A. 机房(通信、消防、监控)防雷要怎么做
重点有几方面:
1.机房所在建筑有防雷措施
2.机房内有合格的接地装置,且与建筑及电气接地装置共用接地体,机房内不带电的金属物都要做等电位接地连接,可在机房内防静电地板下安装铜的等电位连接网,具体做法可参考GB50057-2010或GB50174-2008
3.机房低压供电回路安装多级浪涌保护器,特别是机房最末端的保护器的电压保护水平要足够低(比机房内设备耐冲击过电压的极限值低20%),而且安装位置不能离设备太远(指导线敷设长度,最好不超过10米)
4.进出机房的弱电信号线在进机房后要安装参数合适的浪涌保护器
5.有条件的话所有线都采用屏蔽线或用屏蔽材料布线
6.光缆入机房时要尽量靠近入口处将金属芯接地
B. 网络信号防雷器适应范围 安装接线是如何的
直接串联安装,注意输入和输出端别接反就可以了,“北京中电防雷”愿竭诚为你提供专业的服务和质量稳定可靠地防雷产品,希望我的回答对你有所助益,谢谢采纳!
C. 网络信号防雷器
网络信号防雷器有艾尔盾网络信号防雷器,艾尔盾电脑网络信号防雷器,网线网络信号防雷器,电脑网络信号防雷器,24路网络信号防雷器、四路网络信号防雷器、单路网络信号防雷器,1000兆网络信号防雷器,网络交换机防雷器均是指同一防雷器。 020-31968765
D. 信号防雷的简介
产品应用
产品特点
注意事项
信号防雷器在产品的设计上,依据IEC 61644的要求,分为B、C、F三级。B级(Base protection)基本保护级(粗保护级),C级(Combination protection)综合保护级,F级(Medium&fine protection)中等&精细保护级。
测量和控制装置有着广泛的应用,例如生产厂、建筑物管理、供暖系统、报警装置等。由于雷电或其他原因造成的过电压不仅会对控制系统造成危害,而且对昂贵的转换器、传感器也会造成危害。控制系统的故障通常会导致产品损失和对生产的影响。测量和控制单元通常比电源系统对浪涌过电压的反应更加敏感。在测量和控制系统选择和安装防雷器的时候,下面的几个因素必须要考虑:
1、系统的最大工作电压
2、最大工作电流
3、最大数据传输频率
4、是否允许电阻值增大
5、导线是否从建筑物外部引进,建筑物是否有外部防雷装置。
产品特点:
1.多级保护,流通容量大;
2.核心元件均经过严格筛选,且选用国际名牌产品,性能优越;
3.内置快速半导体保护器件,响应速度快;
4.低电容、电感设计,传输性能优越;
5.高传输频率(10-155Mbps),插入损耗小;
6.极低的在线电阻减少了信号强度不必要的衰减,使信号传输的距离增至最大;
7.限制电压极低;
注意事项:
1、请认准接口以及连接方式;
2、认准信号防雷器输入/输出接口标识,输入接外线、输出接设备;
3、接地线应力求短、粗、直,以减少分布电感对雷击电磁脉冲能力泄放的影响;
4、信号防雷器接地宜通过电子开关与地网连接。
各机房监控、存储交换设备直接保持对外、对内通讯联系。信号线是感应雷入侵的另一主要线路,为尽量避免灾害发生,从室外进机房的各信号线在其接入设备前需针对不同的设备选用相应的数据通讯信号防雷器作为通讯线路上防感应雷电压波的保护措施。
(1)在每路视频线路进机房接设备前对应安装视频信号防雷器CET-BNC;
(2)在云台控制线路进机房接设备前对应安装MET-RS控制信号浪涌防雷器;
(3)在报警、门禁控制信号线进机房接设备安装MET-RS信号浪涌防雷器,
