当前位置:首页 » 无线网络 » 无线传感网络软件下载
扩展阅读
无线网络怎么老是断掉 2025-10-01 09:25:40

无线传感网络软件下载

发布时间: 2023-05-27 07:10:54

㈠ 无线传感器应用传感器类型


无线传感器是当前信息领域中研究的热点之一,可用于特殊环境实现信号的采集、处理和发送。无线传感器网络是一种全新的信息获取和处理技术,在现实生活中得到了越来越广泛的应用。接下来小编为大家介绍无线传感器应用及传感器类型。
无线传感器应用
1、军事领域的应用
在军事领域,由于WSN具有密集型、随机分布的特点,使其非常适合应用于恶劣的战场环境。利用WSN能够实现监测敌军区域内的兵力和装备、实时监视战场状况、定位目标、监测核攻击或者生物化学攻击等。
2、辅助农业生产
WSN特别适用于以下方面的生产和科学研究。例如,大棚种植室内及土壤的温度、湿度、光照监测、珍贵经济作物生长规律分析与测量、葡萄优质育种和生产等,可为农村发展与农民增收带来极大的帮助。采用WSN建设农业环境自动监测系统,用一套网络设备完成风、光、水、电、热和农药等的数据采集和环境控制,可有效提高农业集约化生产程度,提高农业生产种植的科学性。
3、生态监测与灾害预警
WSN可以广泛地应用于生态环境监测、塌基生物种群研究、气象和地理研究、洪水、火灾监测。环境监测为环境保护提供科学的决策依据,是生态保护的基础。在野外地区或者不宜人工监测的区域布置WSN可以进行长期无人值守的不间断监测,为生态环境的保护和研究提供实时的数据资料。
具体的应用包括:通过跟踪珍稀鸟类等动物的栖息、觅食习惯进行濒危种群的研究;在河流沿线区域布置传感器节点,随时监测水位及水资源被污染的情况;在泥石流、滑坡等自然灾害容易发生的地区布置节点,可提前发出灾害预警,及时采取相应抗灾措施;可在重点保护林区布置大量节点随时监控内部火险情况,一旦发现火情,可立刻发出警报,并给出具体位置及当前火势的大小;可将节点布置在发生地震、水灾等灾害的地区、边远山区或偏僻野外地区,用于临时应急通信。
4、基础设施状态监测系统
WSN技术对于大型工程的安全施工以及建筑物安全状况的监测有积极的帮助作用。通过布置传感器节点,可以及时准确地观察大楼、桥梁和其他建筑物的状况,及时发现险情,及时进行维修,避免造成严重后果。
5、工业领域的应用
在工业安全方面,传感器网络技术可用于危险的工作环境,例如在煤矿、石油钻井、核电厂和组装线布置传感器节点,可以随时监测工作环境的安全状况,为工作人员的安全提供保证。另外,传感器节点还可以代替部分工作人员到危险的环境中执行任务,不仅降低了危险程度,还提高了对险情的反应精度和速度。
6、在智能交通中保障安全畅通
智能交通系统团档谨(ITS)是在传统交通体系的基础上发展起来的新型交通系统,它将信息、通信、控制和计算机技术以及其他现代通信技术综合应用于交通领域,并将“人—车—路—环境”有机地结合在一起。在现有的交通设施中增加一种无线传感器网络技术,将能够从根本上缓解困扰现代交通的安全、通畅、节能和环保等问题,同时还可以提高交通工作效率。因此,将无线传感器网络技术应用于智能交通系统已经成为近几年的研究热点。
7、在医疗系统大有作为
近年来,无线传感器网络在医疗系统和健康护理方面已有很多应用,例如,监测人体的各种生理数据,跟踪和监控医院中医生和患者的行动,以及医院的药物管理等。如果在住院病人身蠢卜上安装特殊用途的传感器节点,例如心率和血压监测设备,医生就可以随时了解被监护病人的病情,在发现异常情况时能够迅速抢救。
8、促进信息家电设备更加智能
无线传感器网络的逐渐普及,促进了信息家电、网络技术的快速发展,家庭网络的主要设备已由单一机向多种家电设备扩展,基于无线传感器网络的智能家居网络控制节点为家庭内、外部网络的连接及内部网络之间信息家电和设备的连接提供了一个基础平台。
传感器类型
1、振动传感器
每个节点的最高采样率可设置为4KHz,每个通道均设有抗混叠低通滤波器。采集的数据既可以实时无线传输至计算机,也可以存储在节点内置的2M数据存储器内,保证了采集数据的准确性。有效室外通讯距离可达300m,节点功耗仅30mA,使用内置的可充电电池,可连续测量18小时。如果选择带有USB接口的节点,您既可以通过USB接口对节点充电,也可以快速地把存储器内的数据下载到计算机里面。
2、应变传感器
节点结构紧凑,体积小巧,由电源模块、采集处理模块、无线收发模块组成,封装在PPS塑料外壳内。节点每个通道内置有独立的高精度120-1000Ω桥路电阻和放大调理电路,可以方便地由软件自动切换选择1/4桥,半桥,全桥测量方式,兼容各种类型的桥路传感器,比如应变,载荷,扭距,位移,加速度,压力,温度等。节点同时支持2线和3线输入方式,桥路自动配平,也可以存储在节点内置的2M数据存储器。有效室外通讯距离可达300m。可连续测量十几个小时。
3、扭矩传感器
节点结构紧凑,体积小巧,封装在树脂外壳内。节点每个通道内置有高精度120-1000Ω桥路电阻和放大调理电路。桥路自动配平。节点的空中传输速率可以达到250KBPS,有效实时数据传输率达到4KSPS,有效室内通讯距离可达100米。节点设计有专门的电源管理软硬件,在实时不间断传输情况下,节点功耗仅25mA,使用普通9V电池,可连续测量几十个小时。对于长期监测应用,以5分钟间隔发送一次扭矩值,数年不需要更换电池,大大提高了系统的免维护性。

