1. 求!急急急!信号发生器简单原理图!!
这个对你来说太难了,如果用现成的芯片很好搞的,哎,没办法帮你。
2. 本人急需:高频信号发生器的使用方法!
高频信号发生器主要由主振级、调制级、输出级、衰减级、内调制振荡级、监测级和电源组成。XFG-7型高频信号发生器的工作原理框图如图1所示。主振级产生高频等幅信号作为载波。调制级将低频信号调制在载波上。这个低频信号可以由内部调制振荡器产生,也可以由仪器外部提供。调制后的载波信号或未经调制的高频等幅信号经输出级放大后,由衰减级输出。监测级监测输出信号的载波幅度和调制度。电源供给各级工作时所需要的电压和电位。 图1 XFG-7型高频信号发生器工作原理框图XFG-7型高频信号发生器(也称标准信号发生器),能产生频率为100kHz~30MHz连续可调的高频等幅正弦波和调幅波。能为各种调幅接收装置提供测试信号,也可作为测量、调整各种高频电路的信号源。XFG-7型高频信号发生器面板布置如图2所示。具体使用方法如下。图2 XFG-7型高频信号发生器面板布置(1)使用前的准各工作①检查电源电压是否在220(1±10%)V范围内,若超出此范围,应外接稳压器或调压器,否则会造成频率误差增大。②由于电源中接有高频滤波电容器,机壳带有一定的电位。如果机壳没有接地线,使用时必须装设接地线。③通电前,检查各旋钮位置,把载波调节、输出-微调、输出-倍乘和调幅度调节等旋钮逆时针方向旋到底。电压表(V表)和调幅度表(M%表)做好机械调零。④接通电源,打开开关,指示灯亮。预热10min,将仪器面板上的波段开关旋到任意两挡之间,然后调节面板上的零点旋钮,使电压表的指针指零。(2)等幅高频信号输出(载波)步骤①将调幅选择开关置于“等幅”位置。②将波段开关置于相应的波段,调节频率调节旋钮到所需频率。频率调节旋钮有两个,在大范围内改变频率时用频率刻度盘中间的旋钮;当接近所需频率时,再用频率刻度盘旁边的频率细调旋钮细调到所需频率上。③转动载波调节旋钮,使电压表的指针指在红线“1”上。这时在“0~0.1V”插孔输出的信号电压等于输出-微调旋钮的读数和输出-倍乘开关的倍乘数的乘积。例如,输出-微调旋钮指在5,输出-倍乘开关置于10挡,输出信号电压便为1×5×10μV=50μV。注意,当调节输出-微调旋钮时,电压表的指针可能会略偏离“1”。可以用调节载波调节旋钮的方法,使电压表的指针指在“1”上。④若要得到1μV以下的输出电压,必须使用带有分压器的输出电缆。如果电缆终端分压为0.1V,则输出电压应将上述方法计算所得的数值乘0.1。⑤若需大于0.1V的信号电压,应该从“0~1V”插孔输出。这时,仍应调节载波调节旋钮,使电压表指在1V上。如果输出-微调旋钮放在4处,就表示输出电压为0.4V,以此类推。如果输出-微调旋钮置于10处,此时直接调节载波调节旋钮,那么电压表上的读数就是输出信号的电压值。但这种调节方法误差较大,一般只在频率超过10MHz时才采用。(3)调幅波输出有内部调制和外部调制两种情况①内部调制 仪器内有400Hz和1000Hz的低频振荡器,供内部调制用。内部调制的调节操作顺序如下。a.将调幅选择开关放在需要的400Hz或1000Hz位置。b.调节载波调节旋钮到电压表指示为1V。c.调节载波调节旋钮,从调幅度表上的读数,确定出调幅波的幅度。一般可以调节在30%的标准调幅度刻度线上。d.频率调节、电压调节与等幅输出的调节方法相同。调节载波调节旋钮也可以改变输出电压,但由于电压表的刻度只在“1”时正确,其他各点只有参考作用,误差较大。同时,由于载波调节旋钮的改变,会使在输出信号的调幅度不变的情况下,调幅度表的读数相应有所改变,造成读数误差。②外部调制 当输出电压需要其他频率的调幅时,就需要输人外部调制信号。外部调制的调节操作顺序如下。a.将调幅选择开关放在“等幅”位置。b.按选择等幅振荡频率的方法,选择所需要的载波频率。c.选择合适的外加信号源,作为低频调幅信号源。外加信号源的输出电压必须在20kΩ的负载上有100V电压输出(即其输出功率为0.5W以上),才能在50~8000Hz的范围内达到100%的调幅。d.接通外加信号源的电源,预热几分钟后,将输出调到最小,然后将它接到“外调幅输人”插孔。逐渐增大输出,直到调幅度表的指针达到所需要的调幅度。利用输出-微调旋钮和输出-倍乘开关控制调幅波输出,计算方法与等幅振荡输出相同。