机房通信交换设备、服务器、控制主机、控制台、静电地板金属骨架等设备等电位接地处理,具体为:在各机房设置等电位汇流排,网络中心机房建议用4mm*40mm的铜排做等位均压,用多股铜芯将均压带与接地汇流排连接。用不低于16mm2的多股铜芯接地线将金属门窗、各种线路的金属屏蔽管、各种电子设备的金属外壳、机架等与接地汇流排连接。使所有设备在雷击过程中处于同一点位水平,有效地避免不同设备之间的地电位反击,并用BVR35mm2作为接地主干引下线接至楼层总接地端。
E. 机房防雷接地的详细做法
1、防雷接地完全可以利用建筑基础里的钢筋作为接地体,但是必须要将钢筋进行电气贯通焊接起来,并利用房屋柱子里的竖直钢筋做引下线,一直与屋面避雷设施连接。
2、很多要求把钢筋多引一条出来是用来做人工接地的,那是在使用建筑基础本身做接地无法达到规定电阻要求的时候才使用的,而且就算这样做了人工接地,效果要比利用建筑物本身基础做接地体差很多。
3、每个电气装置的接地应以单独的接地线与接地汇流排或接地干线相连接,严禁在一个接电线中串接几个需要接地的电气装置。重要设备和设备构架应有两根与主接地网不同地点连接的接地引下线。
4、建筑物等电位连接干线应从与接地装置有不少于2处直接连接的接地干线或总等电位箱引出,等电位联结干线或局部等电位箱间的连接线形成环形网路,环形网路应就近与等电位联结干线或局部等电位箱连接。支线间不应串线连接。
5、等电位联结安装完毕后应进行导通性测试,测试用电源可采用空载电压为4~24V的直流或交流电源,测试电流不应小于0.2A。当测得等电位联结端子板与等电位联结范围内的金属管道等金属体末端之间的电阻不超过3Ω时,可认为等电位联结是有效的。
F. 防雷工程方案
系统防雷方案包括外部防雷和内部防雷两个方面:
外部防雷包括避雷针、避雷带、引下线、接地极等等,其主要的功能是为了确保建筑物本体免受直击雷的侵袭,将可能击中建筑物的雷电通过避雷针、避雷带、引下线等,泄放入大地。
内部防雷系统是为保护建筑物内部的设备以及人员的安全而设置的。通过在需要保护设备的前端安装合适的避雷器,使设备、线路与大地形成一个有条件的等电位体。将可能进入的雷电流阻拦在外,将因雷击而使内部设施所感应到的雷电流得以安全泄放入地,确保后接设备的安全。
避雷带、引下线(建筑物钢筋)和接地等构成的外部防雷系统,主要是为了保护建筑物本体免受雷击引起的火灾事故及人身安全事故,而内部防雷系统则是防止感应雷和其他形式的过电压侵入设备造成损坏,这是外部防雷系统无法保证的。
雷电对电气设备的影响,主要由以下四个方面造成:①直击雷;②传导雷; ③感应雷;④开关过电压。
直击雷:是指带电云层与大地上某一点之间发生迅猛的放电现象。直击雷威力巨大,雷电压可达几万伏至几百万伏,瞬间电流可达十几万安,在雷电通路上,物体会被高温烧伤甚至融化。通常在建筑物顶部安装避雷针或避雷网等来防直击雷。直击雷其中接近40%的能量将通过建筑物的供电系统分流,其中5%左右的能量通过建筑物的通信网络线缆分流,其余的雷击能量通建筑物的避雷针及其他金属管道、缆线分流。这里的能量分配比例会随着建筑物内的布线状况和管线结构而变化。直击雷波形为10/350us
传导雷(雷电波侵入):在更大的范围内(几公里甚至几十公里),雷电击中电力或信息通讯线路,然后沿着传输线路侵入设备。其中地电位反击也是传导雷中的一种:雷电击中附近建筑物或附近其他物体、地面,导致地电压升高,并在周围形成巨大的跨步电压。雷电可能通过接地系统或建筑物间的线路入侵雷电延建筑物内部设备形成地电位反击。