㈡ 无线传感器网络中常用的网络仿真软件平台有

无线传感器网络中常用的网络仿真软件平台有OPNET、OMNET++、NS2、TOSSIM等。OPNET是一个强大的、面向对象的、离散事件驱动的通用网络仿真环境。作为一个全面的集成升差开发环境,在无线传输方面的建模能力涉及仿真研究的各阶段,包括模型设计、仿真、数据搜集和数据分析,所有的无线特性与高层协议模型无缝连接。TinyOS是一种面向WSN的新型操作系统。TinyOS采用了轻量级线程技术、主动消息通信技术、组件化编程技术,它是一个基于事件驱动的深度嵌入式操作系统。TOSSIM是一种基于嵌入式TinyOS操作系统的WSN节点仿真环境的实现代表,源码公开,主要应用于MICA系列的WSN节点。其仿真应用随同TinyOS被编译进事件驱动的模拟仿真器。者哪OMNET++是一种开源的基于组件的模块化的开放网络仿真平台,近年来在科学和工业领域逐渐流行。作为离首笑码散事件仿真器,其具备强大完善的图形界面接口和可嵌入式仿真内核,运行于多个操作系统平台,可以简便定义网络拓扑结构,具备编程、调试和跟踪支持等功能,主要用于通信网络和分布式系统的仿真。

㈢ 无线传感网络的问题

涉及的内容是挺多的,
1.硬件方面的(目前处除了军用,或其他一些特定应用外,我们国家很多传感器芯片用的还都是国外的,没有过硬的技术啊)。
2.无线传感器网络协议研究。根据传感器网络自身的特点,结合应用,量身打造更合适的通信协议。
3.软件方面的。目前有系统级别的Tiny OS,编程语言nesC,针对特定应用编写轻量级程序。
4.无线传感器数据管理层面。可以研究网络数据流挖掘之类的。

