當前位置:首頁 » 手機軟體 » BP神經網路權重共享

BP神經網路權重共享

發布時間: 2022-06-11 09:10:16

❶ BP神經網路的神經網路

在人工神經網路發展歷史中,很長一段時間里沒有找到隱層的連接權值調整問題的有效演算法。直到誤差反向傳播演算法(BP演算法)的提出,成功地解決了求解非線性連續函數的多層前饋神經網路權重調整問題。
BP (Back Propagation)神經網路,即誤差反傳誤差反向傳播演算法的學習過程,由信息的正向傳播和誤差的反向傳播兩個過程組成。輸入層各神經元負責接收來自外界的輸入信息,並傳遞給中間層各神經元;中間層是內部信息處理層,負責信息變換,根據信息變化能力的需求,中間層可以設計為單隱層或者多隱層結構;最後一個隱層傳遞到輸出層各神經元的信息,經進一步處理後,完成一次學習的正向傳播處理過程,由輸出層向外界輸出信息處理結果。當實際輸出與期望輸出不符時,進入誤差的反向傳播階段。誤差通過輸出層,按誤差梯度下降的方式修正各層權值,向隱層、輸入層逐層反傳。周而復始的信息正向傳播和誤差反向傳播過程,是各層權值不斷調整的過程,也是神經網路學習訓練的過程,此過程一直進行到網路輸出的誤差減少到可以接受的程度,或者預先設定的學習次數為止。
BP神經網路模型BP網路模型包括其輸入輸出模型、作用函數模型、誤差計算模型和自學習模型。
(1)節點輸出模型
隱節點輸出模型:Oj=f(∑Wij×Xi-qj) (1)
輸出節點輸出模型:Yk=f(∑Tjk×Oj-qk) (2)
f-非線形作用函數;q -神經單元閾值。
(2)作用函數模型
作用函數是反映下層輸入對上層節點刺激脈沖強度的函數又稱刺激函數,一般取為(0,1)內連續取值Sigmoid函數: f(x)=1/(1+e乘方(-x)) (3)
(3)誤差計算模型
誤差計算模型是反映神經網路期望輸出與計算輸出之間誤差大小的函數:
(4)
tpi- i節點的期望輸出值;Opi-i節點計算輸出值。
(4)自學習模型
神經網路的學習過程,即連接下層節點和上層節點之間的權重矩陣Wij的設定和誤差修正過程。BP網路有師學習方式-需要設定期望值和無師學習方式-只需輸入模式之分。自學習模型為
△Wij(n+1)= h ×Фi×Oj+a×△Wij(n) (5)
h -學習因子;Фi-輸出節點i的計算誤差;Oj-輸出節點j的計算輸出;a-動量因子。

❷ matlab中BP神經網路如何設置初始權重

因為初始值(初始權值和閥值)都在x這個向量中,x(n,1)的長度n為:n=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum
其中inputnum*hiddennum是輸入層到隱含層的權值數量,hiddennum是隱含層神經元個數(即隱含層閥值個數),hiddennum*outputnum是隱含層到輸出層權值個數,outputnum是輸出層神經元個數(即輸出層閥值個數);

❸ BP神經網路中,如何設定神經元的初始連接權重以及閥值

初始連接權重關繫到網路訓練速度的快慢以及收斂速率,在基本的神經網路中,這個權重是隨機設定的。在網路訓練的過程中沿著誤差減小的方向不斷進行調整。針對這個權重的隨機性不確定的缺點,有人提出了用遺傳演算法初始化BP的初始權重和閾值的想法,提出了遺傳神經網路模型,並且有人預言下一代的神經網路將會是遺傳神經網路。希望對你有所幫助。你可以查看這方面的文獻

❹ 如何理解人工智慧神經網路中的權值共享問題

權值(權重)共享這個詞是由LeNet5模型提出來的。以CNN為例,在對一張圖偏進行卷積的過程中,使用的是同一個卷積核的參數。比如一個3×3×1的卷積核,這個卷積核內9個的參數被整張圖共享,而不會因為圖像內位置的不同而改變卷積核內的權系數。說的再直白一些,就是用一個卷積核不改變其內權系數的情況下卷積處理整張圖片(當然CNN中每一層不會只有一個卷積核的,這樣說只是為了方便解釋而已)。

❺ 循環神經網路的反向傳播

可以採用MATLAB軟體中的神經網路工具箱來實現BP神經網路演算法。BP神經網路的學習過程由前向計算過程、誤差計算和誤差反向傳播過程組成。雙含隱層BP神經網路的MATLAB程序,由輸入部分、計算部分、輸出部分組成,其中輸入部分包括網路參數與訓練樣本數據的輸入、初始化權系、求輸入輸出模式各分量的平均值及標准差並作相應數據預處理、讀入測試集樣本數據並作相應數據預處理;計算部分包括正向計算、反向傳播、計算各層權矩陣的增量、自適應和動量項修改各層權矩陣;輸出部分包括顯示網路最終狀態及計算值與期望值之間的相對誤差、輸出測試集相應結果、顯示訓練,測試誤差曲線。

