海蒂·拉玛。
她是一名演员,不是一名技术人员,但由于在大学期间读的是通信工程,所以对通信领域还是有不少的了解,有一次海蒂在跟以为钢琴师演奏的过程中,发现音乐中的转调技巧很适合用来给通信进行加密。
1997年,美国电岩肆凯子前沿基金会决定给海蒂·拉玛授予“电子前沿基金会”先锋奖雹拆。Wi-Fi(WirelessFidelity)又称“行动热点”,是创建于IEEE802.11标准的无线局域网的技术,基于两套系统的密切相关,有人把Wi-Fi当做IEEE802.11标准的同义术语。Wi-Fi由Wi-Fi联盟(成立于1999年,2002年10月正式改名为Wi-FiAlliance)粗唤所持有,目的是改善基于IEEE802.11标准的无线网路产品之间的互通性。
B. 与中国电信业有关的无线通信或卫星通信前沿技术
一、引言
随着移动通信系统的发展,卫星移动通信系统在其中起着越来越重要的作用。卫胡滑星通用移动通信系统(SUMTS)将为UMTS用户提供全球性的覆盖,使用户在任何地方都可以进行通信。要为将来的清州固定和移动通信提供全球性的覆盖,卫星系统是必不可少的。卫星部分将在全球信息基础结构(GII)中起一个很重要的作用,欧洲的COST252工作组正在制定相关的卫星个人通信标准。3G移动系统的数据速率为144kb/s到2Mb/s,卫星部分速率上限是144kb/s。在ACTS项目和Ka频段的商用系统中,卫星部分的目标是为固定和移动终端提供更高的数据速率。3G全球多卫星多波束系统采用码分多址技术,如欧洲ESA的宽带CDMA卫星系统(SW-CDMA),它是卫星宽带/时分多址接入技术与CDMA技术的结合。
二、卫星系统结构
卫星系统有助于基于TCP/IP的Internet应用的增长,尤其是要求高带宽和带宽点播灵活性的多媒体业务。因此,ATM、TCP/IP和卫星技术将会是未来全球系统联网的基础。
卫星是网络基础设施的一部分,它与地面骨干网络的互操作性很重要,有助于提供QoS和兼容不同类型的业务。
1.系统情况
SUMTS----SUMTS网络与地面网络相接,以提供2Mb/s的数据速率。
SATM(卫星异步转移模式)----在卫星ATM的分层实现上,存在两种不同的观点,一种是不改变现有卫星的协议结构,只是将ATM协议放在非ATM的卫星协议平台上。另一种观点是卫星网采用完全的ATM结构,其中卫星部分的ATM层是S-ATM(以区别地面固定网中的ATM层),支持传统的ATM业务、TCP/IP应用和UDP/IP应用。前者的优点是卫星平台对不同用户终端的协议标准是透明的;卫星访问协议止于关口站,不会为外界网看到;不需要修改现行的卫星标准。缺点是很难为各种不同的协议提供最好的性能。具有这种分层结构的卫星ATM称之为在非ATM上的ATM封装。后者的优点是适用于一个高度集成的星地ATM环境,缺点是协议复杂,需要修改现有的各种卫星协议和网间接口协议。
SIP(卫星IP)----使用IP传输,可以直接连接到IP骨干网,也便于采用Internet的新标准,如IPv6、RSVP、移动IP等。有卫星星际链路(ISL)的卫星系统能够使用冗余的路径,可以避免网络的拥塞。在低轨道(LEO)卫星网络中,使用IP路由很有吸引力,它支持组播和与地面IP网络的连网,但是它不适合电路交换网络。不同的商用系统采用不同的方法:Celestri和SkyBridge将ATM并入到卫星交换;Teledesic使用专用的无连接自-适应路由协议,提供快速的分组交换。
2.系统要求
容量----SUMTS为单个用户提供的数据速率可以达到144kb/s。使用Ka频段的宽带卫星系统为每个用户提供的数据速率如下:Teledesic全球卫星系统的上行链路为16kb/s?2Mb/s,下行链路为16kb/s?64Mb/s;Spaceway的上行链路为16kb/s?6Mb/s,下行链路高达92Mb/s;Astrolink的上行链路最高可达20Mb/s,下行链路最高可达155Mb/s。
频段----目前,UMTS的频段为1885?2025MHz和2110?2200MHz,为卫星部分留出的只有30MHz。卫星移动通信(MSS)的上下行链路分别在L和S频段运行,反馈链路在C频段提供传统的窄带业务,要提供宽带业务,就得使用Ka频段(20?30GHz)和极高频(EHF)频段(40?50GHz)。
3.卫星星座
现在的多数卫星系统采用地球静止轨道(GEO)卫星系统。GEO的性能受传输时延的影响,时延为0.5秒,这是从卫星到地面的传播时间。这对实时业务流来说,是很不利的。
新一代的宽带系统要求很低的时延,这就要求在非地球静止轨道(NGEO)星座有更多的低中轨道卫星。LEO卫星(高度为500?2000km)的时延为10-40ms,但是LEO卫星的覆盖范围比较小,传输时有很大的多普勒频移。为了保持实时传输不被中断,这需要频繁的星际切换,这意味着波束之间的切换需要巨大的信答做蔽令开销(一个波束相当于地面蜂窝系统中的一个小区)。
中轨道(MEO)卫星(高度为2000?20000km)处在GEO和LEO卫星之间。在用户切换到下一个卫星之前可以持续一个小时。
也可以使用其他的卫星星座。例如,高椭圆轨道(HEO)卫星系统,它的远地点和近地点相距很远。商用Ellipso和Pentriad系统就是使用的HEO卫星,当卫星沿着远地点缓慢地移动时,可以提供通信业务。但是,这些系统仅仅限于特定的业务。
移动性治理机制一一当在运营商之间进行呼叫切换时,由于在NGEO星座中卫星动态的移动,采用GSM中的方式进行移动性治理会导致很大的信令开销,可以通过计算用户呼叫时需要FES切换的概率来克服这一点。在这种移动性治理机制中,移动终端离开FES一定距离时,就进行位置更新。用户的移动性由基于卫星的定位系统检测。FES区域的终端可以进行位置更新,在一定范围内可能不需要进行FES切换。业务提供商的QoS(包括FES切换概率,呼叫丢失率等)决定该FES服务区域的大小。
SATM----许多移动性问题都与无线ATM网络相关,比如虚拟连接树,可以用于动态卫星FES网络,根据最初的虚拟连接树算法,移动终端可以在一个很大的区域内自由地漫游。该区域由几个无线接入点覆盖,并且使用预定义的虚电路执行切换。在呼叫建立时,一个移动用户接入到虚拟连接树,在连接树的中间交换点建立查询表。
在S-ATM网络中,连接树的根可以是一个GTW站,或者是一个ATM交换机。叶子节点为输入部分,即一个或者一组波束。虚拟树将根据卫星地移动动态地建立和释放。当一个移动用户接入到一个卫星站时,发起一次呼叫后,它的位置就能够准确地计算出来,它的下一个切换时间也能够很准确地猜测。在呼叫建立阶段,根据移动的多波束状态可以猜测用户切换的次数和方向。从这一点看,它比地面移动系统更有优势,因为所访问的波束列表可以预先定义。