哪个最有前景?1最有发展空间,但难度大。3是基础,最容易上手,想有突破很难。2和4,自己想吧。

以上都是个人粗浅见解,做个参考。

㈣ 无线传感器网络节点部署问题研究

无线传感器网络是近几年发展起来的一种新兴技术,在条件恶劣和无人坚守的环境监测和事件跟踪中显示了很大的应用价值。节点部署是无线传感器网络工作的基础,对网络的运行情况和寿命有很大的影响。部署问题涉及覆盖、连接和节约能量消耗3个方面。该文重点讨论了网络部署中的覆盖问题,综述了现有的研究成果,总结了今后的热点研究方向,为以后的研究奠定了基础。
基于虚拟势场的有向传感器网络覆盖增强算法
陶 丹+, 马华东, 刘 亮
(智能通信软件与多媒体北京市重点实验室(北京邮电大学),北京 100876)
A Virtual Potential Field Based Coverage-Enhancing Algorithm for Directional Sensor Networks
TAO Dan+, MA Hua-Dong, LIU Liang
(Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia (Beijing University of Posts and Telecommunications), Beijing 100876, China)
+ Corresponding author: Phn: +86-10-62282277, Fax: +86-10-62283523, E-mail: [email protected], http://www.bupt.e.cn
Tao D, Ma HD, Liu L. A virtual potential field based coverage-enhancing algorithm for directional sensor networks. Journal of Software, 2007,18(5):11521163. http://www.jos.org.cn/1000-9825/18/1152.htm
Abstract: Motivated by the directional sensing feature of video sensor, a direction adjustable sensing model is proposed first in this paper. Then, the coverage-enhancing problem in directional sensor networks is analyzed and defined. Moreover, a potential field based coverage-enhancing algorithm (PFCEA) is presented. By introcing the concept of “centroid”, the pending problem is translated into the centroid points’ uniform distribution problem. Centroid points repel each other to eliminate the sensing overlapping regions and coverage holes, thus enhance the whole coverage performance of the directional sensor network. A set of simulation results are performed to demonstrate the effectiveness of the proposed algorithm.
Key words: directional sensor network; directional sensing model; virtual potential field; coverage enhancement
摘 要: 首先从视频传感器节点方向性感知特性出发,设计了一种方向可调感知模型,并以此为基础对有向传感器网络覆盖增强问题进行分析与定义;其次,提出了一种基于虚拟势场的有向传感器网络覆盖增强算法PFCEA (potential field based coverage-enhancing algorithm).通过引入“质心”概念,将有向传感器网络覆盖增强问题转化为质心均匀分布问题,以质心点作圆周运动代替传感器节点传感方向的转动.质心在虚拟力作用下作扩散运动,以消除网络中感知重叠区和盲区,进而增强整个有向传感器网络覆盖.一系列仿真实验验证了该算法的有效性.
关键词: 有向传感器网络;有向感知模型;虚拟势场;覆盖增强
中图法分类号: TP393 文献标识码: A
覆盖作为传感器网络中的一个基本问题,反映了传感器网络所能提供的“感知”服务质量.优化传感器网络覆盖对于合理分配网络的空间资源,更好地完成环境感知、信息获取任务以及提高网络生存能力都具有重要的意义[1].目前,传感器网络的初期部署有两种策略:一种是大规模的随机部署;另一种是针对特定的用途进行计划部署.由于传感器网络通常工作在复杂的环境下,而且网络中传感器节点众多,因此大都采用随机部署方式.然而,这种大规模随机投放方式很难一次性地将数目众多的传感器节点放置在适合的位置,极容易造成传感器网络覆盖的不合理(比如,局部目标区域传感器节点分布过密或过疏),进而形成感知重叠区和盲区.因此,在传感器网络初始部署后,我们需要采用覆盖增强策略以获得理想的网络覆盖性能.
目前,国内外学者相继开展了相关覆盖增强问题的研究,并取得了一定的进展[25].从目前可获取的资料来看,绝大多数覆盖问题研究都是针对基于全向感知模型(omni-directional sensing model)的传感器网络展开的[6],
即网络中节点的感知范围是一个以节点为圆心、以其感知距离为半径的圆形区域.通常采用休眠冗余节点[2,7]、
重新调整节点分布[811]或添加新节点[11]等方法实现传感器网络覆盖增强.
实际上,有向感知模型(directional sensing model)也是传感器网络中的一种典型的感知模型[12],即节点的感知范围是一个以节点为圆心、半径为其感知距离的扇形区域.由基于有向感知模型的传感器节点所构成的网络称为有向传感器网络.视频传感器网络是有向传感器网络的一个典型实例.感知模型的差异造成了现有基于全向感知模型的覆盖研究成果不能直接应用于有向传感器网络,迫切需要设计出一系列新方法.
在早期的工作中[13],我们率先开展有向传感器网络中覆盖问题的研究,设计一种基本的有向感知模型,用以刻画视频传感器节点的方向性感知特性,并研究有向传感器网络覆盖完整性以及通信连通性问题.同时,考虑到有向传感器节点传感方向往往具有可调整特性(比如PTZ摄像头的推拉摇移功能),我们进一步提出一种基于图论和计算几何的集中式覆盖增强算法[14],调整方案一经确定,网络中所有有向传感器节点并发地进行传感方向的一次性调整,以此获得网络覆盖性能的增强.但由于未能充分考虑到有向传感器节点局部位置及传感方向信息,因而,该算法对有向传感器网络覆盖增强的能力相对有限.
本文将基本的有向感知模型扩展为方向可调感知模型,研究有向传感器网络覆盖增强问题.首先定义了方向可调感知模型,并分析随机部署策略对有向传感器网络覆盖率的影响.在此基础上,分析了有向传感器网络覆盖增强问题.本文通过引入“质心”概念,将待解决问题转化为质心均匀分布问题,提出了一种基于虚拟势场的有向传感器网络覆盖增强算法PFCEA(potential field based coverage-enhancing algorithm).质心在虚拟力作用下作扩散运动,逐步消除网络中感知重叠区和盲区,增强整个网络覆盖性能.最后,一系列仿真实验验证了PFCEA算法的有效性.
1 有向传感器网络覆盖增强问题
本节旨在分析和定义有向传感器网络覆盖增强问题.在此之前,我们对方向可调感知模型进行简要介绍.
1.1 方向可调感知模型
不同于目前已有的全向感知模型,方向可调感知模型的感知区域受“视角”的限制,并非一个完整的圆形区域.在某时刻t,有向传感器节点具有方向性感知特性;随着其传感方向的不断调整(即旋转),有向传感器节点有能力覆盖到其传感距离内的所有圆形区域.由此,通过简单的几何抽象,我们可以得到有向传感器节点的方向可调感知模型,如图1所示.
定义1. 方向可调感知模型可用一个四元组P,R, ,
表示.其中,P=(x,y)表示有向传感器节点的位置坐标;R表示节
点的最大传感范围,即传感半径;单位向量 = 为扇形感知区域的中轴线,即节点在某时刻t时的传感方向; 和 分别是单位向量 在X轴和Y轴方向上的投影分量;表示边界距离传感向量 的传感夹角,2代表传感区域视角,记作FOV.
特别地,当=时,传统的全向感知模型是方向可调感知模型的一个特例.
若点P1被有向传感器节点vi覆盖成立,记为viP1,当且仅当满足以下条件:
(1) ,其中, 代表点P1到该节点的欧氏距离;
(2) 与 间夹角取值属于[,].
判别点P1是否被有向传感器节点覆盖的一个简单方法是:如果 且 ,那么,点P1
被有向传感器节点覆盖;否则,覆盖不成立.另外,若区域A被有向传感节点覆盖,当且仅当区域A中任何一个点都被有向传感节点覆盖.除非特别说明,下文中出现的“节点”和“传感器节点”均满足上述方向可调感知模型.
1.2 有向传感器网络覆盖增强问题的分析与定义
在研究本文内容之前,我们需要作以下必要假设:
A1. 有向传感器网络中所有节点同构,即所有节点的传感半径(R)、传感夹角()参数规格分别相同;
A2. 有向传感器网络中所有节点一经部署,则位置固定不变,但其传感方向可调;
A3. 有向传感器网络中各节点都了解自身位置及传感方向信息,且各节点对自身传感方向可控.
假设目标区域的面积为S,随机部署的传感器节点位置满足均匀分布模型,且目标区域内任意两个传感器节点不在同一位置.传感器节点的传感方向在[0,2]上也满足均匀分布模型.在不考虑传感器节点可能落入边界区域造成有效覆盖区域减小的情况下,由于每个传感器节点所监控的区域面积为R2,则每个传感器节点能监测整个目标区域的概率为R2/S.目标区域被N个传感器节点覆盖的初始概率p0的计算公式为(具体推导过程参见文献[14])
(1)
由公式(1)可知,当目标区域内网络覆盖率至少达到p0时,需要部署的节点规模计算公式为
(2)
当网络覆盖率分别为p0和p0+p时,所需部署的传感器节点数目分别为ln(1p0)/,ln(1(p0+p))/.其中, =ln(SR2)lnS.因此,传感器节点数目差异N由公式(3)可得,
(3)
当目标区域面积S、节点传感半径R和传感夹角一定时,为一常数.此时,N与p0,p满足关系如图2所示(S=500500m2,R=60m,=45º).从图中我们可以看出,当p0一定时,N随着p的增加而增加;当p一定时,N随着p0的增加而增加,且增加率越来越大.因此,当需要将覆盖率增大p时,则需多部署N个节点(p0取值较大时(80%),p取值每增加1%,N就有数十、甚至数百的增加).如果采用一定的覆盖增强策略,无须多部署节点,就可以使网络覆盖率达到p0+p,大量节省了传感器网络部署成本.
设Si(t)表示节点vi在传感向量为 时所覆盖的区域面积.运算操作Si(t)Sj(t)代表节点vi和节点vj所能覆盖到的区域总面积.这样,当网络中节点传感向量取值为 时,有向传感器网络覆盖率可表
示如下:
(4)
因此,有向传感器网络覆盖增强问题归纳如下:
问题:求解一组 ,使得对于初始的 ,有 取值
接近最大.