什麼是BP神經網路

BP演算法的基本思想是:學習過程由信號正向傳播與誤差的反向回傳兩個部分組成;正向傳播時,輸入樣本從輸入層傳入,經各隱層依次逐層處理,傳向輸出層,若輸出層輸出與期望不符,則將誤差作為調整信號逐層反向回傳,對神經元之間的連接權矩陣做出處理,使誤差減小。經反復學習,最終使誤差減小到可接受的范圍。具體步驟如下:
1、從訓練集中取出某一樣本,把信息輸入網路中。
2、通過各節點間的連接情況正向逐層處理後,得到神經網路的實際輸出。
3、計算網路實際輸出與期望輸出的誤差。
4、將誤差逐層反向回傳至之前各層,並按一定原則將誤差信號載入到連接權值上,使整個神經網路的連接權值向誤差減小的方向轉化。
5、対訓練集中每一個輸入—輸出樣本對重復以上步驟,直到整個訓練樣本集的誤差減小到符合要求為止。

❼ 如何理解卷積神經網路中的權值共享

所謂的權值共享就是說,給一張輸入圖片,用一個filter去掃這張圖,filter裡面的數就叫權重,這張圖每個位置是被同樣的filter掃的,所以權重是一樣的,也就是共享。 這么說可能還不太明白,如果你能理解什麼叫全連接神經網路的話,那麼從一個盡量減少參數個數的角度去理解就可以了。 對於一張輸入圖片,大小為W*H,如果使用全連接網路,生成一張X*Y的feature map,需要W*H*X*Y個參數,如果原圖長寬是10^2級別的,而且XY大小和WH差不多的話,那麼這樣一層網路需要的參數個數是10^8~10^12級別。 這么多參數肯定是不行的,那麼我們就想辦法減少參數的個數對於輸出層feature map上的每一個像素,他與原圖片的每一個像素都有連接,每一個鏈接都需要一個參數。但注意到圖像一般都是局部相關的,那麼如果輸出層的每一個像素只和輸入層圖片的一個局部相連,那麼需要參數的個數就會大大減少。假設輸出層每個像素只與輸入圖片上F*F的一個小方塊有連接,也就是說輸出層的這個像素值,只是通過原圖的這個F*F的小方形中的像素值計算而來,那麼對於輸出層的每個像素,需要的參數個數就從原來的W*H減小到了F*F。如果對於原圖片的每一個F*F的方框都需要計算這樣一個輸出值,那麼需要的參數只是W*H*F*F,如果原圖長寬是10^2級別,而F在10以內的話,那麼需要的參數的個數只有10^5~10^6級別,相比於原來的10^8~10^12小了很多很多。

❽ 關於bp神經網路的權值問題 比如第一個數據訓練了一套權值,當第二個

訓練集樣本的不同肯定會影響到權值的變化。你要訓練的數據 就是你希望一個系統輸入一些數據時 能固定得到的那些數據,訓練集要是隨即那就沒意義了,神經網路權值初始值是可以隨即的,但隨著訓練繼續,權值將趨於穩定,這樣才能達到神經網路的效果。

❾ BP神經網路的原理的BP什麼意思

人工神經網路有很多模型,但是日前應用最廣、基本思想最直觀、最容易被理解的是多層前饋神經網路及誤差逆傳播學習演算法(Error Back-Prooaeation),簡稱為BP網路。

在1986年以Rumelhart和McCelland為首的科學家出版的《Parallel Distributed Processing》一書中,完整地提出了誤差逆傳播學習演算法,並被廣泛接受。多層感知網路是一種具有三層或三層以上的階層型神經網路。典型的多層感知網路是三層、前饋的階層網路(圖4.1),即:輸入層、隱含層(也稱中間層)、輸出層,具體如下:

圖4.1 三層BP網路結構

(1)輸入層

輸入層是網路與外部交互的介面。一般輸入層只是輸入矢量的存儲層,它並不對輸入矢量作任何加工和處理。輸入層的神經元數目可以根據需要求解的問題和數據表示的方式來確定。一般而言,如果輸入矢量為圖像,則輸入層的神經元數目可以為圖像的像素數,也可以是經過處理後的圖像特徵數。

(2)隱含層

1989年,Robert Hecht Nielsno證明了對於任何在閉區間內的一個連續函數都可以用一個隱層的BP網路來逼近,因而一個三層的BP網路可以完成任意的n維到m維的映射。增加隱含層數雖然可以更進一步的降低誤差、提高精度,但是也使網路復雜化,從而增加了網路權值的訓練時間。誤差精度的提高也可以通過增加隱含層中的神經元數目來實現,其訓練效果也比增加隱含層數更容易觀察和調整,所以一般情況應優先考慮增加隱含層的神經元個數,再根據具體情況選擇合適的隱含層數。