8.协议
S-ATM----主要有两种协议用于宽带卫星网络:
ATM协议封装和快速分组交换,在卫星部分使用,用于用户建立和治理。根据卫星的接口和网关,卫星协议支持不同的协议标准。现有的协议无需修改,但是会使分组的开销增大,导致协议的效率下降。
一个与ATM协议栈高度综合的方案是,用S-ATM层取代标准的ATM层,只需对信元头和功能进行相应的修改,MAC使用多频时分多址(MF-TDMA)或者CDMA。
这两种协议有很多相似性,都存在一个大小固定的信息单元,通过不同的网络接口,可以运载控制数据和用户数据。在网络连通时,在不同的高层协议建立、保持、释放和传输用户数据。在未来的2?5年内,多数在Ka频段的标准将采用新版的ATM协议层。S-ATM信元头中包括必要的路由和控制信息,不同的技术如部分分组丢弃(PPD)技术,可以用来检测卫星交换中的错误信元。
PRMA----典型的分组预约多址协议(PRMA)用于地面蜂窝系统。它基于时隙ALOHA接入技术和TDMA传输模式,与时隙预约机制的随机接入相结合。通过利用通话中的平静期,可以在一个信道上复用多个通话。因此,给终端分配的时隙并不固定,而是根据当前的活动终端动态地进行处理。PRMA在治理语音和数据流,容量改进方面都优于TDMA。
在语音业务中的实时可变比特率VBR业务和数据业务中的可用的比特率ABR业务中,可以使用一种改进的PRMA机制,PRMA-HS。当终端等待接收预约结果时,终端并不停止竞争。这种机制可以提供更高的效率,它对LEO系统中的时延并不敏感。因此,对未来移动通信系统来说,PRMA-HS可以作为一个统一的MAC协议解决方案。
9.空中接口
卫星中的传播和卫星分集是两个主要的问题,因为将来的移动和卫星业务可能采用NGEO卫星星座。对LEO、MEO、HEO和GEO系统在L频段上的测试已经进行了。在EHF,一些相关的测试表明在直接路径上传播的信号有阴影效应,在郊区的道路上很少出现回声。与L频段相比,EHF频段的回声更少,衰减更高。在市区,信号的阴影效应更明显。
在EHF频段,Lntz提出了一个信道模型,它有两种:好的信道服从Ricean分布,差的信道服从瑞利分布,分别对应于无阴影效应和有阴影效应两种情况。考虑到上行链路上的功率限制,减少阴影效应的措施有:路径分集,卫星分集。
使用主动天线阵列,可以通过配置卫星天线来覆盖固定波束,或者外形和大小,动态地改变波束业务区。在这两种情况下,最重要的要求是不断的覆盖业务区。
动态覆盖答应系统的容量有很大的提高,也有很高的卫星分集概率(>90%),因此,这对未来系统的设计很有吸引力。
三、CDMA系统
3G中的SUMTS采用WCDMA,它适合可变速率业务,CDMA技术是S-UMTS的基础。
1.TCH码
TCH码是一类二进制、非线性、非系统的循环分组码,其长度n=2m,它在FEC和最大似然判决解码中表现出了很好的性能,在译码器中使用DSP就可以实现。
TCH序列有很好的自相关和互相关特性,这一点很重要,因为CDMA系统不仅仅靠互相关特性来减少用户之间的干扰,也靠自相关特性来进行同步处理,因此,TCH码可以使用简单的相关接收机来检测CDMA中不同的用户。
2.CDMA接收机
CDMA使用有时变结构的节点,用多用户检测来减少多径衰落。由于多址干扰(MAI),传统的CDMA通信系统中的单用户接收机性能不是很好。
尽管最佳多用户检测算法提供了很高的容量潜力和性能改善,但是它实施起来比较复杂。故提出了次优的方案,如去相关检测或者多阶段接收机。一个SW-CDMA中的多用户消除检测机制,接收机有一个分级结构,对所有干扰用户,根据用户需求,在进行最后的判决前,在一个选择的基础上(S-PIC)执行并行干扰消除多用户检测器(PIC)。接收机的基本假设是,将匹配滤波器的输出分为两个不同的组,根据接收信号的功率。可靠信号在整个接收的信号中直接检测和取消。在判定不可靠的信号或者复制之前,不需要进一步的处理时延。
因此,并行干扰消除方法比RAKE接收机有更好的性能,并且复杂度也比较低。
不同的盲自适应多用户检测,在使用BPSK的DS-CDMA卫星通信系统中,需要对LEO、MEO卫星移动通信系统进行分析和性能估计。接收机在基站的上行卫星链路端点使用,在使用有多径衰落的卫星信道用户中,通信系统缺乏同步。这些机制基于盲自适应多用户检测,由Verli,Honig,Madhow提出,在前一种机制中,一个盲接收机包括不同的检测器,后者垂直检测整个接收信号。它在复杂度和性能之间有一个很好的协调。与传统的单用户接收机相比,多用户检测系统对远近效应有很好的效果,它不需要练习序列,仅仅需要必要的用户信息(如活动的用户数、处理增益等)。
四、结束语
为了给将来的移动和个人通信系统提供全球的覆盖,卫星系统是必须的。本文描述COST252中的新一代卫星个人通信系统,COST252的工作包括:MF-TDMAMAC协议的程序实体;路由算法(DT-DVTR)和LEO系统中的星际链路度量;资源治理,GEO和LEO星座中的DCA技术;使用PRMA的协议等。下一代移动和固定卫星业务都将使用IP技术,这是将来的一个研究方向。
C. 【求助】通信技术的前沿是什么
1、量子通信, 这个实际是物理、通信、计算机、微电子的交叉学科。一旦有突破就是迹裤下一次工业革命。
2、无线:5G, 第五代无线通信技术,通俗的说就是姿山简用智能天线,多尺度蜂窝组合组网。
3、固网: 软件定义网络SDN,下一代互联网
4、传输唯薯: 大容量光通信, OTN。 这个技术暂时没什么突破,基本是工程领域的问题。当然如果能降低成本就是极好的。
D. 谁能详细介绍下无线视频传输技术,越详细越好
随着移动通信业务的增加,无线通信已获得非常广泛的应用。无线网络除了提供语音服务之外,还提供多媒体、高速数据和视频图像业务。无线通信环境(无线信道、移动终端等)以及移动多媒体应用业务的特点对视频图像的视频图像编码与传输技术已成为当今信息科学与技术的前沿课题。
1 无线视频传输技术面临的挑战
数字视频信号具有如下特点:
·数据量大
例如,移动可视电话一般采用QCIF分辨率的图像,它有176X144=25344像开绿灯。如果每个像素由24位来表示,一帧图像的数据量依达594kbit。考虑到实时视频图像传输要求的帧频(电视信号每秒25帧),数据传输速率将达到14.5Mbps!