感应雷(雷电波感应):在周围1000公尺左右范围内(有资料为 500公尺或 1500公尺,距离应随着雷击大小和屏蔽措施而变化)。发生雷击时,LEMP 在上述有效范围内,在所有的导体上产生足够强度的感应浪涌。因此分布于建筑物内外的各种电力、信息线路将会感应雷电而对设备造成危害。
随着现代高科技的发展,精密仪器,通讯设备,数据网络的应用越来越广泛,因而感应雷造成的雷击事故也越来越多,除直接造成了巨大的经济损失外,因重要设备损坏使系统网络陷入瘫痪后造成间接的损失更是惊人。
三、方案设计思想
(1)直击雷的外部防护措施
虽然有不少专家学者在努力的研究有效的防止直击雷的方法,但直到今天我们还是无法阻止雷击的发生。实际上现在公认的防直击雷的方法仍然是200年前富兰克林先生发明的避雷针。
A.接闪器
避雷针及其变形产品避雷线、避雷带、避雷网等统称为接闪器。历史上对接闪器防雷原理的认识产生过误解。当时认为:避雷针防雷是因为其尖端放电中和了雷云电荷从而避免了雷击发生,所以当时要求避雷针顶部一定要是尖端,以加强放电能力。后来的研究表明:一定高度的金属导体会使大气电场畸变,这样雷云就容易向该导体放电,并且能量越大的雷就越易被金属导体吸引。这样接闪器的防雷是因为将雷电引向自身而防止了被保护物被雷电击中。现在认为任何良好接地的导体都可能成为有效的接闪器,而与它的形状没有什么关系。
为了降低建筑被雷击的概率,宜优先采用避雷网、作为建筑物的接闪器,如果屋面有天线等通信设施可在局部加装避雷针保护,这样接闪器的高度不会太高,不会增大建筑的雷击概率。避雷网的网格尺寸应不大于10mX10m,避雷针应与避雷网可靠连接。
B.引下线
引下线的作用是将接闪器接闪的雷电流安全的导引入地,引下线不得少于两根,并应沿建筑物四周对称均匀的布置,引下线的间距不大于18米,引下线接长必须采用焊接,引下线应与各层均压环焊接,引下线采用10毫米的圆钢或相同面积的扁钢。对于框架结构的建筑物,引下线应利用建筑物内的钢筋作为防雷引下线。
采用多根引下线不但提高了防雷装置的可靠性,更重要的是多根引下线的分流作用可大大降低每根引下线的沿线压降,减少侧击的危险。其目的是为了让雷电流均匀入地,便于地网散流,以均衡地电位。同时,均匀对称布置可使引下线泻流时产生的强电磁场在引下线所包围的电信建筑物内相互抵消,减小雷击感应的危险。
C接地体
接地体是指埋在土壤中起散流作用的导体,接地体应采用:
钢管直径大于50毫米,壁厚大于3.5毫米;
角钢不小于50×50×5毫米
扁钢不小于40×4毫米。
应将多根接地体连接成地网,地网的布置应优先采用环型地网,引下线应连接在环型地网的四周,这样有利于雷电流的散流和内部电位的均衡。垂直接地体一般长为1.5-2.5米,埋深0.8米,地极间隔5米,水平接地体应埋深1米,其向建筑物外引出的长度一般不大于50米。框架结构的建筑应采用建筑物基础钢筋做接地体。
(2)直击雷电流在电源系统的分配:
根据GB50057-94的标准对直击雷电流分类:
第一类 200KA 10/350us
第二类 150KA 10/350us
第三类 100KA 10/350us
如图所示:
一个能量为200KA的直击雷,由整个系统的电源、管线、地网、通信网络线来分担。以一栋建筑的防雷来讲,电源部分承担其中近45%(100KA),以三相四线为例,每线承担大约有25KA(10/350us)的雷电流。通信站基本无管道系统,不计。地网和通信线路承担剩余55%的雷电流。由此可见,电源系统对直击雷的防护非常关键。
由此可见,直击雷的内部防护措施应选用10/350us冲击雷电流的开关型SPD产品。另外,对于个别架空线引入的传导雷,也应采用上述一级防护措施。
(3)感应雷的防护
