1. 如何爬取網站上的某一信息
兩類網站可以用不同的方法去爬取
一、開放API的網站
一個網站如果開放了API,那麼就可以直接GET到它的json數據。有三種方法可以判斷一個網站是否開放了API。
1、在站內尋找API入口;
2、用搜索引擎搜索「某網站API」;
3、抓包。有的網站雖然用到了ajax,但是通過抓包還是能夠獲取XHR里的json數據的(可用抓包工具抓包,也可以通過瀏覽器按F12抓包:F12-Network-F5刷新)。
二、不開放API的網站
1、如果網站是靜態頁面,那麼可以用requests庫發送請求,再通過HTML解析庫(lxml、parsel等)來解析響應的text;解析庫強烈推薦parsel,不僅語法和css選擇器類似,而且速度也挺快,Scrapy用的就是它。
2、如果網站是動態頁面,可以先用selenium來渲染JS,再用HTML解析庫來解析driver的page_source。
2. 如何用python爬取網站數據
這里簡單介紹一下吧,以抓取網站靜態、動態2種數據為慧返拍例,實驗環境win10+python3.6+pycharm5.0,主要內容如下:
抓取網站靜態數據(數據在網頁源碼中):以糗事網路網站數據為例
1.這里假設我們抓取的數據如下,主要包括用戶昵稱、內容、好笑數和評論數這4個欄位,如下:
對應的網頁源碼如下,包含我們所需要的數據:
2.對應網頁結構,主要代碼如下,很簡單,主要用到requests+BeautifulSoup,其中requests用於請求頁面,BeautifulSoup用於解析頁面:
程序運行截圖如下,已經成功爬取到數據:
抓取網站動態數據(數據不在網頁源碼中,json等文件中):以人人貸網站數據為例
1.這里假設我們爬取的是債券數據,主要包括年利率世型、借款標題、期限、金額和進度這5個欄位信息,截圖如下:
打開網頁源碼中,可以發現數據不在網頁源碼中,按F12抓包分析時,才發現在一個json文件中,如下:
2.獲取到json文件的url後,我們就可以爬取對應數據了,這里使用的包與上面類似,因為是json文件,所以還用了json這個包(解析json),主要內容如下:
程序運行截圖如下,前羨已經成功抓取到數據:
至此,這里就介紹完了這2種數據的抓取,包括靜態數據和動態數據。總的來說,這2個示例不難,都是入門級別的爬蟲,網頁結構也比較簡單,最重要的還是要會進行抓包分析,對頁面進行分析提取,後期熟悉後,可以藉助scrapy這個框架進行數據的爬取,可以更方便一些,效率更高,當然,如果爬取的頁面比較復雜,像驗證碼、加密等,這時候就需要認真分析了,網上也有一些教程可供參考,感興趣的可以搜一下,希望以上分享的內容能對你有所幫助吧。
3. python爬蟲如何分析一個將要爬取的網站
首先,你去爬取一個網站,
你會清楚這個網站是屬於什麼類型的網站(新聞,論壇,貼吧等等)。
你會清楚你需要哪部分的數據。
你需要去想需要的數據你將如何編寫表達式去解析。
你會碰到各種反爬措施,無非就是各種網路各種解決。當爬取成本高於數據成本,你會選擇放棄。
你會利用你所學各種語言去解決你將要碰到的問題,利用各種語言的client組件去請求你想要爬取的URL,獲取到HTML,利用正則,XPATH去解析你想要的數據,然後利用sql存儲各類資料庫。
4. 如何爬取網頁數據
1、URL管旁帶理
首先url管理器添加了新的url到待爬取集合中,判斷了待添加的url是否在容器中、是否有待爬取的url,並且獲取待爬取的url,將url從待爬取的url集合移動到已爬取的url集合
頁面下載,下載器將接收到的url傳給互聯網,互聯網返回html文件給下載器,下載器將其保存到本地,一般的會對下載器做分布式部署,一個是提交效率,再一個是起到請求代理作用
2、內容提取
頁面解析器主要完成的是從獲取的html網頁字元串中取得有價值的感興趣的數據和新的url列表。數據抽取比較常用的手段有基於css選擇器、正則表達式、xpath的規則提取。一般提取完後還會對數據進行一定的清洗或自定義處理,從而將請求到的非結構數據轉化為我們需要的結構化數據。
3、數據保存
數據保存到相關的資料庫、隊列、文件等方便做數據橘啟歲計算和與應用對接。
爬蟲採集成為很多公司企業個人的需求,但正因為如此,反爬蟲的技術也層出不窮,像時間限制、IP限制、驗證碼限制等等圓睜,都可能會導致爬蟲無法進行,所以也出現了很多像代理IP、時間限制調整這樣的方法去解決反爬蟲限制,當然具體的操作方法需要你針對性的去研究。兔子動態IP軟體可以實現一鍵IP自動切換,千萬IP庫存,自動去重,支持電腦、手機多端使用。