDPA,尤其是发展LTE之后就出现了竞争关系。
3GPP决定发展LTE是一次有战略意义的决定,对于其未来的发展有深远影响。尽管目前LTE的发展能否摆脱原来体系结构的束缚还有疑问,但是其成员是目前3G的主流运营商,力量雄厚又拥有3G频率使用许可证,他们发展的LTE即使性能差一些,在宽带无线接入市场上仍然拥有很强的竞争力,而且他们一旦拥有LTE就不会再考虑使用WiMAX等竞争的技术。此外,LTE使用3G的频率,甚至可以使用2G的频率,有较好的穿透能力,保障系统有较高的性能价格比。
WiMAX是由IT界发展的宽带无线接入技术,由于没有原体制的束缚,最符合宽带接入市场的需求。由于LTE的出现,可能采用WiMAX的运营商主要是固网运营商和新运营商。Intel等IT设备制造商是WiMAX坚定的、强有力的支持者,他们希望通过WiMAX进入宽带无线接入市场。Intel在未来笔记本电脑中捆绑WiMAX的承诺增强了WiMAX的竞争能力。