Fig.2 The relation among p0, p and N
图2 p0,p和N三者之间的关系
2 基于虚拟势场的覆盖增强算法
2.1 传统虚拟势场方法
虚拟势场(virtual potential field)的概念最初应用于机器人的路径规划和障碍躲避.Howard等人[8]和Pori等人[9]先后将这一概念引入到传感器网络的覆盖增强问题中来.其基本思想是把网络中每个传感器节点看作一个虚拟的电荷,各节点受到其他节点的虚拟力作用,向目标区域中的其他区域扩散,最终达到平衡状态,即实现目标区域的充分覆盖状态.Zou等人[15]提出了一种虚拟力算法(virtual force algorithm,简称VFA),初始节点随机部署后自动完善网络覆盖性能,以均匀网络覆盖并保证网络覆盖范围最大化.在执行过程中,传感器节点并不移动,而是计算出随机部署的传感器节点虚拟移动轨迹.一旦传感器节点位置确定后,则对相应节点进行一次移动操作.Li等人[10]为解决传感器网络布局优化,在文献[15]的基础上提出了涉及目标的虚拟力算法(target involved virtual force algorithm,简称TIVFA),通过计算节点与目标、热点区域、障碍物和其他传感器之间的虚拟力,为各节点寻找受力平衡点,并将其作为该传感器节点的新位置.
上述利用虚拟势场方法优化传感器网络覆盖的研究成果都是基于全向感知模型展开的.假定传感器节点间存在两种虚拟力作用:一种是斥力,使传感器节点足够稀疏,避免节点过于密集而形成感知重叠区域;另一种是引力,使传感器节点保持一定的分布密度,避免节点过于分离而形成感知盲区[15].最终利用传感器节点的位置移动来实现传感器网络覆盖增强.
2.2 基于虚拟势场的有向传感器网络覆盖增强算法
在实际应用中,考虑到传感器网络部署成本,所有部署的传感器节点都具有移动能力是不现实的.另外,传感器节点位置的移动极易引起部分传感器节点的失效,进而造成整个传感器网络拓扑发生变化.这些无疑都会增加网络维护成本.因而,本文的研究工作基于传感器节点位置不变、传感方向可调的假设.上述假设使得直接利用虚拟势场方法解决有向传感器网络覆盖增强问题遇到了麻烦.在传统的虚拟势场方法中,传感器节点在势场力的作用下进行平动(如图3(a)所示),而基于本文的假设,传感器节点表现为其扇形感知区域在势场力的作用下以传感器节点为轴心进行旋转(如图3(b)所示).
为了简化扇形感知区域的转动模型,我们引入“质心(centroid)”的概念.质心是质点系中一个特定的点,它与物体的平衡、运动以及内力分布密切相关.传感器节点的位置不变,其传感方向的不断调整可近似地看作是扇形感知区域的质心点绕传感器节点作圆周运动.如图3(b)所示,一个均匀扇形感知区域的质心点位于其对称轴上且与圆心距离为2Rsin/3.每个传感器节点有且仅有一个质心点与其对应.我们用c表示传感器节点v所对应的质心点.本文将有向传感器网络覆盖增强问题转化为利用传统虚拟势场方法可解的质心点均匀分布问题,如图4所示.

Fig.3 Moving models of sensor node
图3 传感器节点的运动模型

Fig.4 The issue description of coverage enhancement in directional sensor networks
图4 有向传感器网络覆盖增强问题描述
2.2.1 受力分析
利用虚拟势场方法增强有向传感器网络覆盖,可以近似等价于质心点-质心点(c-c)之间虚拟力作用问题.我们假设质心点-质心点之间存在斥力,在斥力作用下,相邻质心点逐步扩散开来,在降低冗余覆盖的同时,逐渐实现整个监测区域的充分高效覆盖,最终增强有向传感器网络的覆盖性能.在虚拟势场作用下,质心点受来自相邻一个或多个质心点的斥力作用.下面给出质心点受力的计算方法.
如图5所示,dij表示传感器节点vi与vj之间的欧氏距离.只有当dij小于传感器节点传感半径(R)的2倍时,它们的感知区域才存在重叠的可能,故它们之间才存在产生斥力的作用,该斥力作用于传感器节点相应的质心点ci和cj上.
定义2. 有向传感器网络中,欧氏距离不大于节点传感半径(R)2倍的一对节点互为邻居节点.节点vi的邻居节点集合记作i.即i={vj|Dis(vi,vj)2R,ij}.
我们定义质心点vj对质心点vi的斥力模型 ,见公式(5).
(5)
其中,Dij表示质心点ci和cj之间的欧氏距离;kR表示斥力系数(常数,本文取kR=1);ij为单位向量,指示斥力方向(由质心点cj指向ci).公式(5)表明,只有当传感器节点vi和vj互为邻居节点时(即有可能形成冗余覆盖时),其相应的质心点ci和cj之间才存在斥力作用.质心点所受斥力大小与ci和cj之间的欧氏距离成反比,而质心点所受斥力方向由ci和cj之间的相互位置关系所决定.
质心点ci所受合力是其受到相邻k个质心点排斥力的矢量和.公式(6)描述质心点ci所受合力模型 .
(6)
通过如图6所示的实例,我们分析质心点的受力情况.图中包括4个传感器节点:v1,v2,v3和v4,其相应的质心
点分别为c1,c2,c3和c4.以质心点c1为例,由于d122R,故 ,质心点c1仅受到来自质心点c3和c4的斥力,其所受合力 .传感器节点传感方向旋转导致质心点的运动轨迹并不是任意的,而是固定绕传感器节点作圆周运动.因此,质心点的运动仅仅受合力沿圆周切线方向分量 的影响.

