当前位置:首页 » 无线网络 » 无线网络规划的特点有哪些
扩展阅读
苹果电脑后壳有标识么 2025-07-08 10:22:55

无线网络规划的特点有哪些

发布时间: 2025-07-08 05:13:53

❶ WCDMA无线网络规划原理与实践的目录

第1章 WCDMA无线网络规划概念
1.1 3G业务和WCDMA系统
1.2 WCDMA网络规划
1.3 WCDMA无线规划
1.4 WCDMA无线规划的复杂性和重要性
1.5 无线网络建设成本的考虑
1.6 无线规划与网络设计、工程实施的关系
1.7 无线规划与工程优化的关系
1.8 系统共存和外来干扰的预防
1.9 网络演进与发展
第2章 WCDMA技术特点
2.1 WCDMA技术特点概述
2.2 码分多址无线接入
2.3 功率控制
2.4 切换
2.5 硬切换
2.6 覆盖与容量
第3章 WCDMA无线网络的结构
3.1 GSM的无线网络结构
3.2 CDMA的无线网络结构
3.3 WCDMA的无线网络结构
3.4 无线网络结构与室内覆盖关系
第4章 WCDMA无线网络的容量及演进
4.1 上行无线容量
4.2 下行无线容量
4.3 信道板卡容量和码容量
4.4 无线容量的平滑演进
4.5 OTSR解决方案和它的容量演进
4.6 单载频到多载频的容量演进
4.7 小区分裂
4.8 6扇区配置
4.9 孪生小区
4.10 无线网络向HSDPA的演进
第5章 WCDMA和GSM/CDMA网络规划的区别和联系
5.1 GSM无线网络规划的特点
5.2 CDMA无线网络规划的特点
5.3 WCDMA无线网络规划的特点
5.4 GSM网络信令信道规划
5.5 CDMA PN码的规划
5.6 WCDMA扰码的规划
5.7 WCDMA和GSM网络规划的联系
5.8 WCDMA和cdma2000网络规划的联系
第6章 无线传播理论与重要的网络规划设计概念
6.1 无线传播环境的简介
6.2 无线传播模型
6.3 网络规划设计的几个重要概念
第7章 WCDMA无线网络的初步规划
7.1 无线网络初步规划的流程
7.2 无线环境的划分
7.3 链路预算
7.4 容量设计
第8章 WCDMA无线网络的详细规划
8.1 无线网络的详细规划流程
8.2 仿真工具设计
8.3 基站站址的选择
8.4 接入网配置设计
8.5 规划结果
8.6 无线网络设计的局限性
第9章 WCDMA无线网络规划案例
9.1 规划案例介绍
9.2 WCDMA无线网络规划参数的确定
9.3 基于Monte Carlo仿真的设计分析与优化
9.4 设计结果的输出与分析
9.5 扰码规划
9.6 信道板配置
9.7 WCDMA无线网络规划总结
9.8 基站信息列表
第10章 WCDMA无线网络的特殊覆盖
10.1 实施特殊覆盖的手段
10.2 特殊覆盖的场景与案例
第11章 无线接入承载网的技术选择和规划
11.1 3G业务对服务质量的需求
11.2 3GPP规范对各接口的定义
11.3 无线接入承载网的相关技术和产品
11.4 无线接入承载网组网方式及分析
第12章 WCDMA城市无缝覆盖组网方案探讨
12.1 WCDMA覆盖特性
12.2 各种组网方案覆盖比较
12.3 城市一体化无缝覆盖综合解决方案
第13章 WCDMA系统与各种无线系统的共存
13.1 系统简介
13.2 干扰产生的原因
13.3 技术干扰分析方法
13.4 干扰分析主要结果简述
13.5 有效的干扰预防措施
第14章 传播模型的校准
14.1 传播模型校准在网络规划中的作用
14.2 传播模型校准的原理与流程
14.3 传播模型校准的前期准备工作
14.4 传播模型校准
14.5 传播模型校准结果示例与分析
14.6 总结
英汉术语对照表