前面已提到感应雷是因为直击雷放电而感应到附近的金属导体中的,其实感应雷可通过两种不同的感应方式侵入导体,一是静电感应:在雷云中的电荷积聚时,附近的导体也会感应上相反的电荷,当雷击放电时,雷云中的电荷迅速释放,而导体中原来被雷云电场束缚住的静电也会沿导体流动寻找释放通道,就在电路中形成电脉冲。二是电磁感应:在雷云放电时,迅速变化的雷电流在其周围产生强大的瞬变电磁场,在其附近的导体中产生很高的感生电动势。研究表明:静电感应方式引起的浪涌数倍于电磁感应引起的浪涌。
感应雷可以通过电力电缆、视频线、网络线和天馈线等侵入,由于电力电缆的距离长且对雷电波的传输损耗小,所以由电源侵入的感应雷造成的危害十分突出,按原邮电部的统计约占了雷击事故的80%。因此,对建筑物内的系统设备进行感应雷防护时,电源是重点。
感应雷还可以通过空间感应侵入通信站的内部线路,虽然经过建筑物和机壳的屏蔽衰减后其能量大为减小,但站内许多电信设备的抗过压能力也很弱,如果处理不当也可能造成设备故障。
(4)接地汇集线的布置
接地汇集线(汇流排)应布置在靠近避雷器的地方,以使避雷器的接地连接线最短,各楼层的分汇集线应直接与楼底的总汇集线相连,这样能保证实现单点接地方式,当楼层高于30米时,高于30米部分的分汇集线应与建筑物均压环相连,以防止侧击。
近年来IEC的研究认为:接地汇集线的多重互连是有益的,但部标尚未采纳。
(5)等电位连接
各种系统的防雷要求种类很多,但其防雷思想是一致的,就是努力实现等电位。绝对的等电位只是一个理想,实际中只能尽量逼近,目前是综合采分流、屏蔽、箝位、接地等方法来近似实现等电位。(见图1)
(6)电源避雷器的选择和应用原则
考虑到电源负荷电流容量较大,为了安全起见及使用和维护方便,数据通信电源系统的多级防雷,原则上均选用并联型电源避雷器。电源避雷器的保护模式有共模和差模两方式。共模保护指相线-地线(L-PE)、零线-地线(N-PE)间的保护;差模保护指相线-零线(L-N)、相线-相线(L-L)间的保护。对于低压侧第二、三、四级保护,除选择共模的保护方式外,还应尽量选择包括差模在内的保护。
残压特性是电源避雷器的最重要特性,残压越低,保护效果就越好。但考虑到我国电网电压普遍不稳定、波动范围大的实际情况,在尽量选择残压较低的电源避雷器的同时。还必须考虑避雷器有足够高的最大连续工作电压。如果最大连续工作电压偏低,则易造成避雷器自毁。
电源系统低压侧有一、二、三级不同的保护级别,应根据保护级别的不同,选作合适标称放电电流(额定通流容量)和电压保护水平的电源避雷器,并保证避雷器有足够的耐雷电冲击能力。原则上,每一级的交流电源之间连接导线超过25m以上,都应做该级相应的保护。
电源低压侧保护用的电源避雷器,应该选择有失效警告指示、并能提供遥测端口功能的电源避雷器,以方便监控、管理和日后维护。
电源避雷器必须具有阻燃功能,在失效、或自毁时不能起火。
电源避雷器必须具有失效分离装置,在失效时,能自动与电源系统断开,而不影响通信电源系统的正常供电。
电源避雷器的连接端子,必须至少能适应25mm²的导线连接。安避避雷器时的引线应采用截面积不小于25mm²的多股铜导线,建议使用 25mm²的多股铜导线,并尽可能短(引线长度不宜超过1.0m)。当引线长度超过1.0m时,应加大引线的截面积;引线应紧凑并排或绑扎布放。
电源避雷器的接地:接地线应使用不小于25~35mm²的多股铜导线,并尽可能就近与交流保护地汇流排、或总汇流排、接地网直接可靠连接。
四、防雷设计依据
(1) 建筑物防雷设计规范 GB50057-94
(2) 电子计算机机房设计规范 GB50174-93