·实时性要求高
人眼对视频信号的基本要求是,延迟小,实时性好。而普通的数据通信对实时性的要求依比较低,因此相对普通数据通信而言,视频通信要求更好的实时性。
无线环境则具有如下特点:
·无线信道资源有限
由于无线信道环境恶劣,有效的带宽资源十分有限。实现大数据量的视频信号的传输,尤其在面向大众的无线可视应用中,无线信道的资源尤其紧张。
·无线网络是一个时变的网络
无线信道的物理特点决定了无线网络是一个时变的网络。
·无线视频的Qos保障
在移动通信中,用户的移动造成无线视频的Qos保障十分复杂。
由此可以看出,视频信号对传输的需要和无线环境的特点存在尖锐的矛盾,因此无线视频传输面临着巨大的挑战。一般来说,无线视频传输系统的研究设计目标如表1所示。
表1 无线视频传输系统的主要性能指标和设计目标
性能指标 设计目标
视频压缩比
视频传输实时性
视频恢复质量
视频传输鲁棒性
支持Qos的视频业务 用尽量少的比特描述视频图像
更短的传输时延,更快的编码速度
获得用户更满意的视频恢复质量
更好适应传输信道的误比特干扰
提供和用户支持费用相当的服务
事实上,表1中许多性能指标是相互制约的。例如,视频图像压缩比的提高会增加编码算法的复杂度,因此会影响算法的实时实现,并且可能降低视频的恢复质量。
2 视频压缩编码技术
视频信息的数据量十分惊人,要在带宽有限的无线网络上传送,必须经过压缩编码。目前国际上存在两大标准化组织——ITU-T和MPEG——专门研究视频编码方法,负责制公平统一的标准,方便各种视频产品间的互通性。这些协议集中了学术界最优秀的成果。
除各种基于国际标准的编码技术外,还有许多新技术的发展十分引人注目。
2.1 基于协议的视频压缩编码技术
国际电信联盟(ITU-T)已经制定的视频编码标准包括H.261(1990年)、H.263(1995年)、H.263+(1998年),2000年11月份将通过H.263++的最终文本。H.26X系列标准是专门用于低比特率视频通信的视频编码标准,具有较高的压缩比,因此特别适合于无线视频传输的需要。它们采用的基本技术包括:DCT变换、运动补偿、量化、熵编码等。H.263+和H.263++中更增加考虑了较为恶劣的无线环境,设计了多种增强码流鲁棒性的方法,定义了分线编码的语法规则。
MPEG制定的视频编码标准有MPEG-1(1990年)、MPEG-2(1994年)、MPEG-4(完善中)。其中MPEG-1、MPEG-2基本已经定稿,使用的基本技术和H.26X相同。MPEG-1、MPEG-2的特点在于针对的应用主要是数字存储媒体,码率高,它们并不适于无线视频传输。人们熟知的VCD、DVD是MPEG-1、MPEG-2的典型应用。随后,MPEG组织注意到了低比特率应用潜在的巨大市场,开始和ITU-T进行竞争。在MPEG-4的制定中,不仅考虑了高比特率应用,还特别包含了适于无线传输的低比特率应用。MPEG-4标准的最大特点是基于视频对象的编码方法。
无线通信终端是多种多样的,其所处的网络结构、规模也是互异的。视频码流的精细可分级性(Fine Granularity Scalability)适应了传输环境的多样性。
编码协议并不提供完全齐备的解决方案。一般来说,协议内容主要包括码流的语法结构、技术路线、解码方法等,而并未严格规定其中一些关键算法,如运动估计算法、码率控制算法等。运动估计算法在第3部分有较为详细的介绍。码率控制方案在第4部分有较为详细的介绍。
2.2 其他视频压缩编码技术
除上述基于协议的视频标准之外,还有一些优秀的算法由于商业的原因,暂时没有被国际标准完全接纳。典型的例子是DCT变换和小波变换之争。虽然利用小波变换可以取得更好的图像恢复质量,但是因为DCT变换使用较早,有很多商业产品的支持,因此小波变换很难在一夜之间取代DCT变换现有的地位。其他编码方法如,分形编码、基于模型的编码方法、感兴趣区优先编码方法等也都取得了一定的成果,具有更强的压缩能力。但是算法实现过于复杂,达到完全实用尚有一段距离。
在基于小波的低比特率图像压缩算法的研究中,根据小波图像系数的空间分布特性,以及小波多分辨率的视频特点,人们引入矢量量化以充分利用小波图像系数的相关性。根据传统的运动补偿难以与小波变换相结合这一情况,人们还提出了将空间二维帧内小波变换与时间轴一维小波变换相结合的三维小波变换方法。
人类的视觉是一种积极的感受行为,不仅与生理因素有关,还取决于心理因素。人们观察与理解图像时常常会不自觉地对某引起区域产生兴趣。整幅图像的视觉质量往往取决于感兴趣区(ROI:Region of Interest)的图像质量。在保障ROI区部分图像质量的前提下,其他部分可以进行更高的压缩。这样在大大压缩数据量的同时,仍有满意的图像恢复质量。这就是感兴趣区优先编码策略。
3 视频编码实时性研究
由于视频数据的特殊性,视频传输系统对实时性要求很高。这里重点介绍基于视频编码协议算法的实时性问题。小波编码等算法虽然有许多优点,但是算法复杂度太高,目前难于达到实时性要求。下面介绍基于协议编码算法中的几个重要环节,它们对提高视频编码系统实时性有重要作用。
3.1 运动估计
预测编码可以有效去除时间域上的冗余信息,运动估计则是预测编码的重要环节。运动估计是要在参考帧中找到一个和当前帧图像块最相似的图像块,即最佳匹配块。估计结果用运动向量来表示。研究运动估计算法就是要研究匹配块搜索算法。
研究分析表示,原始运动估计算法在编码器运行中消耗了编码器70%左右的执行时间。因此,为了提高编码器执行速度必须首先提高运动估计算法的效率。
穷尽搜索法是最原始的运动估计算法,它能得到全局最优结果,但是由于运算量大,不宜在实现应用中使用。快速运动估计算法通过减小搜索空间,加快了搜索过程。虽然快速运动估计算法得到的运动向量没有穷尽搜索法的结果那样精确,但是由于它可以显着减少运算时间,精度也能满足很多应用的需要,因而它们的应用十分广泛。典型的快速搜索算法有:共轭方向搜索法(CDS)、二维对数法(TDL)、三步搜索法(TSS)、交叉搜索法(CSA)等。
3.2 算法结构的并行化
并行化处理的体系结构十分有利于提高系统处理能力,加之视频编码算法有很强的并行处理潜力,因此,人们研究了编码算法的并行运算能力,进一步保障了编码算法的实时实现。
例如,如果有两个并行处理器,依可以同时进行两个图像块的运行估计或者DCT变换,这样依把运动估计和DCT变换环节的运算时间缩短了一倍。
