❶ 如何用最簡單的Python爬蟲採集整個網站
在之前的文章中Python實現「維基網路六度分隔理論「之基礎爬蟲,我們實現了在一個網站上隨機地從一個鏈接到另一個鏈接,但是,如果我們需要系統地把整個網站按目錄分類,或者要搜索網站上的每一個頁面,我們該怎麼辦?我們需要採集整個網站,但是那是一種非常耗費內存資源的過程,尤其是處理大型網站時,比較合適的工具就是用一個資料庫來存儲採集的資源,之前也說過。下面來說一下怎麼做。
網站地圖sitemap
網站地圖,又稱站點地圖,它就是一個頁面,上面放置了網站上需要搜索引擎抓取的所有頁面的鏈接(註:不是所有頁面,一般來說是所有文章鏈接。大多數人在網站上找不到自己所需要的信息時,可能會將網站地圖作為一種補救措施。搜索引擎蜘蛛非常喜歡網站地圖。
對於SEO,網站地圖的好處:
1.為搜索引擎蜘蛛提供可以瀏覽整個網站的鏈接簡單的體現出網站的整體框架出來給搜索引擎看;
2.為搜索引擎蜘蛛提供一些鏈接,指向動態頁面或者採用其他方法比較難以到達的頁面;
3.作為一種潛在的著陸頁面,可以為搜索流量進行優化;
4.如果訪問者試圖訪問網站所在域內並不存在的URL,那麼這個訪問者就會被轉到「無法找到文件」的錯誤頁面,而網站地圖可以作為該頁面的「准」內容。
數據採集
採集網站數據並不難,但是需要爬蟲有足夠的深度。我們創建一個爬蟲,遞歸地遍歷每個網站,只收集那些網站頁面上的數據。一般的比較費時間的網站採集方法從頂級頁面開始(一般是網站主頁),然後搜索頁面上的所有鏈接,形成列表,再去採集到的這些鏈接頁面,繼續採集每個頁面的鏈接形成新的列表,重復執行。
很明顯,這是一個復雜度增長很快的過程。加入每個頁面有10個鏈接,網站上有5個頁面深度,如果採集整個網站,一共得採集的網頁數量是105,即100000個頁面。
因為網站的內鏈有很多都是重復的,所以為了避免重復採集,必須鏈接去重,在Python中,去重最常用的方法就是使用自帶的set集合方法。只有「新」鏈接才會被採集。看一下代碼實例:
from urllib.request import urlopenfrom bs4 import BeautifulSoupimport repages = set()def getLinks(pageurl):globalpageshtml= urlopen("" + pageurl)soup= BeautifulSoup(html)forlink in soup.findAll("a", href=re.compile("^(/wiki/)")):if'href' in link.attrs:iflink.attrs['href'] not in pages:#這是新頁面newPage= link.attrs['href']print(newPage)pages.add(newPage)getLinks(newPage)getLinks("")
原理說明:程序執行時,用函數處理一個空URL,其實就是維基網路的主頁,然後遍歷首頁上每個鏈接,並檢查是否已經在全局變數集合pages裡面,如果不在,就列印並添加到pages集合,然後遞歸處理這個鏈接。
遞歸警告:Python默認的遞歸限制是1000次,因為維基網路的鏈接浩如煙海,所以這個程序達到遞歸限制後就會停止。如果你不想讓它停止,你可以設置一個遞歸計數器或者其他方法。
採集整個網站數據
為了有效使用爬蟲,在用爬蟲的時候我們需要在頁面上做一些事情。我們來創建一個爬蟲來收集頁面標題、正文的第一個段落,以及編輯頁面的鏈接(如果有的話)這些信息。
第一步,我們需要先觀察網站上的頁面,然後制定採集模式,通過F12(一般情況下)審查元素,即可看到頁面組成。
觀察維基網路頁面,包括詞條和非詞條頁面,比如隱私策略之類的頁面,可以得出下面的規則:
所有的標題都是在h1→span標簽里,而且頁面上只有一個h1標簽。
所有的正文文字都在div#bodyContent標簽里,如果我們想獲取第一段文字,可以用div#mw-content-text→p,除了文件頁面,這個規則對所有頁面都適用。
編輯鏈接只出現在詞條頁面上,如果有編輯鏈接,都位於li#ca-edit標簽的li#ca-edit→span→a裡面。
調整一下之前的代碼,我們可以建立一個爬蟲和數據採集的組合程序,代碼如下:
