1. 學習物聯網安全技術這門課我們應該怎樣做
《物聯網安全技術》介紹信息安全的基礎知識,概述物聯網的基本概念和主要特徵,分析物聯網所面臨的安全挑戰,提出物聯網安全的體系結構,同時闡述物聯網安全主要的關鍵技術;分別從感知層安全、網路層安全、應用層安全及安全管理等方面對物聯網安全進行了介紹,包括感測器網路安全、RFID安全、核心網安全、移動通信接入安全、無線接入安全、數據處理安全、數據存儲安全、雲安全、安全管理等,並舉例說明物聯網安全技術的典型應用,最後對物聯網安全技術的發展趨勢進行了總結。
這門課程干貨還是比較多的,建議您在老師講解之前自己提前閱讀理解一下,都是在您未來工作中可能會遇到的問題。望採納。
2. 大數據帶來解決網路安全新機遇
大數據帶來解決網路安全新機遇_數據分析師考試
2015年中國互聯網大會近日在北京召開,網路安全成為討論熱點,在專家看來,傳統防禦手段已經失效。
普華永道發布的調查報告指出,2014年全球所有行業監測到的網路攻擊共有4280萬次,比上一年增長了48%。有專家分析,隨著大數據時代的到來,解決網路安全問題變得越來越難。
360公司總裁齊向東認為,以前的互聯網安全,企業面臨的是只是操作系統的安全問題,用軟體就能夠解決。但是進入萬物互聯的時代以後,包括智能攝像機、路由器、汽車,甚至隨身穿戴、智能醫療設備等,都趨於智能化、網路化,解決這些智能硬體的安全問題,無法用上網安全的解決方案完成。
齊向東透露了一組數據:2011年到2014年,國內互聯網公開的安全事故已經造成了累計11.3億用戶的信息泄露。95%的網站能夠被黑,40%網站存在後門,70%網站存在漏洞。」
隨著大數據、雲服務的普及,物聯網成為攻擊對象,網路安全威脅如「細胞分裂」般擴散。在新一代技術革命的浪潮下,信息資源已經成為基礎性社會資源,融入到了社會生活的各個領域,顛覆性地改變著人類的生活方式和生產方式。
齊向東表示,「在個人網路安全領域,360已擁有超過12億的用戶,這就相當於12億個安全大數據的「探測器」,分布在互聯網每一個節點上。每一個用戶在使用產品的同時,這些終端設備都可以實時感知各種威脅和攻擊,匯集到雲端。」
以上是小編為大家分享的關於大數據帶來解決網路安全新機遇的相關內容,更多信息可以關注環球青藤分享更多干貨
3. 大數據時代,誰能保障互聯網安全
大數據時代,誰能保障互聯網安全
網路安全事件近期頻發,網路安全警鍾再次響起。互聯網企業應如何保護數據安全?
5月27日下午到夜間,很多用戶發現自己的支付軟體無法登陸,故障2.5個小時;28日,國內最大的旅遊在線預定網站也出了問題,故障時間長達12小時。兩家企業均是互聯網行業中的佼佼者,出現如此問題,顯示出網路安全和穩定遭遇嚴峻挑戰,在當下「互聯網+」熱潮中,網路安全和穩定更應該引起高度重視。隨著這幾年互聯網、移動互聯網的發展,我們每個人都實實在在的感受到了方便快捷的互聯網的服務,但是這幾天的事情告訴我們,在方便背後是黑色危機。
互聯網與生活
對大多數人而言,用手機查看賬單,看看水、煤、電繳費,看看信用卡還款情況,看看理財賬戶的收益,都是方便快捷的方式。而在數千里之外的一次施工,就可以讓一切中斷。隱私暫且不說,軟體託管的資金、理財都是真金白銀。網路出點問題也好,伺服器有點麻煩也罷,你的錢就會成為一筆糊塗賬,這是很可怕的。
同樣,現在很多人都依靠網上預訂行程。出行從訂機票、出發車輛送機場,到落地對方城市車輛接到酒店,再到酒店住宿,返程機票,車輛接送,幾乎擁有一整套服務。然而網路出現問題,很多預訂了行程的客人就會出現各種問題,因為網路或者伺服器的問題,機票沒出,車輛沒訂,酒店沒訂,或者時間拖延,出行者就會遇到大麻煩。
我們的生活已經與互聯網,移動互聯網緊緊聯系在了一起,互聯網就像空氣一樣必不可少。具有行業主導地位的互聯網公司對於個人的重要性不亞於銀行、電信這些關繫到國計民生的國企。他們出點問題,就會是社會性的大問題。
如果用一句話來總結:此次事件損失是慘重的,教訓是深刻的。如何對此類事件有所防範,成為各大互聯網企業與用戶共同面對的問題。有個生僻詞從今天開始就會成為熱門詞彙—災備。
什麼是災備?