3.3 高速DSP芯片和专用DSP设计
微电子技术的发展,也使近年来DSP芯片有了很大的进步。每秒几十或上百BOPS次的运算速度(1个BOPS为每秒10亿次)DSP芯片已经出现,这为系统实时处理提高了硬件保证。
通用高速DSP芯片在视频编码算法的研究开发中扮演了重要角色。许多DSP生产厂商甚至提供实现某种编码协议的专用芯片。
4 码率控制研究
编码策略是编码器中重要环节。码率控制技术是视频通信应用中的关键技术之一,它负责编码器各个环节与传输信道和解码器之间的协调,在编码器中具有重要地位。因为码率控制策略需要由具体应用场合决定,所以象H.263+、MPEG-4等视频编码协议,都没有规定具体码率控制方法。
由于视频码流结构具有分层的特点,因而码率控制方案的研究一般分成了两个层交人,图像层码率控制、宏块层码率控制。图像层码率控制的主要任务是,根据系统对编码器输出码率的期望、系统传输延迟的限制、传送缓冲区的满溢程度等同,在一帧图像编码前,确定该帧图像的输出期望比特数。宏块层码率控制的主要任务是,根据图像层码率控制确定的该帧图像的输出期望比特数,给图像各部分选择合适的量化步长。宏块层码率控制的主要依据是率失真(Rate-Distortion)模型。
TMN8码率控制方案,是迄今为止一套优秀的码率控制方案。它被H.263+的TMN8模型的MPEG-4(Version 1)的VM8模型所采纳。该方案的精化部分在于宏块层码率控制部分,它采用了一种十分有效的率失真模型,是宏块层码率控制的误差很小;在图像层码率控制方面,该方案的前提较为简单,主要考虑了编码时延、缓冲区满溢程度等因素,并且要求编码器的工作帧频恒定。
在很多情况下,视频编码的帧频不可能保持恒定,或者不“应该”恒定。考虑到视频编码器工作点的变化,以及现有率失真模型可能存在的误差,人们将现代控制理论引入到图码率控制中,设计了更稳定的码率控制方案。
由于宏块层码率控制环节直接决定图像各宏块使用的量化步长,因此利用宏块层友率控制方法,可以轻易实现图像感兴趣区优先编码策略。使用感兴趣区优先编码策略时,虽然对整幅图像而言仍属低码率编码范畴,但对于感兴趣区域而言却存在局部高码率编码。现有低码率控制算法,包括TMN8方案,都没有考虑到这一现象。它们将整幅图像所有部分都作为低码率编码对象,并以此建立码率控制模型。因此这些码率控制方案直接与感兴趣区优先编码策略相结合时,会导致不应有的码率控制误差。为此,人们又提出了一套用不动声色低码率应用的码率控制框架,它适应了感兴趣区优先编码策略的需要。
5 鲁棒性研究
无线信道干扰因素多,误码率高,因此无线视频的鲁棒传输研究对于无线视频传输的实用化十分重要。
5.1 鲁棒的压缩编码
视频压缩编码的最后一个环节是熵编码。熵编码的特点决定了视频码流对误比特高度敏感。于是,人们设计了多种技术用于在视频编码环节进行差错复原,提高码流鲁棒性。MPEG-4中定义的主要差错控制技术有:重同步(Resynchronization)、数据分割(Data Partition)、可逆变长编码(RVLC)。H.263+中用于差错复原的技术主要包括前向纠错编码(FEC)、条带模式(Slice Mode)、独立分段解码(Independent Segment Decoding)和参考图像选择(Reference Picture Selection)等。H.263++则又增加了数据分割的条带模式,并对参考图像选择模式进行了修改。
此外,在信源解码端,人们又设计了数据恢复(Data Recovery)和差错掩盖(Error Concealment)等技术,以便尽量减少码流中错误比特的负面影响。
5.2 鲁棒的复用环节
多媒体通信中,复用是紧随编码环节的一个环节。以ITU定义的H.324标准为例,该标准由若干协议组成,包括音频编码协议G.723、视频编码协议H.26X、控制协议H.245和复用协议H.223。H.223是一个面向连接的复用器,负责把多媒体终端的多个数据源(音频、视频、数据等)复合为一个码流。Villasenor等已经注意到复用器出现的差错对视频可能产生的影响,但没有特点深入的研究成果。
5.3 鲁棒的信道编码环节
信道编码也称差错控制编码。与信源编码的目的不同,信源编码是尽量压缩数据,用尽量少的比特描述原始视频图像;信道编码是利用附加比特来保障原始比特能正确无误地到达目的地。信道传输中的纠错方法包括:前向误码纠错(FEC)、自动重发(ARQ)和混合纠错(HEC)。
Shannon从理论上给出了信道传输能力的上限。信道编码方法的研究设计目标有二,一是尽量利用信道容量,二是抗干扰性能更强。
Turbo码是近年来纪错编码领域的活跃分支,由法国学者C.Berrou等人在1993年看出的,其模拟性能纪错能力。但是Turbo码的译码算法十分复杂,关于Turbo码译码的实时实现是当前研究热点之一。
5.4 信源信道组合编码
不同的信道编码策略对信元的保护能力也不同。根据信元的重要程度,合理地予以差错控制编码,将有效地提高传输系统的效率。这是不平等的保护策略(Unequal Error Protection)。信元的重要程度,可以有多种划分方法,如按照信元对解码所起作用,或者按照信元对人眼感知所起作用,等等。
还有许多学者研究了信道模型在信源信道组合编码中的应用。三种典型无线信道模型是二进制对称噪声通道(Binary Symmetric Channels)、加性白高斯噪声通道(Additie White Gaussian Channels)、G-E突发噪声通道(Gilbert-Elliott Bursty Channels)。Chang Wen Chen等在研究这些信道模型的基础上,研究了新的率失真模型,该模型不仅描述了量化引入的误差,而且将信道噪声考虑在内。在一定的信道传输速率要求下,利用这样的率失真模型,不仅可以在子信源之间合理分配比特,而且可以更好地平衡信源编码精度与信道编码保护两者对码率的需要。
6 无线视频传输系统的优化与管理
在前面几部分的研究中,主要目标是解决无线视频传输的基础问题:视频数据的压缩问题、编码的实时实现、视频码流的鲁棒传输。事实上,除了上述问题,还有许多与无线视频传输密切相关的领域,它们对无线视频传输的实现、推广有着举足轻重的影响。
6.1 通信协议的研究