import redef getLinks(pageUrl):global pageshtml = urlopen("" + pageUrl)soup = BeautifulSoup(html)try:print(soup.h1.get_text())print(soup.find(id="mw-content-text").findAll("p")[0])print(soup.find(id="ca-edit").find("span").find("a").attrs['href'])except AttributeError:print("頁面缺少屬性")for link in soup.findAll("a", href =re.compile("^(/wiki/)")):if 'href' in link.attrs:#這是新頁面newPage = link.attrs['href']print("------------------\n"+newPage)
這個for循環和原來的採集程序基本上是一樣的,因為不能確定每一頁上都有所有類型的數據,所以每個列印語句都是按照數據在頁面上出現的可能性從高到低排列的。
數據存儲到MySQL
前面已經獲取了數據,直接列印出來,查看比較麻煩,所以我們就直接存到MySQL裡面吧,這里只存鏈接沒有意義,所以我們就存儲頁面的標題和內容。前面我有兩篇文章已經介紹過如何存儲數據到MySQL,數據表是pages,這里直接給出代碼:
import reimport datetimeimport randomimport pymysqlconn = pymysql.connect(host = '127.0.0.1',port = 3306, user = 'root', passwd = '19930319', db = 'wiki', charset ='utf8mb4')cur = conn.cursor()cur.execute("USE wiki")#隨機數種子random.seed(datetime.datetime.now())#數據存儲def store(title, content):cur.execute("INSERT INTO pages(title, content)VALUES(\"%s\", \"%s\")", (title, content))cur.connection.commit()def getLinks(articleUrl):html = urlopen("" + articleUrl)title = soup.find("h1").get_text()content =soup.find("div",{"id":"mw-content-text"}).find("p").get_text()store(title, content)returnsoup.find("div",{"id":"bodyContent"}).findAll("a",href=re.compile("^(/wiki/)((?!:).)*$"))#設置第一頁links =getLinks("/wiki/Kevin_Bacon")try:while len(links)>0:newArticle = links[random.randint(0, len(links)-1)].attrs['href']print (newArticle)links = getLinks(newArticle)finally:cur.close()conn.close()
小結
今天主要講一下Python中遍歷採集一個網站的鏈接,方便下面的學習。
希望通過上面的操作能幫助大家。如果你有什麼好的意見,建議,或者有不同的看法,我都希望你留言和我們進行交流、討論。
❷ 如何用最簡單的Python爬蟲採集整個網站
採集網站數據並不難,但是需要爬蟲有足夠的深度。我們創建一個爬蟲,遞歸地遍歷每個網站,只收集那些網站頁面上的數據。一般的比較費時間的網站採集方法從頂級頁面開始(一般是網站主頁),然後搜索頁面上的所有鏈接,形成列表,再去採集到的這些鏈接頁面,繼續採集每個頁面的鏈接形成新的列表,重復執行。
❸ 如何正確利用網路爬蟲
基本步驟1、發現可讀且可訪問的URL。
2、瀏覽種子或URL列表以識別新鏈接並將它們添加到列表中。
3、索引所有已識別的鏈接。
4、使所有索引鏈接保持最新。
很多網站都具有反爬蟲策略,常見的方式有:驗證碼、登陸、限制IP等。
1、驗證碼。可以利用打碼平台破解(如果硬上的話用opencv或keras訓練圖);
2、登陸。利用requests的post或者selenium模擬用戶進行模擬登陸;
3、限制IP。使用代理IP,因免費IP效果非常差,所以建議選擇收費代理IP。
❹ 用爬蟲來採集很多不同網站中同種類內容,有什麼方案
大量的不同網站這種情況,就用數據採集器,先分別把採集規則寫好,然後再進行採集。目前大部分主流的網站也有很多採集模板,很方便的。
❺ 網路爬蟲可以採用的搜索方法
1.人為給定一個URL作為入口網頁,數據的爬取從這里開始。
2.分別用抓取隊列和完成隊列來保存處於不同狀態的鏈接。