一般來說,災備可以分為數據級、應用級和業務級三個級別,可能大多數人對這三種級別的災備都不是很了解,那麼下面我們就來具體的了解一下這三種災備。
數據級災備主要關注的就是數據,就是在災難發生之後,可以確保數據不受到損壞。對於級別較低的數據級災備來說,可以將需要備份的數據通過人工的方式保存到異地實現。如將備份的磁帶(盤或光碟)定時運送到異地保存就是方法之一。而較高級的數據災備方案則依靠基於網路的數據復制工具,實現生產中心不同備份設備之間或是生產中心與災備中心之間的非同步/同步的數據傳輸,如採用基於磁碟陣列的數據復制功能。
應用級災備是建立在數據級災備的基礎上的,對應用系統進行復制,也就是在異地災備中心再構建一套應用支撐系統。支撐系統包括數據備份系統、備用數據處理系統、備用網路系統等部分。應用級災備能提供應用系統接管能力,即在生產中心發生故障的情況下,災備中心便能夠接管應用,從而盡量減少系統停機時間,提高業務連續性。
業務級災備是最高級別的災備系統。它包括非IT系統,所以當發生大的災難時,用戶的辦公場所可能會被損壞,用戶除了需要原來的數據以外,還需要工作人員在一個備份的工作場所能夠正常地開展業務。
金融業的信息系統標准一直有明確的監管要求,而且嚴於其他行業。我國金融行業標准中的《銀行業信息系統災難恢復管理規范》對災難分級、恢復時間有詳細規定。中國銀監會印發的《商業銀行數據中心監管指引》也已經明確,總資產規模一千億元人民幣以上且跨省設立分支機構的法人商業銀行,以及省級農村信用聯合社,應設立異地模式災備中心。
選擇具有災備系統的互聯網公司
據記者采訪的多位網路安全技術專家介紹,目前,不少普通的互聯網企業並沒有災難備份,對用戶而言,選擇具有災備系統的互聯網公司顯得尤為重要。
江淮雲信易通公司則表示,通過雲計算技術可以低成本地實現多個數據備份及快速恢復,並進行更嚴格的雲上許可權管理。如果沒有完善的數據可靠性機制保障和安全防禦能力,對互聯網公司而言意味著致命性打擊。
據了解,信易通是一家數據公司,和中國金融電子化公司(中國人民銀行軟體開發中心)簽訂災備協議,為中小企業制定數據災備方案,所有的數據由中國人民銀行電子化公司備份傳輸到北京,提供數據級和業務級的災備,安全性很高。
以前,自建災備中心往往需要建設基礎設施和全部的應用系統的硬體軟體,覆蓋全部應用系統數據的實時數據傳輸,應用管理,這個建設周期很長,而且成本高、見效慢。
相比之下,信易通的雲災備中心基礎設施可以共享中小金融機構災備服務中心的機房,網路可以實時通信,網路安全設備監控設備共享,數據層面可以共享虛擬化雲存儲,應用層可以根據每個金融機構不同需求在平時的時候可以分配一定的計算資源、存儲資源。這樣對比下來,採用雲災備服務中心最明顯的特點就是投入成本更少而見效更快了。
以上是小編為大家分享的關於大數據時代,誰能保障互聯網安全的相關內容,更多信息可以關注環球青藤分享更多干貨
4. 應用大數據分析技術 讓安全危險看的見
應用大數據分析技術 讓安全危險看的見
水能載舟,亦能覆舟。互聯網的普及和信息化建設的增強即有助於增強企業的競爭力,也給企業內網安全和關鍵信息資產的安全帶來了極大的隱患。近年來,網路攻擊呈現爆炸性的增長,手段也越來越隱蔽。攻擊者的目的由炫耀技術能力轉變為竊取企業機密、獲取經濟利益。