3. 信号发生器 电路图 原理
先用RC正弦振荡电路产生正弦波,正弦波通过电压比较电路产程方波,方波再通过积分电路产生三角波,这个设计关键是正弦波地产生,仿真时都出来了,到真正电路焊出来时,却调不出来,尽量把RC振荡那部分电阻,电容参数选合适
4. 求:信号发生器电路图
方波 ,正弦波 ,三角波的信号发生器的电路图
5. NE555信号发生器的接线图
电路挺多的,网上有,好好查查,网络搜555的应用就好,
6. 简易信号发生器电路图怎么画
http://wenku..com/view/2c3eb5c2bb4cf7ec4afed011?fr=prin
发挥部分自己慢慢研究吧,可以根据文档来设计的。
7. protues中信号发生器怎么连线使用,要求发出脉冲信号。需要截图啊
图中左边的就是一个脉冲信号发生器,输出1HZ的方波,加到计数器的CLK端了。
8. 求多波形信号发生器的电路原理图。。。
电路原理图如图一所示。图中的8038为函数发生器专用IC,它具有3种波形输出,分别正弦波、方波和三角波,8038的第10脚外接定时电容,该电容的容值决定了输出波形的频率,电路中的定时电容从C1至C8决定了信号频率的十个倍频程,从500μF开始,依次减小十倍,直到5500pF,频率范围相应地从0.05Hz~0.5Hz~5Hz~50Hz~500Hz~5kHz~50kHz~500kHz,如果C8取250pF,频率可达1MHz。图中的V1、R7、R8构成缓冲放大器,R9为电位器,用于改变输出波形的幅值。
整个电路的频率范围为0.05Hz~1MHz,占空比可以从2%至98%调整,失真不大于1%,线性好,误差不大于0.1%,因此电路很有实用价值。
9. 信号发生器电路图
给你这个超小型立体声信号发生器电路,希望对你有帮助
10. 指数函数衰减的信号发生器的电路,要详细的电路图!
基于DDS芯片AD9850的全数控函数信号发生器的设计与实现
信号源是电子产品测量与调试、部队设备技术保障等领域的基本电子设备。随着科学技术的发展和测量技术的进步,普通的信号发生器已无法满足目前日益发展的电子技术领域的生产调试需要。而DDS技术是一种新兴的直接数字频率合成技术,具有频率分辨率高、频率切换速度快、切换相位连续、输出信号相位噪声低、可编程、全数字化易于集成、体积小、重量轻等优点,因而在雷达及通信等领域具有广泛的应用前景。
1系统设计方案
本文提出的采用DDS作为信号发生核心器件的全数控函数信号发生器设计方案,根据输出信号波形类型可设置、输出信号幅度和频率可数控、输出频率宽等要求,选用了美国A/D公司的AD9850芯片,并通过单片机程序控制和处理AD9850的32位频率控制字,再经放大后加至以数字电位器为核心的数字衰减网络,从而实现了信号幅度、频率、类型以及输出等选项的全数字控制。该函数信号发生器的结构如图1所示。
本系统主要由单片机、DDS直接频率信号合成器、数字衰减电路、真有效值转换模块、A/D转换模块、数字积分选择电路等部分组成。
2 DDS的基本原理
直接数字频率合成器(Derect Digital Synthesizer)是从相位概念出发直接合成所需波形的一种频率合成技术。一个直接数字频率合成器通常由相位累加器、加法器、波形存储ROM、D/A转换器和低通滤波器(LPF)组成。DDS的组成结构如图2所示。其中,K为频率控制字(也叫相位增量),P为相位控制字,W为波形控制字,fc为参考时钟频率,N为相位累加器的字长,D为ROM数据位及D/A转换器的字长。相位累加器在时钟fc的控制下以步长K累加,输出的N位二进制码与相位控制字P、波形控制字W相加后作为波形ROM的地址来对波形ROM进行寻址,波形ROM输出的D位幅度码S(n)经D/A转换变成阶梯波S(t)后,再经过低通滤波器平滑,就可以得到合成的信号波形。由于合成的信号波形取决于波形ROM中存放的幅度码,因此,用DDS可以合成任意波形。
3硬件电路设计
3.1 DDS信号产生电路
考虑到DDS具有频率分辨率较高、频率切换速度快、切换相位连续、输出信号相位噪声低、可编程、全数字化、易于集成、体积小、重量轻等优点,该方案选用美国A/D公司的AD9850芯片,并采用单片机为核心控制器件来对DDS输送频率控制字,从而使DDS输出相应频率和类型的信号,其DDS信号产生电路如图3所示。
3硬件电路设计
3.1 DDS信号产生电路