(3) 民用建筑电气设计规范 JGJ/T16-92
(4) 计算站场地安全要求 GB9361-88
(5) 计算站场地技术文件 GB2887-89
(6) 计算机信息系统防雷保安器 GA173-1998
(7) 雷电电磁脉冲的防护 IECI312
(8) 微波站防雷与接地设计规范 YD 2011-93
(9) 通信局(站)接地设计暂行技术规定 YDJ26E9
五、综合防雷方案设计
(1)前端设备的防雷
a)前端设备有室外和室内安装两种情况,安装在室内的设备一般不会遭受直击雷击,但需考虑防止雷电过电压对设备的侵害,而室外的设备则同时需考虑防止直击雷击。
b)前端设备如摄像头应置于接闪器(避雷针或其它接闪导体)有效保护范围之内。当摄像机独立架设时,避雷针最好距摄像机3-4米的距离。如有困难避雷针也可以架设在摄像机的支撑杆上,引下线可直接利用金属杆本身或选用Φ 8的镀锌圆钢。为防止电磁感应,沿杆引上摄像机的电源线和信号线应穿金属管屏蔽。
c)为防止雷电波沿线路侵入前端设备,应在设备前的每条线路上加装合适的避雷器,如电源线(220V或DC12V)、视频线、信号云台控制线。
G. 一个机房做防雷工程要多少钱
机房的室内防雷包括电源、信号以及等电位连接。在进行电源防雷时需要了解配电结构、前端保护状况、进线方式、布线方法,以及机房的电子信息系统防雷等级等等。在进行信号防雷时需要了解信号接口模式、信号接口数量以及可以供浪涌保护器接地的途径等。在进行等电位连接时需要知道是新建机房还是改扩建机房、建筑结构、自然接地体的接地电阻、附近土壤环境情况、机房面积和结构、相关的装修情况、室内机柜数量和布置方式等等。一个1000平米以上内含大容量UPS设备、精密空调、监控、消防中控设备、安防系统设备、防静电需求很高的机房,和一个10平米连静电地板都没有的小机房要做防雷完全是两个概念,而且建筑物本身是否有接地,是1层独立小平房还是在一栋大楼里也完全不同。甚至周围土壤的环境也可能极大地改变机房防雷的预算:人工湖中央回填岛上的机房和边防山顶台站机房做接地的难度完全不同,所以,我甚至必须要进行现场勘查才能给你一个预算报价。
H. 机房的内部防雷主要采取哪些措施
机房防雷接地措施和方法
广西新全通电子技术有限公司跟大家分享机房防雷接地措施和方法
目前,
可行强而又经济的接地方法是将交流接地和安全工作接地合二为一,
与直流接地、
防
雷接地一起用三根接地引线引至大楼的地面总等电位连接箱,
再将它们引至避雷地桩形成综
合接地网,
这样它们就有同样的电位,在发生雷击时,不会发生雷电反击而损坏设备。
为了
保证接地电阻小于
l
Ω
将采用优质的接地体和引下线,根据实际情况综合运用深埋、添加降
阻剂、增大接地线横截面面积、增加接地体数量等方法来降低接地电阻,机房的电气接地、
防雷系统是确保设备安全的重要措施,机房电气接地系统有以下
4
种
:(1)
交流工作接地。接
地电阻不应大于
4n
。
(2)
安全工作接地。接地电阻不应大于
4n
。
(3)
直流工作接地。接地电阻
应按照计算机系统具体要求确定。
(4)
防雷接地。应按现行国家标准
GB50057
一
1994(2000
版川建筑物防雷设计规范》
执行。
若防雷接地一定要单独设置接地装置时,
其余三种接地宜
共用一组接地装置,
其接地电阻不应大于其中最小值,
并应按现行国家标准
《建筑物防雷设
计规范》的要求采取防止雷电反击措施。但是,交流与安全工作接地、防雷接地、直流接地
分开的方式存在一个问题,
即在发生雷电反击时容易损坏设备。
必须使防雷接地与其他两种