Fig.6 The force on centroid
图6 质心点受力
2.2.2 控制规则(control law)
本文基于一个虚拟物理世界研究质心点运动问题,其中作用力、质心点等都是虚拟的.该虚拟物理世界的构建是建立在求解问题特征的基础上的.在此,我们定义控制规则,即规定质心点受力与运动之间的关系,以达到质心点的均匀分布.
质心点在 作用下运动,受到运动学和动力学的双重约束,具体表现如下:
(1) 运动学约束
在传统传感器网络中利用虚拟势场方法移动传感器节点的情况下,由于传感器节点向任意方向运动的概率是等同的,我们大都忽略其所受的运动学约束[8].而在转动模型中,质心点的运动不是任意方向的,受合力沿圆
周切线方向分量 的影响,只能绕其传感器节点作圆周运动.
质心点在运动过程中受到的虚拟力是变化的,但对传感器网络系统来说,传感器节点之间每时每刻都交换邻居节点位置及传感方向信息是不现实的.因此,我们设定邻居节点间每隔时间步长t交换一次位置及传感方向信息,根据交换信息计算当前时间步长质心点所受合力,得出转动方向及弧长.同时,问题求解的目的在于将节点的传感方向调整至一个合适的位置.在此,我们不考虑速度和加速度与转动弧长之间的关系.
(2) 动力学约束
动力学约束研究受力与运动之间的关系.本运动模型中的动力学约束主要包含两方面内容:
• 每个时间步长t内,质心点所受合力与转动方向及弧长之间的关系;
• 质心点运动的静止条件.
在传统传感器网络中利用虚拟势场方法移动传感器节点的情况下,在每个时间步长内,传感器节点的运动速度受限于最大运动速度vmax,而不是随传感器节点受力无止境地增加.通过此举保证微调方法的快速收敛.在本转动模型中,我们同样假设质心点每次固定以较小的转动角度进行转动,通过多次微调方法逐步趋向最优解,即在每个时间步长t内,质心点转动的方向沿所受合力在圆周切线方向分量,转动大小不是任意的,而是具有固定转动角度.采用上述方法的原因有两个:
• 运动过程中,质心点受力不断变化,且变化规律很难用简单的函数进行表示,加之上述运动学约束和问题特征等因素影响,我们很难得出一个简明而合理的质心点所受合力与转动弧长之间的关系.
• 运动过程中,质心点按固定角度进行转动,有利于简化计算过程,减少节点的计算负担.同时,我们通过分析仿真实验数据发现,该方法具有较为理想的收敛性(具体讨论参见第3.2节).
固定转动角度取值不同对PFCEA算法性能具有较大的影响,这在第3.3节中将加以详细的分析和说明.
当质心点所受合力沿圆周切线方向分量为0时,其到达理想位置转动停止.如图7所示,我们假定质心点在圆周上O点处合力切向分量为0.由于质心点按固定转动角度进行转动,因此,它
未必会刚好转动到O点处.当质心点处于图7中弧 或 时,会
因合力切向分量不为0而导致质心点围绕O点附近往复振动.因此,为避免出现振动现象,加速质心点达到稳定状态,我们需要进一步限定质心点运动的停止条件.
当质心点围绕O点附近往复振动时,其受合力的切向分量很
小.因此,我们设定受力门限,当 (本文取=10e6),即可认
定质心点已达到稳定状态,无须再运动.经过数个时间步长t后,当网络中所有质心点达到稳定状态时,整个传感器网络即达到稳定状态,此时对应的一组 ,该
组解通常为本文覆盖增强的较优解.
2.3 算法描述
基于上述分析,本文提出了基于虚拟势场的网络覆盖增强算法(PFCEA),该算法是一个分布式算法,在每个传感器节点上并发执行.PFCEA算法描述如下:
输入:节点vi及其邻居节点的位置和传感方向信息.
输出:节点vi最终的传感方向信息 .
1. t0; //初始化时间步长计数器
2. 计算节点vi相应质心点ci初始位置 ;
3. 计算节点vi邻居节点集合i,M表示邻居节点集合中元素数目;
4. While (1)
4.1 tt+1;
4.2 ;
4.3 For (j=0; j<M; j++)
4.3.1 计算质心点cj对ci的当前斥力 ,其中,vji;
4.3.2 ;
4.4 计算质心点ci当前所受合力 沿圆周切线分量 ;
4.5 确定质心点ci运动方向;
4.6 If ( ) Then
4.6.1 质心点ci沿 方向转动固定角度;
4.6.2 调整质心点ci至新位置 ;
4.6.3 计算节点vj指向当前质心点ci向量并单位化,得到节点vi最终的传感方向信息 ;
4.7 Sleep (t);
5. End.
3 算法仿真与性能分析
我们利用VC6.0自行开发了适用于传感器网络部署及覆盖研究的仿真软件Senetest2.0,并利用该软件进行了大量仿真实验,以验证PFCEA算法的有效性.实验中参数的取值见表1.为简化实验,假设目标区域中所有传感器节点同构,即所有节点的传感半径及传感夹角规格分别相同.
Table 1 Experimental parameters
表1 实验参数
Parameter Variation
Target area S 500500m2
Area coverage p 0~1
Sensor number N 0~250
Sensing radius Rs 0~100m
Sensing offset angel  0º~90º
3.1 实例研究
在本节中,我们通过一个具体实例说明PFCEA算法对有向传感器网络覆盖增强.在500500m2的目标区域内,我们部署传感半径R=60m、传感夹角=45º的传感器节点完成场景监测.若达到预期的网络覆盖率p=70%, 通过公式(1),我们可预先估算出所需部署的传感器节点数目,
.
针对上述实例,我们记录了PFCEA算法运行不同时间步长时有向传感器网络覆盖增强情况,如图8所示.