❷ 简述无线网的5大特点

1.传输距离远,覆盖范围大。单个AP覆盖范围可达到10000平方米

2、传输速率高。速率可达到11M。

3、系统传输容量满足要求。Wi-Fi技术特别适合于POS系统这种需要传输大量突发性数据的场合。

4、安全性高。提供“安全多模”能力,支持WAPI/WEP/WPA/WPA2 安全标准,安全标准可以通过软件进行配置。

5 良好的扩展性。

考虑到未来业务的增长和变化,应具备充分的可扩展性,包括多种接入方式的提供和接入的可扩展性,带宽的扩展与速率的平滑升级以及处理能力的可扩展性,依托正在被大规模部署的Wi-Fi网络所带来的成熟的技术、各种层出不穷的Wi-Fi设备、既有的网络设施、架构支持、丰富的网络知识,使用Wi-Fi可最大程度地减少对网络架构和现有设备的调整。

❸ 无线网络的种类和优缺点是什么

根据网络覆盖范围的不同,无线网络可以分为无线广域网、无线局域网、无线城域网和无线个人局域网等类型。无线局域网具有灵活性和移动性,用户可以在无线信号覆盖区域内任意位置接入网络,并且连接到无线局域网的用户可以移动且保持网络连接。这种网络还可以避免或减少重新建网和布线的麻烦,使网络规划和调整更加便捷。此外,无线网络还能轻松定位故障,只需更换故障设备即可恢复网络连接,易于扩展,可以很快从几个用户的小型局域网扩展到上千用户的大型网络,并提供节点间“漫游”等有线网络无法实现的特性。

然而,无线局域网也存在一些缺点。无线网络依赖无线电波进行传输,建筑物、车辆、树木和其他障碍物可能会阻碍电磁波的传输,影响网络性能。无线信道的传输速率也低于有线信道,目前最大传输速率为54Mb/s,适用于个人终端和小规模网络应用。此外,无线网络的安全性较差,无线电波不需要建立物理连接通道,容易监听到无线电波广播范围内的信号,造成通信信息泄漏。因此,在使用无线网络时需要注意安全问题。

无线网络还具有其他特点。它具备可移动性强、网络扩展性能较强和设备安装简易、成本低廉等特点。无线网络通过发射无线电波来传递网络信号,人们可以在发射的范围内利用相应接受设备连接网络。这种网络可以随时通过无线信号接入,网络扩展性能较强,能够有效实现网络工作的扩展和配置设置。同时,无线网络无需布设大量网线,仅需安装一个无线网络发射设备即可,为后期网络维护创造了便利条件,降低了网络前期安装和后期维护的成本费用。

❹ TD-SCDMA无线网络规划的特点

2000年5月,在土耳其伊斯坦布尔举行的WARC会议上,正式确立了FDDWCDMA、cdma2000和TD-SCDMA为国际公认的第三代移动通信(3G)3大主流标准,从而进入3G的高速发展阶段。

目前,国内3G市场的启动已经成为业界关注的焦点,由我国主导提出的3G标准——TD-SCDMA的商用化进程,更是吸引了众多业内人士的眼球。

为了推动TD-SCDMA技术标准在即将到来的3G商业化高潮中的广泛应用,急需建立一个能够与其他2个3G技术标准抗衡的完整的TD-SCDMA产业链。TD-SCDMA产业链应该包括上、中、下游3个部分,上游的基本内容为技术标准的确立和基础技术内容的研究,中游的基本内容为网络及终端设备的研究开发和生产制造,下游的基本内容为网络的建设和业务的运营。经过几年的发展,TD-SCDMA在产业化方面取得了令人鼓舞的重大进展,从芯片、终端到网络设备等各方面均达到了商用化的要求。网络建设的各个环节已经成为必须考虑的问题。2005年由信产部相关研究院负责的在全国范围内进行的外场测试表明,3G网络设计规划和优化将作为未来3G的第一挑战,网络规划、系统仿真和网络优化在3G的发展中具有十分重要的意义。