(3)輸出層

輸出層輸出網路訓練的結果矢量,輸出矢量的維數應根據具體的應用要求來設計,在設計時,應盡可能減少系統的規模,使系統的復雜性減少。如果網路用作識別器,則識別的類別神經元接近1,而其它神經元輸出接近0。

以上三層網路的相鄰層之間的各神經元實現全連接,即下一層的每一個神經元與上一層的每個神經元都實現全連接,而且每層各神經元之間無連接,連接強度構成網路的權值矩陣W。

BP網路是以一種有教師示教的方式進行學習的。首先由教師對每一種輸入模式設定一個期望輸出值。然後對網路輸入實際的學習記憶模式,並由輸入層經中間層向輸出層傳播(稱為「模式順傳播」)。實際輸出與期望輸出的差即是誤差。按照誤差平方最小這一規則,由輸出層往中間層逐層修正連接權值,此過程稱為「誤差逆傳播」(陳正昌,2005)。所以誤差逆傳播神經網路也簡稱BP(Back Propagation)網。隨著「模式順傳播」和「誤差逆傳播」過程的交替反復進行。網路的實際輸出逐漸向各自所對應的期望輸出逼近,網路對輸入模式的響應的正確率也不斷上升。通過此學習過程,確定下各層間的連接權值後。典型三層BP神經網路學習及程序運行過程如下(標志淵,2006):

(1)首先,對各符號的形式及意義進行說明:

網路輸入向量Pk=(a1,a2,...,an);

網路目標向量Tk=(y1,y2,...,yn);

中間層單元輸入向量Sk=(s1,s2,...,sp),輸出向量Bk=(b1,b2,...,bp);

輸出層單元輸入向量Lk=(l1,l2,...,lq),輸出向量Ck=(c1,c2,...,cq);

輸入層至中間層的連接權wij,i=1,2,...,n,j=1,2,...p;

中間層至輸出層的連接權vjt,j=1,2,...,p,t=1,2,...,p;

中間層各單元的輸出閾值θj,j=1,2,...,p;

輸出層各單元的輸出閾值γj,j=1,2,...,p;

參數k=1,2,...,m。

(2)初始化。給每個連接權值wij、vjt、閾值θj與γj賦予區間(-1,1)內的隨機值。

(3)隨機選取一組輸入和目標樣本

提供給網路。

(4)用輸入樣本

、連接權wij和閾值θj計算中間層各單元的輸入sj,然後用sj通過傳遞函數計算中間層各單元的輸出bj

基坑降水工程的環境效應與評價方法

bj=f(sj) j=1,2,...,p (4.5)

(5)利用中間層的輸出bj、連接權vjt和閾值γt計算輸出層各單元的輸出Lt,然後通過傳遞函數計算輸出層各單元的響應Ct

基坑降水工程的環境效應與評價方法

Ct=f(Lt) t=1,2,...,q (4.7)

(6)利用網路目標向量

,網路的實際輸出Ct,計算輸出層的各單元一般化誤差

基坑降水工程的環境效應與評價方法

(7)利用連接權vjt、輸出層的一般化誤差dt和中間層的輸出bj計算中間層各單元的一般化誤差

基坑降水工程的環境效應與評價方法

(8)利用輸出層各單元的一般化誤差

與中間層各單元的輸出bj來修正連接權vjt和閾值γt

基坑降水工程的環境效應與評價方法

(9)利用中間層各單元的一般化誤差

,輸入層各單元的輸入Pk=(a1,a2,...,an)來修正連接權wij和閾值θj

基坑降水工程的環境效應與評價方法

(10)隨機選取下一個學習樣本向量提供給網路,返回到步驟(3),直到m個訓練樣本訓練完畢。

(11)重新從m個學習樣本中隨機選取一組輸入和目標樣本,返回步驟(3),直到網路全局誤差E小於預先設定的一個極小值,即網路收斂。如果學習次數大於預先設定的值,網路就無法收斂。

(12)學習結束。

可以看出,在以上學習步驟中,(8)、(9)步為網路誤差的「逆傳播過程」,(10)、(11)步則用於完成訓練和收斂過程。

通常,經過訓練的網路還應該進行性能測試。測試的方法就是選擇測試樣本向量,將其提供給網路,檢驗網路對其分類的正確性。測試樣本向量中應該包含今後網路應用過程中可能遇到的主要典型模式(宋大奇,2006)。這些樣本可以直接測取得到,也可以通過模擬得到,在樣本數據較少或者較難得到時,也可以通過對學習樣本加上適當的雜訊或按照一定規則插值得到。為了更好地驗證網路的泛化能力,一個良好的測試樣本集中不應該包含和學習樣本完全相同的模式(董軍,2007)。

❿ BP神經網路在權重優化中的應用

不好意思!
走錯房間了!
這里是數學!
美邦建議您
去別的地方看看!