考虑到DDS具有频率分辨率较高、频率切换速度快、切换相位连续、输出信号相位噪声低、可编程、全数字化、易于集成、体积小、重量轻等优点,该方案选用美国A/D公司的AD9850芯片,并采用单片机为核心控制器件来对DDS输送频率控制字,从而使DDS输出相应频率和类型的信号,其DDS信号产生电路如图3所示。
单片机与AD9850的接口既可采用并行方式,也可采用串行方式。为了充分发挥芯片的高速性能和节约单片机资源,本设计选择并行方式将AT89S52的P0口经74HC373锁存器扩展后接至DDS的并行输入控制端(D0~D7)。AD9850外接120 MHz的有源晶振,产生的正弦信号经低通滤波器(LPF)去掉高频谐波后即可得到波形良好的模拟信号。这样,将D/A转换器的输出信号经低通滤波后,接到AD9850内部的高速比较器上,即可直接输出一个抖动很小的方波。再将方波信号加至积分电路,即可得到三角波信号。另外,也可通过键盘编辑任意波形的输出信号。
3.2键盘输入接口及LCD接口电路
本系统中的数字输入设置电路采用2×8矩阵键盘。由于LCD具有显示内容多,电路结构简单,占用单片机资源少等优点,本系统采用RT1602C型LCD液晶显示屏来显示信号的类型、频率大小和正弦波的峰一峰值,图4所示是键盘输入及LCD接口电路图。
同样,考虑到AT89S52单片机的IO引脚资源有限,本系统的键盘输入及LCD输出均通过74HC245连接到AT89S52单片机的P0端口,从而实现端口扩展和复用。
3.3信号幅度数控预置电路
为了实现对输出的正弦模拟信号幅度的数字控制和预置,本系统采用了AD811高速运放、数字电位器衰减、真有效值转换、以及A/D转换等电路,具体电路图如图5所示。
数字电位器X9C102是实现信号幅度数字可调的关键器件。真有效值转换模块AD637主要负责信号的TRMS/DC转换,然后经TLC2453模数转换向单片机输送正比于正弦波信号幅度的数字量,以便单片机输出合适的幅值控制指令。
3.4积分电容自动切换控制电路
三角波是常用信号之一,本系统采用RC积分电路将方波信号转换成三角波。由于信号频率很宽(低频达1 Hz以下,高频达60 MHz以上),为了完成不同频段的线性积分,需要不同的积分电容(10pF、100pF、1 nF、10nF、100nF、1 μF、10 μF、100μF)。基于数控和自动切换的需要,本系统采用如图6所示的CD4051八选一电路。
CD4051的八选一控制信号来源于AT89S52的P0~P3接口,74HC373P也是考虑复用P0端口而设置的。AD9850输出的方波经积分电路转换为三角波后,经AD811高速运放可提高其负载能力。
4系统软件设计
4.1 主程序
主程序可控制整个系统,包括控制系统的初始化、显示、运算、键盘扫描、频率控制、幅度控制等子程序,其主程序流程如图7所示。
初始化可将系统设定为默认工作状态,然后通过扫描键盘来判断是否有按键按下以确定用户要执行的任务,同时通过判断23H.4、20H.1、20H.0各功能标志位来确定应完成的功能。当23H.4=1时,计算频率值系统工作在频率计方式下;当20H.1=1时,检测峰峰值系统将检测输出信号的峰峰值:而当20H.0=1时.则更新LCD显示内容,当执行完后返回键盘扫描程序并以此循环。各功能标志位均由键盘、峰峰值检测和定时程序等控制,从而实现各种功能。
4.2键盘扫描子程序
键盘扫描子程序如图8所示。因按键较多。本系统采用2×8行列式键盘来节约I/O口,并用程序把8根列线全部拉低,再判断2根行线是否有低电平,如果没有,说明没有按键被按下,系统则退出键盘扫描程序,否则,依次拉低列线,然后依次判断行线是否有低电平并判断键号,键号确定后再转到键号相对应的功能程序去执行。键盘主要方便用户设置频率、幅度、选择工作方式等功能。
4.3 信号频率数字预置子程序
信号频率的数字控制程序流程如图9所示。该部分程序主要用于将键盘输入值转换成十六进制数据,然后产生相应的频率控制字并送至DDS芯片,以改变DDS的相位增量,最终输出相应频率信号。
5 结束语
通过严格的实验测试证明,本系统采用DDS完全可以实现输出信号类型的选择设置、信号频率数字预置、信号幅度数字步进可调等功能,是一种输出信号频率覆盖宽(0.023 Hz~40 MHz)、信号源分辨率高、波形失真小、全数控型函数信号发生器。具有一定的实用开发价值。