(a) Initial coverage, p0=65.74%
(a) 初始覆盖,p0=65.74% (b) The 10th time step, p10=76.03%
(b) 第10个时间步长,p10=76.03%

(c) The 20th time step, p20=80.20%
(c) 第20个时间步长,p20=80.20% (d) The 30th time step, p30=81.45%
(d) 第30个时间步长,p30=81.45%
Fig.8 Coverage enhancement using PFCEA algorithm
图8 PFCEA算法实现覆盖增强
直观看来,质心点在虚拟斥力作用下进行扩散运动,逐步消除网络中感知重叠区和盲区,最终实现有向传感器网络覆盖增强.此例中,网络传感器节点分别经过30个时间步长的调整,网络覆盖率由最初的65.74%提高到81.45%,网络覆盖增强达15.71个百分点.
图9显示了逐个时间步长调整所带来的网络覆盖增强.我们发现,随着时间步长的增加,网络覆盖率也不断增加,且近似满足指数关系.当时间步长达到30次以后,网络中绝大多数节点的传感方向出现振动现象,直观表现为网络覆盖率在81.20%附近在允许的范围振荡.此时,我们认定有向传感器网络覆盖性能近似增强至最优.
网络覆盖性能可以显着地降低网络部署成本.实例通过节点传感方向的自调整,在仅仅部署105个传感器节点的情况下,最终获得81.45%的网络覆盖率.若预期的网络覆盖率为81.45%,通过公式(1)的计算可知,我们至少需要部署148个传感器节点.由此可见,利用PFCEA算法实现网络覆盖增强的直接效果是可以节省近43个传感器节点,极大地降低了网络部署成本.
3.2 收敛性分析
为了讨论本文算法的收敛性,我们针对4种不同的网络节点规模进行多组实验.我们针对各网络节点规模随机生成10个拓扑结构,分别计算算法收敛次数,并取平均值,实验数据见表2.其他实验参数为R=60m,=45º, =5º.
Table 2 Experimental data for convergence analysis
表2 实验数据收敛性分析

(%)
(%)

1 50 41.28 52.73 24
2 70 52.74 64.98 21
3 90 60.76 73.24 28
4 110 65.58 78.02 27
分析上述实验数据,我们可以得出,PFCEA算法的收敛性即调整的次数,并不随传感器网络节点规模的变化而发生显着的改变,其取值一般维持在[20,30]范围内.由此可见,本文PFCEA算法具有较好的收敛性,可以在较短的时间步长内完成有向传感器网络的覆盖增强过程.
3.3 仿真分析
在本节中,我们通过一系列仿真实验来说明4个主要参数对本文PFCEA算法性能的影响.它们分别是:节点规模N、传感半径R、传感夹角和(质心点)转动角度.针对前3个参数,我们与以往研究的一种集中式覆盖增强算法[14]进行性能分析和比较.
A. 节点规模N、传感半径R以及传感角度
我们分别取不同节点规模进行仿真实验.从图10(a)变化曲线可以看出,当R和一定时,N取值较小导致网络初始覆盖率较小.此时,随着N的增大,p取值呈现持续上升趋势.当N=200时,网络覆盖率增强可达14.40个百分点.此后,p取值有所下降.这是由于当节点规模N增加导致网络初始覆盖率较高时(如60%),相邻多传感器节点间形成覆盖盲区的概率大为降低,无疑削弱了PFCEA算法的性能.另外,部分传感器节点落入边界区域,也会间接起到削弱PFCEA算法性能的作用.
另外,传感半径、传感角度对PFCEA算法性能的影响与此类似.当节点规模一定时,节点传感半径或传感角度取值越小,单个节点的覆盖区域越小,各相邻节点间形成感知重叠区域的可能性也就越小.此时,PFCEA算法对网络覆盖性能改善并不显着.随着传感半径或传感角度的增加,p不断增加.当R=70m且=45º时,网络覆盖率最高可提升15.91%.但随着传感半径或传感角度取值的不断增加,PFCEA算法带来的网络覆盖效果降低,如图10(b)、图10(c)所示.

(c) The effect of sensing offset angle , other parameters meet N=100, R=40m, =5º
(c) 传感角度的影响,其他实验参数满足:N=100,R=40m,=5º

㈤ 物联网应用技术学什么课程

物联网应用技术课程有物联网应用软件开发、物联网硬件基础、无线传感网应用技术等。

物联网应用技术职业能力:

1、物联网应用技术职业能力需要具备对新知识、新技能的学习能力和创新创业能力;具备无线传感网节点电子原理图和PCB图的绘制能力。

2、物联网应用技术职业能力需要具备无线传感网节电路板的焊接、检测、装配、调试和维修能力;具备无线传感网单片机程序的编程、下载和调试能力。

3、物联网应用技术职业能力需要具备物联网系统集成能力;具备物联网应用系统软件编程能力。

4、物联网应用技术职业能力需要具备物联网应用系统安装调试、故障分析和排除能力;了解物联网和无线传感网的基本概念和原理,了解物联网应用系统的基本组成和工作原理。

㈥ 无线传感器网络

无线传感器网络(wirelesssensornetwork,WSN)是综合了传感器技术、嵌入式计算机技术、分布式信息处理技术和无线通信技术,能够协作地实时监测、感知和采集网络分布区域内的各种环境或监测对象的信息,并对这些数据进行处理,获得详尽而准确的信息。传送到需要这些信息的用户。它是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成一个多跳的自组织的网络系统。传感器、感知对象和观察者构成了传感器网络的三要素。
无线传感器网络作为当今信息领域新的研究热点,涉及到许多学科交叉的研究领域,要解决的关键技术很多,比如:网络拓扑控制、网络协议、网络安全、时间同步、定位技术、数据融合、数据管理、无线通信技术等方面,同时还要考虑传感器的电源和节能等问题。
所谓部署问题,就是在一定的区域内,通过适当的策略布置传感器节点以满足某种特定的需求。优化节点数目和节点分布形式,高效利用有限的传感器网络资源,最大程度地降低网络能耗,均是节点部署时应注意的问题。
目前的研究主要集中在网络的覆盖问题、连通问题和能耗问题3个方面。
基于节点部署方式的覆盖:1)确定性覆盖2)自组织覆盖
基于网格的覆盖:1)方形网格2)菱形网格
被监测目标状态的覆盖:1)静态目标覆盖2)动态目标覆盖
连通问题可描述为在传感器节点能量有限,感知、通信和计算能力受限的情况下,采用一定的策略(通常设计有效的算法)在目标区域中部署传感器节点,使得网络中的各个活跃节点之间能够通过一跳或多跳方式进行通信。连通问题涉及到节点通信距离和通信范围的概念。连通问题分为两类:纯连通与路由连通。
覆盖中的节能对于覆盖问题,通常采用节点集轮换机制来调度节点的活跃/休眠时间。连通中的节能针对连通问题,也可采用节点集轮换机制与调整节点通信距离的方法。而文献中涉及最多的主要是从节约网络能量和平衡节点剩余能量的角度进行路由协议的研究。