移动通信系统的基础设施的成本非常巨大,尤其是无线接入网部分。3G网络规划要以竞争优势和效益为导向,其中成本是一个非常重要的要素。未来围绕3G的竞争非常激烈,设法降低成本应该成为保持竞争优势的一个重要目标。TD-SCDMA成为国际标准的时间还不长,目前还没有真正的商用网,任何规划技术仍然是纸上谈兵,把它从基本的技术原理上升为可以支持实际应用的实用技术还有待实践检验。从无线接入的特点来看,TD-SCDMA的组网和规划技术将在以下几个方面发生重要改变。

1 传播模型

在无线网络规划中,无线传播损耗是一个非常关键的参数,它决定着规划结果的正确性。由于实际应用中的无线传播环境是非常复杂的,需要通过理论研究与实际测试的方法归纳出无线传播损耗与频率、距离、天线高度等参量的数学关系式,称之为传播模型。常用的传播模型可分为3类:经验模型、半经验(或半确定性)模型、确定性模型。其中,经验模型是根据大量的测量结果统计分析后归纳导出的公式;确定性模型则是对具体现场环境直接应用电磁理论计算的方法得到的公式;半经验(或半确定性)模型是基于把确定性方法应用于一般的市区或室内环境中导出的公式。鉴于无线网络规划的复杂性,目前,仍然只能使用经验或半经验模型。

然而,经验模型和半经验模型通常具有预测误差大、适应性差的缺点。为了提高预测的准确性,通常采用分段传播模型和进行传播模型的校准的方法来减小预测的误差。

1)分段传播模型

对于不同的传播距离,电磁波在空中传播的特性也是不同的。企图用单一的传播模型进行大范围的预测将会造成很大的误差。为此,对不同的传播距离应调整不同的模型系数或采用不同的模型,这对于WCDMA和cdma2000来说尤其重要。因为FDD模式的CDMA系统是一个自干扰系统,网络的覆盖、容量和服务质量主要受系统内的干扰限制。一个用户受到的干扰可以来自距离几百米到几公里不等的基站。为了对干扰进行准确的预测,必须对8~10km以内的传播损耗进行准确预测,因此必须采用分段模型。

对于TD-SCDMA系统来说,它的时分特性和智能天线带来的空分特性,使得干扰源与有用信号在时间上或空间上错开。干扰在TD-SCDMA系统中显得并不太重要,更重要的是对有用信号的预测。而有用信号通常来自距离很近的宿主基站,因此,在TD-SCDMA系统中,短距传播模型对规划结果的正确性影响将更为重要。

2)传播模型的校准

传播模型的校准是提高预测准确度的另一个重要手段。由于每个地方的传播环境是不一样的,需要对传播模型进行本地校准,然后再进行无线传播损耗的预测。然而,在实际工程中,每对一个地区进行规划,就进行大量的CW测试是不可行的。这样不仅使规划成本提高了很多,而且耽误了工程进度。为了减少校准的工作量,在工程中,常常在某些地方进行校准,得到1~2个传播模型,然后应用于几乎所有的地区和基站。这样的规划模式仍然给规划带来了很大的误差。

一般来说,模型的准确性和适用范围是一对矛盾,模型越准确,其适用范围就越小。可以选取若干典型区域进行校准,得到一系列适用于这些区域的传播模型。这些传播模型对于各自的典型区域来说,是比较准确的。但因为准确度提高了,其适用范围就变小了。如果应用的传播环境不匹配,就会带来很大的误差。因此,在实际使用时,应该以小区为单位,通过数字电子地图,依据小区的传播环境选择相匹配的传播模型,从而提高预测的准确度。

2 业务模型

第一代和第二代移动通信系统是为话音业务设计的,而3G系统则是为多媒体通信而设计的,通过该系统提供的高质量图像和视频,使人与人之间的通信能力进一步增强。目前TD-SCDMA所支持的最高传输速率为384kit/s,3GPP在R5引入了HSDPA技术,单载波的峰值速率可以达到2.8Mbit/s。这样高的传输速率使得业务的接入能力大大增强了,支持更为广泛的业务类型,包括各种视频和音频业务。因此,业务模型的预测将是3G网络规划的一个重点和难点。