中国公众多媒体通信网是一个基于IP协议的通信网,它的通信协议是基于TCP/IP的。当然,IP协议和TCP协议仅是核心协议。为保证实时视频通信业务能很好地运行,需要使用实时传送协议(RTP)和实时传送控制协议(RTCP)。为了给实时业务或其它特定业务的传送留有足够宽的通道,还必须使用资源预留协议(RSVP)。上述五个通信协议是IP网的主要通信协议。
Ipv6作Internet Protocol的新版本,将继承和取代传统IP(Ipv4)。从Ipv4到Ipv6的改变将为下一代因特网奠定更坚实的基础,如,Ipv6力求使网络管理变得更加简单,考虑到不同用户对服务质量的不同需要,其中若干技术十分有利于实时多媒体业务的实理。
6.2 接入控制(Admissior Control)
类似有线网络,无线网络要决定是否允许新连接接入;此外无线网络还要决定是否允许切换连接,并要在二者之间谋求最优解决方案。
Naghshineh在1996年提出虚拟连接树的新概念,设计了基于虚拟连接树的高速移动ATM网络体系,并研究了在该体系结构下的接入控制方案。简单说,作者用一个虚拟树来描述位于一定距离内小区的移动用户。一旦移动用户的呼叫被允许,他依可以在虚拟树内的所有小区间自由切换,而无须重新请求。
在高速无线多媒体网络中,Oliveira等则提出了基于带宽预留的接入控制方案,即在建立呼叫小区附近入的小区中,进行带宽预留,以保障服务质量。当用户进入一个新的小区,被预留的带宽将被利用。
6.3 资源预留(Resource Reservation)
对于视频、话音等实时业务,为保证可接受的服务质量,应该保留一定的连接带宽。此外,与新呼叫相比,切换呼叫应有更高的优先权。
6.4 Qos业务模型(Qos Service Model)
无线多媒体Qos支持的基本目标是,在带宽有限情况下,提供和用户支付费用相当的服务质量。建立合适的业务模型是首先要解决的问题。所谓业务模型,就是要根据各种具体应用的特点,将其划分成不同类型。例如,在支持Qos和ATM中定义了几种业务模型:恒定比特率(CBR)业务、实时可变比特率(rt-VBR)业务、非实时可变比特率(nrt-VBR)业务、可用比特率(ABR)业务和不定比特率(UBR)业务。恒定比特率业务对带宽的要求最为严格,其他类型对带宽的要求依次放松。
现有的大理多媒体业务是在基于IP的网络上开展的,而rc设计IP协议的初衷是传输数据的,是一种“尽力而为”的网络,并不支持Qos。为此,其上的实时业务模型被分为两类:有保障业务(Guaranteed Service)和无保障业务(Predictive Service)。
总之,在无线多媒体环境下,建立起合理的业务模型对保障Qos至关重要。在这一领域,人们始终在做出努力。如,较早时候,Oliverira等只用实时业务与非实时业务加以区分;1999年,Talukder等提出三类业务模型;2000年,Lei Huang等不仅考虑带宽和延迟需要,还考虑了移动用户的运动特性,提出多达七类业务模型。
6.5 图像质量评价准则
恰当的图像质量评价方法是无线多媒体通信的基本需要。由于无线环境带宽有限,不可能为所有用户都提供相同质量的服务,所以只能提供和用户支付费用相当的服务质量。因此必须有一套能准确反映用户接受服务的客观质量标准。
除了些特殊场合,纯粹额观评价(如基于均方误差的评价方法)已经被普遍认为不是真正“客观”的图像质量评价,越来越多的人认为,人眼视觉系统(HVS)的特性应该考虑在内。
Westen等人在1995年提出了基于多通道的HVS模型,用来评价图像的感受质量。宋坚信等人最近又提出一种压缩视频感觉质量的计算方法,其核心思想是,利用视觉掩蔽特性, 分析与压缩视频质量有关的视觉特性及视频图像内容特性,提出视觉掩蔽计算结构及用模糊学方法进行视觉阈值提升的计算方法。
总之,面向恶劣无线环境的数字视频传输技术尚未成熟;面向大众应用的无线视频传输技术元未成熟。因此,现在加强在该领域的研究力度,是增强我国科技实力的一次机遇,对于我国在未来通信领域占据一席之地将起重要作用。
E. 计算机技术前沿是什么
“前沿技术”是指“高技术领域中芹岁具有前瞻性、先导性和探索性的重大技术,是未来高技术更新换代和新兴产业发展的重要基础,是国家高技术创新能力配梁的综合体现。多内核cpu,蓝光dvd,大容量高速度磁盘,无线网络技术,三维显示技术,可折叠显示屏技术,乃至于光子计算机都属于前沿计算机技培首运术。
F. Aruba精心打造清华大学FIT楼无线局域网
学校概况
清华大学信息技术研究院Future Internet Technology(FIT)大楼是清华大学校园内的一个重要研究机构,是一座现代化,智能化的高科技大厦,为国家的信息领域的各项前沿研究项目提供环境和条件。同时也是国内最早应用IPv6技术的智能大厦之一。
客户需求
•良好的安全性
•AP间无缝漫游
•通过captive portal页面对用户进行认证
•支持多个SSID
•同时支持数据和语音业务
•集中的设备管理和认证
•可以和清华大学的radius服务器结合进行用户的认证
•对接入用户进行访问控制,采用白名单的方式开放有限的免费Internet访问资源
•可以实现无线终端的定位以及Rogue AP的监测和防护
•支持以太网供电
解决方案
•Aruba 2400 Wi-Fi交换机系统
•30 多个Aruba AP 60/61(802.11a/ b/g AP)
•Aruba AirOS VPN, RF管理和无线IDS 应用
优点
•覆盖FIT楼的 Wi-Fi 系统
•集中的RF管理
•数据语音同传
•灵活的认证方式
•基于状态防火墙的访问控制
•无线的安全防护
清华大学FIT楼借助Aruba无线系统实现语音数据的应用和无线的安全保护
清华大学“无线校园”实验网选用Aruba无线系统对清华大学信息技术研究院(FIT)大楼这个重要建筑进行无线覆盖,由北京国都兴业科技发展有限公司设计并实施。清华大学主要看重了Aruba最新的无线“移动边缘”网络架构解决方案的可扩充性,安全保障和中央控管,以及可以满足清华大学语音和数据业务同传及无缝漫游的需求。
FIT大楼共计六层,是一个“凹”字型的楼体结构。需要在楼内和楼外做无线信号的覆盖,实现语音和数据业务,以及无缝漫游。系统能够进行统一的中央控管,能够支持多种安全策略和认证方式,还要能够方便地进行扩容。同时要派段迅求实现Aruba RF控管,定位以及Rogue AP的监测和防护。并能够和清华大学已有的Radius系统互联,实现无线用户的认证。