接地间有一定的距离
:
方可避免雷电反击的破坏。由于直流接地与其他接地是分开的,来自
其他接地线的干扰也可消除。
但重新打接地地桩,
费用比较高,
而且一般建筑物受周围环境
的限制,另外找地桩也有一定的困难。电源电缆
PE
线在电源管理间的互投切换箱内,需做
辅助等电位接地端子排。
一定要做直流工作接地的计算机网络设备机房,
在总体规划时应邻
设于数据中心机房。
电源交流工作接地和安全保护接地取自数据中心机房电源管理间,
单独
从变电所总等电位接地母排上用截面积不小
"
于
l6mm2
的绝缘防火电缆引至有直流接地的机
房,
在设有专用金属接线箱内做直流接地端子排,
供直流接地设备端接使用。
在工程的设计
阶段,
有时不知道信息系统的规模和具体位置,
若预计将会有信息系统,
应在设计时就将建
筑物的金属支撑物、
金属框架或钢筋混凝土的钢筋等自然构件、
金属管道、
配电的保护接地
等与防雷装置组成一个共用接地系统,并应在一些合适的地方预埋等电位联结板。
I. 通信机房防雷接地工程有专业人士吗我想了解一下
你想了解什么?机房有等电位、信号防雷、接地等需要注意的
J. 机房防雷接地要求是怎样的
我是来自雷布斯的小任,由我来为您解答这个问题:
1)计算机机房应采用四组接地,即: 交流工作接地,接地电阻值≤4 欧姆; 安全保护接地 PE,接地电阻值≤4 欧姆; 计算机直流接地 TE,接地电阻值≤1 欧姆;防雷接地,接地电阻值≤4 欧姆; (2)计算机机房宜采用四种接地共用一组接地装置,其接地电阻值≤1 欧姆。
机房使用低压电力电缆的三根相线及零线在进交流屏之前,应分别就近 对地加装避雷器;电力变压器低压侧的每根相线应分别就近对地加装避雷器。交 流屏输入端、自动稳压稳流的控制电路,均应有雷电浪涌过电压防护装置。防雷接地应符合下列安全技术要求: (1)无线通信天线塔上应设避雷针,塔上的天馈线和其他设施都应在其保护 范围内。 (2)避雷针的雷电流引下线应专设,引下线应与避雷针及塔基接地网相互焊 接连通。 (3)天线塔上的天线支架、框架、航空标志灯架、馈线走线架都应良好接地; 天线馈线及塔灯控制线的金属外护层应在塔顶及进机房入口处的外侧就近接地;走线架上塔的天线馈线,应在其转弯上方 0.5~1m 范围内作良好接地;在进机房入口处,天线的馈线应对地加装馈线避雷器,塔灯控制线的每根相线均应分别对地加装氧化锌无间隙避雷器,零线直接接地。 (4)天线塔位于机房建筑物旁边时,天线塔的接地网与机房地网之间,至少应有两处(间隔 3~5m)相互焊接连通;当天线塔位于机房建筑物屋顶时,金属支承杆和雷电流引下线应至少在两个不同方向与屋顶的避雷带可靠连接。(5)机房屋顶应设避雷带和避雷网。避雷网的网格尺寸宜满足要求,并应与 避雷带一一焊接连通。 (6)建筑物的雷电流引下线不应少于两根,其间距不应大于 18m;该引下线 可利用机房四角柱内两根以上主钢筋,上端与避雷带、下端与地网可靠焊接连通。 机房屋顶上的其它金属设施亦应就近与避雷带焊接连通。 (7)避雷网的网格、城区内的基站、控制中心或山顶上的基站、控制中心屋 顶装有天线、天线塔、烟囱、风管或其他突出物时,应在其上部安装避雷针或架 空防雷线,使屋顶上所有物体都在其保护范围内。 (8)由屋顶进入机房的馈线,应采用具有金属外护层的电缆,其金属外护层 在进机房入口处,应就近与屋顶避雷带焊接连通,电缆内的芯线应在入口处一一 就近对地加装保安器(9)机房内所有通信设备及供电设备正常不带电的金属部分、通信设备所设 防雷保安器的接地端以及其他金属构件均应作保护接地,严禁作接零保护。