众所周知,TD-SCDMA系统的一个很大特点是它的时分双工模式。它的优点是可以为上下行时隙分配不同的比例,从而更好地支持不对称业务。这个优点使得TD-SCDMA更适合承载非对称的数据业务。然而,如果组网和规划不合理,这一优点非但不能够得到体现,相反还可能出现反作用。

首先,上下行时隙比例的规划必须建立在一个准确的业务模型的基础上。这在现阶段仍然很困难。由于经济水平和技术水平的制约,用户还不习惯于利用无线接入的方式上网,目前还没有现成的无线数据网络可供统计分析,许多无线数据业务模型是参考互联网的数据模型而建立的。这样,很难得到准确的无线数据业务模型。随着经济水平的提高和TD-SCDMA商用网的建立,用户的行为习惯可能会发生改变。我们应该对无线数据业务始终进行跟踪分析,及时修正时隙比例规划。

其次,目前的时隙比例规划大多依据上下行的业务流量来制定。仅仅这样是不够的,必须考虑业务的优先级。如一个话音业务的流量为12.2kbit/s,一个视频点播业务的流量为几十或几百kbit/s。话音业务是上下行对称的,而视频点播业务则是以下行业务为主的。如果完全按照流量进行规划,则视频点播业务的大流量会导致时隙比例规划的不平衡,从而使许多话音业务没有足够的信道资源。由于话音业务的容量必须首先保证,建议在建网初期先采用对称的时隙比例,同时跟踪业务流量变化,逐步调整上下行时隙。

另外,在依据业务模型制定时隙方案时,要同时考虑系统的干扰。数据业务在地理上分布的不均匀性容易使我们倾向于不同的小区采用不同的时隙方案。但是,相邻小区的上下行时隙不一致会产生干扰,而如果所有小区都采用统一的时隙方案则会牺牲容量。相应的也有一些方法来解决这个问题,比如牺牲某些边缘小区的交叉时隙。这些方法有待在应用中验证。

3 干扰分析

基于CDMA的系统有一个典型的特征,就是网络容量和服务质量由干扰水平决定。在已经得到广泛应用的cdma20001x网络中,常常可以看到这样的现象:某些区域的无线信号电平值比较高,掉话仍有可能发生;而某些地区的电平值比较低,通话质量却很好。可见,码分多址的无线网络的服务质量主要取决于干扰水平。无线网络规划的重要任务就是预测网络的干扰,并尽可能控制干扰,使网络的性能得到充分发挥。

TD-SCDMA系统由于具有时分和空分的特点,在干扰方面与其他2种3G系统(WCDMA和cdma2000)并不完全相同。在TDD模式下,通过空分(智能天线的波束赋形)和时分(在不同的时隙分配信道)方式,可以使系统的自干扰非常轻,系统容量不再受限于干扰,而是主要受限于码字。另外,对于FDD系统来说,当用户数增加时,干扰加大,小区半径收缩,小区边缘的用户可能处于覆盖盲区或弱区,小区呼吸现象非常明显。在TDD模式下,新增的用户通过智能天线赋形和发射时隙的分隔,减轻对已激活用户的干扰,小区呼吸作用不明显。这样,TD-SCDMA的小区覆盖范围比较稳定,切换区域不易受系统负荷影响。因此,在TD-SCDMA的网络规划中,干扰比较容易估计,可以认为接近于0,只在某些特殊情况下需要考虑。