使用Aruba无线系统在FIT大楼内部实现覆盖,同时在室外的适当位置架设了3个AP和外置天线,实现了FIT大楼的室外覆盖,并可实现无缝的语音和数据漫游。
除了在FIT楼做无线覆盖以外,在二层着重安装了一些无线监控AP,专门用于无线射频的控管,以及Rogue AP的监测和防护。
Aruba系统的核心部分,是一台Aruba 2400,整个无线网络的配置和安全参数都由它来进行统一管理。FIT楼安装了30多个802.11a/b/g标准的Aruba AP60/61(瘦AP),对于清华大学来说,瘦AP的模式更安尘此全和易于扩展。Aruba的瘦AP抛掉了所有配置信息,全部的加解密工作都在本地的Aruba WLAN交换机内进行,第二个好处是,清华大学可以方便地对所有AP进行安装和集中管理。
Aruba交换机是专门设计来和802.11a/b/g AP进行自动联接的,而且,不需要燃兄任何其他物理或逻辑配置,只要通过一个GRE隧道即可。所以Aruba系统可以配置为第二层系统,和任何有线网络重叠,这些只需要在现有的架构上进行简单安装。
清华大学FIT楼使用两个SSID分别提供语音和数据业务。
数据业务用户通过数据专用SSID接入无线网,首先通过清华大学的DHCP服务器获得地址,然后访问网页时Aruba交换机会推送一个根据清华大学定制的Captive Portal页面,让用户输入用户名和密码,Aruba交换机将用户输入的用户名和密码交给清华大学的Radius服务器进行认证,清华大学的Radius服务器会将Oracle数据库中保存的帐户提取做对比,如果一致,将返回给Aruba交换机认证通过的信息,用户将能够获得权限访问无线网络。
成功验证后,作为高级用户也可以选择下载Aruba VPN 拨号器。拨号器会自动地对用户机进行全部的VPN设置,同时提供给用户强大的3层IPsec解码功能。这样的认证和加密完美的结合,并且不需要客户端附加的配置。
Wi-Fi手机用户使用的是MAC地址的认证方法。在Aruba交换机中将允许的Wi-Fi手机的MAC地址输入,并给予一定权限,同时将Wi-Fi手机使用的SIP协议设置成高优先级,以保证语音的实时性。Wi-Fi手机用户使用语音专用SSID接入无线网络,获得地址,Aruba交换机对于合法的Wi-Fi手机的MAC地址已经识别,会给予相应权限。Wi-Fi手机根据手机内部的配置,会到清华大学的SIP服务器注册。注册成功后可以拨打其他Wi-Fi手机和国内任何电话,包括手机和座机。
除了语音和数据业务的应用,同时还使用了视频业务。Skyview的基于IP网络的视频监视系统也在Aruba无线网络台上顺畅运行。在Aruba无线覆盖的范围内架设了使用无线网卡的摄像头,这些摄像头将拍摄的信息数字化后,使用无线网卡通过Aruba无线网络平台传送到连接骨干的Skyview视频服务器上。用户可以使用浏览器浏览到所有摄像头的图像,同时还可调控摄像头的焦距和方向。
Aruba 的操作系统软件AirOS使网管人员能够动态地对个人或群体用户创建独有的安全规则,并按照用户身份和他们所处的无线领域来发放许可,让他们使用系统,协议或目标文件。整个无线系统在一个端口进行集中管理,并具有自动调频(RF)校准(包括频道分配设置和AP权限调整)以及用户移动跟踪等好处。这个特性尤其适用于在移动中使用无线 VoIP电话的场合。
G. 英特尔将在2024年推出WiFi7,该产品会有哪些技术亮点
据相关消息称,英特尔可能会在2024年推出wifi7产品。我觉得wifi7的技术亮点首先是网速比wifi6快,其次WiFi7可以同时支持2.4 GHz,5 GHz,6 GHz。它可以自动搜索最稳定的频段在三个频段之间来回切换。这样就可以利用自己多通道的优势并发传输数据。
wifi7设备带宽得到了大幅度提升。
wifi7设备的带宽最高提升至320MHz,更高的带宽使得传输时延更低,系统整体性能将进一步提升;引入先进的4K QAM调制解调技术,可以在有限的带宽内获得更高的吞吐量,进一步提高终端传输能力。在320MHz带宽、4K QAM、增强型MU-MIMO等技术的支持下,Wi-Fi 7的最高理论速率可以达到Wi-Fi 6的3倍以上。
H. 华硕WIFI6路由助力2019ROGDay粉丝嘉年华即将开幕
有什么活动错过了就要再等一年?相信非信仰集结大会ROGDAY莫属,它是华硕ROG品牌年度盛会和粉丝嘉线下交流会,自2015年以来已经成功举办四届。2019ROGDAY将于12月14日下午在重庆天地19画廊拉开帷幕,堪称是一场艺术与科技的碰撞。这场电竞圈备受瞩目的盛会不仅是年度的游戏和装备的饕餮盛宴,更是ROG玩家国度粉丝超级嘉年华,而ROG信仰就是这场盛会的集结号。
重庆,是一座长江边上的网红打卡城市,令人回味无穷的特色火锅,让人们的热情也如辣椒一般。和北京798一样,天地19画廊也是重庆艺术发烧友和文艺青年的向往地,它存于喧嚣世俗之外,却又活于静谧优雅之中。
本次ROGDAY将尽显潮流文化,不仅为ROG粉丝们准备了ROG盲盒、海娜纹身和球鞋文化等活动,更有特色的品牌拍照背景墙,将ROG主题与诸多年轻潮流元素混搭,强烈的视觉冲击诠释了本次ROGDAY的主题“以度制燥:有态度/有速度/无尺度”。
速度来源于性能,本次ROGDay嘉年华体验区将为粉丝们带来各类MOD作品、主渗者板、显卡和显示器一系列高性能装备,并有投篮机、赛车、VR和街机等游戏娱乐装置,得益于华硕主机和显示器强大的性能,为你带来身临其境的游戏体验。
苹果iPhone11和三星S10系列手机的发售,正式宣布Wi-Fi6时代的到来。因此主打高性能、高传输速率的华硕Wi-Fi6路由器和电竞路由也将参展,粉丝们可以现场零距离体验诸如“帝王蟹”RT-AX89X、“八爪鱼”ROGGT-AX11000等旗舰产品。
作为华硕的忠实合作伙伴,NVIDIA将联合ROG共同打造《我的世界》主题展区,不仅有主题拼装积木让玩家们现场打造属于自己的专属模型,更有美丽的showgril充当NPC,为现场粉丝们提互动和任务指引,游戏迷们不可错过。
除此之外,现场还将为大家带来多场关于游戏和潮流的巡场互动趣味话题,更有美女主持人的与粉丝现场互动以及激情乐队的精彩表演。最后,会场的设置的四个区域均有精彩的活动,参与即可获得印章一枚,集齐后更能参与“集印章抽大奖”,惊喜礼品等你来赢。
既然是年终福利,当然会有大奖。只要你有信仰,绝不会让你空手而归,先拿出几件看看?