3.爬蟲程序從抓取隊列讀取隊首URL,如果存在,則繼續執行下去,否則停止爬取。
4.每處理完一個URL,將其放入完成隊列,防止網頁的重復訪問。
5.每次抓取網頁之後分析其中的URL,將經過過濾的合法鏈接寫入完成隊列,等待查詢。
6.重復步驟3-5直至滿足結束條件。
❻ 怎麼利用爬蟲技術抓取淘寶搜索頁面的產品信息
可以通過requests庫re庫進行淘寶商品爬蟲爬取
import requests
import re
def getHTMLText(url):
try:
r= requests.get(url,timeout=30)
r.raise_for_status()
r.encoding = r.apparent_encoding
return r.text
except:
return ""
def parsePage(ilt,html):
try:
plt = re.findall(r'\"view_price\":\"[\d+\.]*\"',html)
tlt = re.findall(r'\"raw_title\"\:\".*?\"',html)
for i in range(len(plt)):
price = eval(plt[i].split(':')[1])
title = eval(tlt[i].split(':')[1])
ilt.append([price,title])
except:
print("F")
def printGoodsList(ilt):
tplt = "{:4}\t{:8}\t{:16}"
print(tplt.format("序號","價格","商品名稱"))
count = 0
for g in ilt:
count = count +1
print(tplt.format(count,g[0],g[1]))
def main():
goods = '書包'
depth = 2
start_url = "https://s.taobao.com/search?q="+ goods
infoList = []
for i in range(depth):
try:
url = start_url +'&s='+str(44*i)
html = getHTMLText(url)
parsePage(infoList,html)
except:
continue
printGoodsList(infoList)
main()
這段代碼在過去是可以爬取淘寶商品信息,但是因為淘寶的反扒技術升級,便不能讓你大搖大擺地進出自如了。
此外也可以藉助採集實現採集
❼ 網站剛建好,沒有信息,聽說有個什麼爬蟲,可以自動抓取,怎麼用
網站爬蟲只是提取網站信息製作網站地圖,網站地圖是提交給網路的叫做sitemap.xml
網站剛建好,提幾點建議。
分析競爭對手
設立核心關鍵詞和長尾詞
制定優化策略
豐富內容,需要原創內容
外鏈發布,外鏈可以吸引網路蜘蛛抓取
友情鏈接交換
剛開始做好這幾步,網站很快上來的
❽ 如何爬蟲網頁數據
爬取網頁數據原理如下:
如果把互聯網比作蜘蛛網,爬蟲就是蜘蛛網上爬行的蜘蛛,網路節點則代表網頁。當通過客戶端發出任務需求命令時,ip將通過互聯網到達終端伺服器,找到客戶端交代的任務。一個節點是一個網頁。蜘蛛通過一個節點後,可以沿著幾點連線繼續爬行到達下一個節點。
簡而言之,爬蟲首先需要獲得終端伺服器的網頁,從那裡獲得網頁的源代碼,若是源代碼中有有用的信息,就在源代碼中提取任務所需的信息。然後ip就會將獲得的有用信息送回客戶端存儲,然後再返回,反復頻繁訪問網頁獲取信息,直到任務完成。
❾ 如何用爬蟲爬網路代理伺服器地址
網路數據量越來越大,從網頁中獲取信息變得越來越困難,如何有效地抓取並利用信息,已成為網路爬蟲一個巨大的挑戰。下面IPIDEA為大家講明爬蟲代理IP的使用方法。
1.利用爬蟲腳本每天定時爬取代理網站上的ip,寫入MongoDB或者其他的資料庫中,這張表作為原始表。
2.使用之前需要做一步測試,就是測試這個ip是否有效,方法就是利用curl訪問一個網站查看返回值,需要創建一張新表,循環讀取原始表有效則插入,驗證之後將其從原始表中刪除,驗證的同時能夠利用響應時間來計算這個ip的質量,和最大使用次數,有一個演算法能夠參考一種基於連接代理優化管理的多線程網路爬蟲處理方法。
3.把有效的ip寫入ip代理池的配置文件,重新載入配置文件。
4.讓爬蟲程序去指定的dailiy的服務ip和埠,進行爬取。
❿ 如何用爬蟲爬取網頁上的數據
用爬蟲框架Scrapy, 三步
定義item類
開發spider類
開發pipeline
如果你想要更透的信息,你可以參考《瘋狂python講義》