4 扰码规划

依据协议规定,cdma2000的导频相位共有512个,相邻2个导频相位相差64chip。WCDMA有8192个扰码,分为512个集合,每个集合包含1个主扰码和15个辅扰码。可以看到,cdma2000和WCDMA的扰码资源是比较丰富的。另外,cdma2000和WCDMA的导频/扰码之间具有比较好的相关性,需要产生很大的位移才会发生混淆。而产生足够大的位移需要信号在空中传播很长的距离,这时,信号的电平通常已经弱到不足以产生混淆。因此,cdma2000和WCDMA的导频/扰码规划是相对比较容易的。

TD-SCDMA系统共有128个长16chip的基本扰码序列,这128个基本扰码按编号顺序分为32个组,每组4个,每个基本扰码用于下行UE区分不同的小区。TD-SCDMA的扰码是PN码,具有很好的相关性。但是由于码序列比较短,当码经过位移后,码之间的相关性会随之不同。实验可得,扰码移位后,码字之间的相关性会发生变化,并且不同的码,其变化的程度也不同。

可以看到,TD-SCDMA系统中的扰码具有扰码资源少、码长度短、经过位移后码之间的互相关性变差等特点。这些特点在很大程度上增加了系统扰码分配的难度。在规划时,应该考虑位移导致相关性能恶化的影响,在邻近的小区中应该尽量选用相关性比较好的扰码,并且应为新小区预留一定的扰码。

5 规划工具

目前,在规划工具市场上,还没有出现公认的比较成熟的TD-SCDMA规划工具。而对于TD-SCDMA这样一个技术性很强的通信系统,没有一个好的计算机软件来辅助设计是无法做好的。与WCDMA和cdma2000相比,TD-SCDMA的规划软件工具的开发和选择要更困难。

首先,规划工具必须贯穿整个规划设计过程的始终。在前期准备阶段,规划工具提供传播模型校正、业务预测等功能;在预规划阶段,提供链路预算和容量估算等功能;在详细规划阶段,提供仿真分析等功能。另外,TD-SCDMA规划工具还要提供上下行时隙规划和扰码规划等功能。

其次,规划工具必须适应大计算量的要求。在现实的网络中,基站和模拟用户的数目是非常大的,这使得仿真分析的计算量很大,同时,输出高精度分析图也使得规划软件必须面对海量计算的要求。另外,TD-SCDMA的智能天线赋形和分时隙规划,也给规划软件的计算带来了非常大的负担。庞大的计算量对TD-SCDMA规划工具的开发是一个巨大的挑战。

天线模型的建立也是TD-SCDMA规划工具的一个难点。传统的天线只需给出360°的水平增益和垂直增益,即可近似算出空间任意一点的增益。天线模型比较简单,不同厂家的天线只要给出水平增益图和垂直增益图即可为其建立天线模型。而智能天线是一种自适应的天线,其空间的增益与用户的具体位置、天线的自适应调整算法等有关,是一个动态模型。不同厂家的实现方法可能会不一样,规划软件应该建立一个智能天线的备品库和算法库。当一种新的智能天线生产出来时,还必须能以某种手段录入到规划软件中。

关于业务模型,根据QoS要求和数据流特征,目前标准里建议分为4类,即会话类、浏览类、流类和后台类。TD-SCDMA的一个优势在于对数据业务的支持非常灵活。随着应用的深入,新兴的业务会不断涌现。规划工具除了支持目前划分的4类业务模型外,对业务建模还应提出如下要求:

a)良好的扩展性,使用户在无需修改代码的基础上简单快捷地加入新的业务模型;

b)灵活的配置性,提供方便的修改和定制新的业务模型的途径;

c)准确地反映具体业务的特征,要求对每个具体业务都能够定义与实际情况符合的该业务的QoS和GoS需求及具体业务特征。

另外,对规划软件的另一个重要要求是要有友好的操作界面。规划软件的使用贯穿整个规划过程,使用者众多,水平不等,友好的操作界面是规划软件得以推广的重要条件。目前,开发规划软件的厂家比较多,不同规划软件的使用方法也不一样。规划是一个复杂的过程,规划软件的操作流程通常也比较复杂,没有友好的操作界面和操作规范,很容易导致软件操作不当,从而产生不正确的规划结果。