●ROG-STRIX-RTX2060S
●VG279Q
●RT-AX89X双万兆疾速路由
网速BUFF:华硕Wi-Fi6路由器
顺应百兆
采用高通四核2.2G高速专业处理器,双频并发蠢圆速率高达6000M,支持8x8MU-MIMO+OFDMA,高频响高带宽的电竞吞吐能力,带来淋漓尽致的沉浸式游戏体验;RT-AX89X具备8个千兆LAN并配有1个万兆网口+1个万兆光纤端口,为网络玩家构建更为高效稳定的网络传输平台!
随着生活品质提升,身居大户型已精屡见不鲜。鉴于国内建筑多为钢混结构
AiMesh采用单一SSID,智能切换支持无缝漫游,当你在手游时,即使需要转移阵地,也不会影响您畅快的游戏体验。
作为全球无线网络领域先行者,高端、电竞、游戏路由领导者,华硕网络在率先发布三频万兆Wi-Fi6电竞路由GT-AX11000,首款Wi-Fi6手游路由RT-AX88U。本次2019ROG嘉年华由这两款路由组建AiMesh分布式网络,为现场提供网络支持。
这是一场潮玩大丛档薯秀,也是一场让你玩个够,赶快扫码参与吧!注册ROG会员报名获得专享福利
作为专业的电竞品牌,华硕ROG拥有最前沿的技术和坚若磐石的品质,结合潮流的游戏文化,产品性能更强、品种更齐全、外观更炫酷,为玩家带来从视觉到感官的全新体验,释放你的电竞灵感和体验。2019ROGDAY,我们在等你!
I. 因特网有哪些新技术
有发展前景的十余种网络新技术:IPv6、宽带移动互联网、宽带接入新技术、10吉比特以太网、宽带智能网、网格计算、网络存储、虚拟网络、无线传感器网络、智能代理、移动代理、全光网络、智能光网络、自动交换光网络、主动网络及其安全管理、下一代网络与软交换等。
网络技术是一个新老更替、优胜劣汰的发展过程,必然被新的、更加先进的技术所取代。以Internet为代表的新技术革命正在深刻地改变着传统的网络观念和体系结构。IPv6的出现使网络摆脱了地址和空间的限制,成为三网(电话网、计算机网、有线电视网)融合的粘接剂;统一的IP协议的普遍采用,使得各种以IP为基础的业务都能在不同的网络上实现互通。宽带移动互联网实现移动网和固定网络的融合,为固网运营商快速进入宽带移动数据市场提供机会。网格计算是互联网发展的前沿领域,其本质是全球万维网升级到全球大网格。智能代理是另外一种利用互联网信息的机制,使用自动获得的领域模型、用户模型等知识进行信息收集、索引、过滤,并自动地将用户感兴趣的、有用的信息提交给用户,从而提供个性化的服务和一种新的计算模式。计算机与无线通信的融合发展,将实现个人移动计算誉誉李,可随时、随地、随意通过各类信息终端产品与互联网相连,实现无所不在的计算时代。高速宽带的骨干网固然重要,然而,宽带接入到千家万户才是网络建设的真正目的,同时也将创造一个庞大的宽带接入市场。光网络作为一株亮丽的奇葩,凭借其接近无限的带宽潜力和卓越的传送性能而备受关注;智能光网络的出现是光传送网络从静态连接的电路向动态连接的电路转化,导致网络管理向自动化、智能化、综合化的方向发展。已有30多年历史的以太网,由于不断更新技术,至今已发展到10吉比特以太网、移动和光以太网,从而为网络注入了新的活力,使以太网时至今日仍然焕发勃勃生机,令人刮目相看。网络存储的出现为备份系统从单机备份发展到集中备份和虚消网络备份,打破了信息孤岛现象,使无盘服务器成为可能,并能为更多的用户服务。进一步发展起来的无线传感器网络,把传感器、嵌入式计算、分布式信息处理、无线通信技术和通信路径自组织能力融合在一起,使感知信息传输给用户。作为全新网络计算模型的主动网络将可编程性、计算性、开放性、灵活性、动态配置等发挥得淋漓尽致,提供了功能强大的网络平台和用户参与网络保护的可能性,大大加快了网络基础结构的更新步伐。未来理想的网络模式是下一代网络,这庆迟是全球信息基础设施的具体实现,是一种多业务的高效融合网,通过软交换结合媒体网关和信令网关,可统一提供管理和加快扩展部署业务。..
信息化带动工业化离不开网络环境的改善和全体公民网络素质的全面提高。要想发展具有我国自主知识产权的网络新技术和新产品,就要不断了解网络系统中有关基础设施方面的新知识,了解网络发展的新趋势,深入理解其体系结构和运行机制,掌握相关理论、算法、组网技术和软硬件设计方法。
信息网络安全相关的有:信息安全基础,企业服务器的假设和管理,黑客攻防,网络渗透技术,防火墙,入侵检测,加密解密,信息安全认证体系,信息安全编程,信息安全方案设计等等.