㈦ 物联网应用技术专业学什么

物联网应用技术专业学并且掌握射频、嵌入式等。

物联网应用技术的职业能力:

1、具备对新知识知悔、新技能的学习能力和创新创业能力。

2、具备无线传感网节点电子原理图和PCB图的绘制能力

3、具备无线传感网节电路板的焊接、检测、装配、调试和维修能力。

4、具备无线传感网单搭誉正片机程序的编程、下载和调试能力。

5、具备物联网系统集成能力。

6、具备物联网应用系统软件编程能力。

7、具备物联网应用系统安装调试、故障分析和排除能力。

8、了解物联网和无线传感网的基本概念和原理,了解物联网应用系统的基本组成和工作原理。

㈧ 无线传感器网络故障的诊断技术

无线传感器网络故障的诊断技术

随着社会的发展与不断进步,无线传感器网络得到广泛应用,但是由于无线传感器节点的能量具有制约性,导致无线传感器网络的运用环境比较脆弱,下面我为大家搜索整理了关于无线传感器网络故障的诊断技术,欢迎参考阅读,希望对大家有所帮助!想了解更多相关信息请持续关注我们应届毕业生培训网!

无线传感器网络是由大量传感器节点组成的,因为传感器节点廉价和微型的特点,促使无线传感器网络对节点的利用率非常高,尤其是在无线传感网络的监测区域,在自组织方式的参与下,以互相协作的形式完成无线传感器的监测任务,所以其应用的前景也是非常广阔的,但是传感器节点的工作能力是有限的,难免会发生系统故障。

1 无线传感器网络故障评价指标

无线传感器网络故障诊断的性能评价指标是以无线传感器的网络特点和网络应用为基础制定的,其标准主要体现在诊断精度、特殊环境诊断精度、能效性以及诊断时间四个方面。

诊断精度。无线传感器故障诊断精度是诊断机制对故障最直接的评价方式,特别是在网络安全性较高的环境中,如果不能保障故障诊断的精确度则会导致传感器网络系统出现安全漏洞,同时意味着此故障诊断精度的失效,诊断精度主要是以一次过程为故障诊断的依据,分析被诊断的节点状态与实际节点状态的相符程度,诊断精度中故障误报率和故障识别率为评价故障的两个指标。

特殊环境诊断精度。无线传感器网络在特殊环境中的应用是有特定的诊断精度的,例如自然灾害、人为破坏等特殊环境因素,由于故障的节点在网络中的分布不均匀,可能会出现故障区域节点的过分疏散或者是节点的过分密集等现象,普通的诊断精度是不适应的,所以只能采取特殊环境的诊断精度对故障进行评价。

能效性。受无线传感器网络能量供应方面的影响,能效性成为故障诊断评价机制中需要最先考虑的问题,能效性比较强的故障诊断机制可以促进网络使用寿命的延长,以便保障传感器网络监测、计算方面能量的持续供应,与能效性有直接关系的因素有数据通信、处理和采集三方面。

诊断时间。无线传感器网络投入使用后,如需进行故障诊断需要对传感器中节点与节点之间的关系进行协作性判断,主要是因为节点呈现激活状态的数量比较多,如果节点出现联系性的故障一定会对无线传感器网络造成巨大的能耗压力,所以节点故障诊断的时间不宜过长。

2 无线传感器网络故障诊断分类

无线传感器网络故障主要来源于传感器的节点,主要表现在四个模块上,分别为能量电池供应模块、无线网络通信模块、传感处理模块和传感器模块,基于无线传感器网络的运行和使用,其组成元件、部件会出现各种各样的问题,如干扰通信、线路老化、电能耗损以及接线松动等等,引发无线传感器网络发生故障。

2.1 节点级别的故障

节点级别的故障主要是发生在传感器网络的节点处,大部分故障主要是传感器的节点本身出现了问题,其又可分为节点软故障和节点硬故障,软故障是指节点在不影响无线传感器网络运行的前提下发生故障,只有对数据进行传送和测量时,可瞬间影响通信的故障;硬故障是指对节点本身以及对传感器网络造成的直接损害,例如节点本身损坏、电源布置不合理或电源能量不足都会造成无线传感器网络故障。

2.2 网络级别的故障

网络级别的故障是指无线传感器的节点本身是正常的,但是在节点与节点之间的传输、协作方面上出现制约性问题,导致网络连接异常、通信受阻、信息丢失、IP偏差、非法入侵等等,此故障的出现是直接作用于网络的,其故障的表现极其明显,而且故障出现的速度非常快,影响范围比较广,属于无线网络传感器网络中相对较为敏感的故障。

2.3 功能级别的故障

无线传感器网络功能级别的故障对于整体网络都是存在影响的,如出现功能级别的故障会造成网络中汇集点不能正常接收和收集网络中运行的全部信息,引起功能级别故障的原因主要有传感器节点的重启、死亡和失效,链接线路故障以及路由装置故障等。