J. 从蓝牙传输到NFC,和你聊聊关于无线传输那些事儿:常见有三种
从数据线传输到蓝牙传输,从蓝牙传输再到无线网络传输,这些年,不管是笔电产品还是智能手机之类的终端设备在数据传输上变得越来越方便、越来越高效。但对于智能手机用户尤其是像笔者这样的用户而言,大文件的传输还得依赖数据线、否则效率还是跟不上!不过,近日的一项技术被爆料将会装进手机里--它将拥有比WiFi技术更快的传输速度,理论上比后者快数百倍!
这项技术被命名为LiFi技术,它是一种比WiFi无线传输更高效的技术,这次被被曝光是因为OPPO近期的一款新品将会搭载这项技术,这样,OPPO这款手机将可以有更高效的数据传输能力、更稳定/更出色的信号接收能力。
从相关渠道曝光的这款OPPO的新品外观设计来看,它将会采用与OPPO Find X2一样的双曲面屏设计,且正面似乎不是挖孔屏、也不是刘海屏/水滴屏的设计,正面的顶部看不到任何前置摄像头的设计,估摸着可能还是会使用自动升降摄像头的设计保证它的正面全是屏的效果;而背面部分,目测既不是OPPO Reno/Ace系列的风格,亦不是OPPO Find X2的设计风格,更像是沿用了OPPO Reno一代的中置竖向摄像头模块设计,虽然不见得多么的美观大方,但游陪设计风格还是有别于当下绝大多数的主流旗舰产品的。
根据相关的信息显示,LiFi技术也被称作是“可见光无线通信技术”。据悉,这项技术不需要WiFi的信号,直接点亮一盏LED灯即可上网,它是一种利用屋内可见光传输网络信号的前沿同学技术,据悉它的最高效率可达3.25G、平均上网速率可达150M,被戏称为世界最快的“灯光上网”,按照现在5G的上网速率来计算,它比5G还强!
不过,正因为它是必须借由光线来传输数据,如果没有光线的情况下,它的信号是无法传输或派野者传输能力变差的;另外一个问题则是,LiFi的传输距离只有10米左右,而蓝牙传输或者是WiFi技术传输全都比它传输的范围要更广一些,WiFi的传输技术甚至可以达到32米!
随着时代的变化和万物互联的需求,我们常见的三种无线传输方式有哪些不同?它们的优缺点又是什么呢?今天笔者就借此和大家一起聊一聊!
1、蓝牙传输
随着智能家居进入千万百姓家,人们用到蓝牙的地方确实开始变得越来越多,连接蓝牙音箱、连接手环/智能手表乃至不同终端之间进行通信,如果为了省事儿,蓝牙也是非常常用的传传输手段。在我们常用的手机、电脑、平板等设备上,蓝牙传输的场景比比皆是。
作为一种短距离无线通信技术,蓝牙传输在不同设备终端之间的个人域网进行短距离传输非常的方便。目前,蓝牙技术标准最高是5.0,它相比前代4.2LE只是在低功耗设备速度有相应的提升和优化,其有效工作距离可达300米,是之前的4倍左右;低功耗模式传输速度上限为2Mbps,是此前4.2LE版本的2倍。
正因如此,蓝牙技术的应用在大文件、大数据传输方面并不高效,但简单的数据传输却刚刚好够用。包括蓝牙耳机、蓝牙音箱等等,都是这种技术的日常使用状态。
2、WiFi技术
如果你是个啥都不懂的人,你会认为近年来千家万户已经开始熟悉的WiFi意指某一个设备终端?甚至有些同学买了无线路由器之后、搜索到信号了就以为一定能够上网了。殊不知,它是一项无线通信技术、通过它与Wlan组成的无线局域网进行数据传送,从而让用户可以连入这局域网,继而连接到万维网。
从从属或者包含关系上来说,WiFi是Wlan的一个标准,它被包含在Wlan这个局域网里面,属于Wlan协议中的一项技术而已。WiFi的覆盖范围可以达到90米左右,而Wlan最大可以到5KM,我们的数据连接其实就是一种无线传输,它的范围更大一些。无线局域网早已经从原本的商务区、大学、机场乃至其他的公共区域进入千家万户的普通家庭里面,成为打造以家庭为个体的联网枢纽。
现如今,WiFi技术标准已经是WiFi6为主,传统厂家或者是跨界品牌也都在追逐这点,得益于上行MU-MIMO、1024QAM调制方式、160MHz信道带宽、8*8MIMO等技术的引入,WiFi 6的最高速率可达9.6Gbps,也就是说理论传输速度达到了1.2GB/s的传输速度。另一个,WiFi 6借用了蜂窝网络采尘磨喊用的OFDMA技术,多个终端可同时并行传输,不必排队等待、相互竞争,从而提升效率和降低时延。
也正因为这样,正规的支持WiFi6协议的高端路由器才能够适应当下智能家庭的打造--传统的路由可承载不了更多终端的并行传输,就算支持也会发生数据拥堵的问题,体验大大的不爽!
3、NFC
作为近场通讯的其中一种,NFC是一种较为新颖的无线传输方式,我们日常支付、公交卡、门禁系统等等都有它的参与,虽然它和上面的蓝牙、无线局域网传输有所区别,不能进行广义意义上的数据传输,但却因为更常态、更方便成为行业的热点。这么说吧,你的手机支持NFC的话,很多出行、日常生活都会方便很多!
NFC是一种短距离高频的无线电技术,它在13.56MHz频率运行于10厘米距离内。其传输速度有106Kbit/秒、212 Kbit/秒或者424 Kbit/秒三种。目前,NFC主要有主动和被动两种读取模式。它的优缺点都很明显:传输速度与距离都比蓝牙差,但受到干扰的机会更小。以两台NFC设备相互连接识别的过程为例,它创建连接的速度几乎是“秒”为单位计算的。
此外,NFC短距离通讯优势还表现其耗电低、保密性与安全性高等方面,也正因此,我们不能说NFC会替代谁,它们更像是一种互补的方式存在我们的日常生活中。
总结:
此外,还有Zigbee紫峰协议、红外传输等等,红外传输在我们的生活中常见的就是遥控器之类的产品,现在有些智能手机也支持红外遥控;而Zigbee紫峰协议则是一种建立在IEEE802.15.4基础上的短距离、低功耗无线通信协议,有点像早期的蓝牙技术,但它比蓝牙传输更好、支持更多节点的组网,只是应用不多罢了!
时代在变, 科技 进步、创新的方式越来越多样化,以华为自己的生态为例,其打造的“多屏协同”的跨终端玩法也是无线通信/传输的一种,且一样好用而高效;而无线充电技术也慢慢出现在我们的日常生活里,包括手机的无线充电、扫地机器人的无线充电等等。
到那时候起,我们就真正可以告别被束缚的有线时代、进入真正的无线时代了!