2.4 数据级别的故障

数据级别的故障是指传感器节点表现正常,但是传达了错误的数据信息,致使网络形成错误的数据感知,数据级别故障的隐蔽性比较强,只有经过精细的检测才可发现传感器节点传递了错误的感知数据,因为即使节点感知数据传递错误,但是其本身的表现形式是没有任何问题的,因此无形中降低了无限传感器网络的运行性能,而且会错误的引导网络管理员检查维修。

3 无线传感器网络故障诊断技术

无线传感器网络故障诊断主要是针对其投入使用的期间,通过对网络传递的信息进行分析,判断无线传感器网络是否发生故障,根据故障发生的状态检测导致故障发生的基本根源,无线传感器网络故障的诊断是一项复杂而又系统的工程项目,基于其所处的环境以及自身运行的特点决定了故障诊断的难度,为降低诊断的难度,一般情况在进行故障诊断时需要以传感器各个节点日常的测量数据为主,以节点数据传输的附加信息为辅,促进故障诊断的效率。

无线传感器网络故障诊断的指标为传感器高质量的服务和能量的有效保护,而故障诊断策略的衡量指标主要有错误警报率和检测率,其中错误报警率反馈的是无效警报在诊断报告总警报中的占据比例,错误报警率较低即可说明此次诊断结果具有较高的可信度;检测率反馈的是被检测出的故障在网络总故障中占据的比例,与错误报告率相反,检测率越高则说明诊断策略的有效性比较高。目前对无线传感器网络故障诊断技术的`研究主要以传感器的故障、场景类型为中心,对传感器节点的功能、读数故障进行探讨,分析无线传感器网络故障的诊断技术。

3.1 传感器节点读数故障的诊断技术

节点读数故障的诊断技术主要是针对无线传感器网络中错误的测量数据,错误数据产生的情况主要有外界环境干扰导致网络受到安全攻击、节点部件的损坏等等,针对节点读数故障提出以下诊断技术。 (1)WMFDS诊断技术。此技术主要是对传感器节点与节点之间的数据进行空间相关性的测量,越临近的节点其测量结果的相似性越大,所以只能通过正常读数的空间关系,根据此理论提出WMFDS诊断方法,主要是对两节点之间的故障率、分布密度进行分析,判断节点是否出现问题,此方法还可对相邻的节点进行加权处理,但是此方法只可以用于具有空间相关性的节点读数上。

(2)FIND诊断技术。此技术利用无线传感器节点在监控区域具有可持续性监测的特点,感知网络的突然事件,此节点的数据读取可反馈事件发生点到节点相对应的距离,传感器节点的信号强度与距离是呈现相反关系的,即相对距离越大,节点信号强度越弱,节点信号的强弱变化被称为单调变化特性,所以节点的单调特性是反馈节点出现读数故障的判断标准,比如故障节点会表现出与相对距离单调特性相反的现象。

(3)CSN诊断技术。此诊断技术是有一定局限性的,主要是以移动设备为检测对象,利用加速器得出节点的地震运动,故障节点的读数会存在阈值,此阈值与实际历史差距比较大,通过计算机分析节点比例,如出现较高阈值则说明此节点出现了一定的问题。

3.2 传感器节点网络故障的诊断技术

传感器节点网络故障主要表现在链路受环境因素的影响导致网络可靠性降低等现象,针对传感器节点网络故障提出的诊断技术主要有以下三种:

(1)网络软件调试法。在传感器的节点中采取调试代理,利用软件的调试命令,对节点处的网络状态进行分析,收集节点网络数据,确定节点网络故障的来源。

(2)特定模型推断法。特定模型推断法主要包括两种,分布式和集中式的方法。分布式的诊断技术是针对网络中的所有节点,利用从局部到整体的决策方法,分布式诊断技术的代表方法有LD2和TinyD2,最终通过节点网络的整合,得出诊断报告;集中式的诊断技术是在网络节点处植入小型探测器,以便对经过节点的应用数据进行分类、分组,但是探测器对得到信息的分析能力是非常有限的,所以需要感知系统的参与,以此为基础进行节点网络故障的细化诊断。

(3)无声故障诊断技术。此诊断技术在三种技术中是具有一定特殊性的,其可对无经验故障进行有效诊断,例如AD诊断技术,即是比较典型的代表,通过对节点各类型诊断信息之间相关性图表的变化,发现网络中存在的隐藏故障,即无声故障,此技术可提高故障诊断的准确率,同时降低了故障出现的频率。

综上所述,利用无线传感器故障诊断技术诊断无线传感器网络中出现的问题,并对其进行及时有效的处理,一方面可以提高无线传感器网络的运用效率,另一方面提高了无线传感器网络的使用率,所以无线传感器网络的正常运行在一定程度上促进我国经济效益和社会效益的发展和提高。

综上所述,无线传感器网络在世界范围内的关注度是比较高的,其渗透多项科学技术,例如无线通信技术、传感器技术以及信息处理技术等等,无线传感器的研究不论是在经济效益上还是在社会效益上,都是具有极其重要的意义的,无线传感器有效的网络故障诊断技术一方面可以提高无线传感器的利用效率,另一方面对能源节约具有一定的实际价值。

;

㈨ 什么是无线传感网络

无线传感器网络是一种分布式传感网络,它的末梢是可以感知和检查外部世界的传感器。WSN中的传感器通过无线方式通信手念,由大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,以协作地感知、采集、处理和传输网络覆耐纯盖地理区域内被感昌薯咐知对象的信息,并最终把这些信息发送给网络所有者的。因此网络设置灵活,设备位置可以随时更改,还可以跟互联网进行有线或无线方式的连接,通过无线通信方式形成的一个多跳自组织的网络。

无线传感器网络所具有的众多类型的传感器,可探测包括地震、电磁、温度、湿度、噪声、光强度、压力、土壤成分、移动物体的大小、速度和方向等周边环境中多种多样的现象。潜在的应用领域可以归纳为: 军事、航空、防爆、救灾、环境、医疗、保健、家居、工业、商业等领域。

㈩ Zigbee无线传感网络的仿真软件有哪些

IAR集成环境,TI烧写软件,串口助手