面對新的安全挑戰,傳統的、基於特徵碼識別的單體軟體殺毒技術,往往對位置的惡意威脅缺乏防護和發現相應能力,開始逐步退出了歷史舞台,取而代之的是以雲計算為基礎的現代互聯網安全技術,並且以360為代表的一批新興的現代互聯網企業開始從思想到防禦體系徹底顛覆傳統企業安全。
在ISC 2015的開幕峰會中國互聯網安全領袖峰會上,360公司董事長兼CEO周鴻禕發表了題為「看得見的安全」的主題演講,演講中周鴻禕首次提出了「網路安全新法則」,指出今天大多數已知的威脅和攻擊都可以防禦,但企業和機構面臨更多的是未知的威脅和漏洞,所以傳統的防火牆產品和防病毒技術已經力不從心,需要通過大數據技術的應用才能防禦新的安全威脅。
基於大數據分析技術,將所有企業面臨的安全威脅作為一個整體來看,用於防禦變化莫測的新威脅,是當前業界安全技術發展的一個趨勢。當然,這就需要安全廠商在數據收集階段有一定的能力。恰好360作為最大的互聯網安全公司,目前有超過13億個安全探測點,還有數十萬台伺服器,安全大數據是其能力的核心,在威脅情報的數據收集階段,具有天然優勢。這些安全大數據可以被用來在威脅情報的生產過程中,產生價值更高,針對性更強的高質量威脅情報。
在產品層面,360擁有天機、天擎、天巡和天眼組成的終端和邊界的安全大數據採集系。每一個用戶在使用產品的同時,這些終端設備都可以實時感知各種威脅和攻擊,匯集到雲端,成為網路安全的智慧大腦。然後通過大數據引擎,進行關聯分析,快速地找到有價值的數據,並通過可視化技術,讓安全威脅展現在眼前。
然而對於企業而言,將已有的傳統安全架構「一勺燴」全部替換也不太現實,為此360公司創始人、總裁齊向東在接受媒體采訪時,給出了幾個建議:通過對企業現有安全架構進行局部的改造,讓基於傳統的網路安全架構體系能夠發揮更大的效用,或者是彌補更多的缺陷和不足。第一個就是加強終端,第二個是把數據打通,建立一個大數據中心,大數據中心構建一個新的威脅情報感知系統。第三個是把單兵作戰的網路安全防護設備通過連接雲的這種服務,讓它提供具備雲端的這種智慧的能力。
同時,齊向東表示,360「希望和全球的網路安全從業者攜起手來,加強合作,共同探索和尋找解決網路安全問題的新方法,為提升網路安全貢獻力量。」
以上是小編為大家分享的關於應用大數據分析技術 讓安全危險看的見的相關內容,更多信息可以關注環球青藤分享更多干貨
5. 大數據安全問題及應對思路研究
大數據安全問題及應對思路研究
隨著互聯網、物聯網、雲計算等技術的快速發展,全球數據量出現爆炸式增長。與此同時,雲計算為這些海量的多樣化數據提供了存儲和運算平台,分布式計算等數據挖掘技術又使得大數據分析規律、研判趨勢的能力大大增強。在大數據不斷向各個行業滲透、深刻影響國家的政治、經濟、民生和國防的同時,其安全問題也將對個人隱私、社會穩定和國家安全帶來巨大的潛在威脅,如何應對面臨巨大挑戰。
一、大數據安全關鍵問題
隨著數字化進程不斷深入,大數據逐步滲透至金融、汽車、製造、醫療等各個傳統行業,甚至到社會生活的每個角落,大數據安全問題影響也日益增大。
(一)國家數據資源大量流失。互聯網海量數據的跨境流動,加劇了大數據作為國家戰略資源的大量流失,全世界的各類海量數據正在不斷匯總到美國,短期內還看不到轉變的跡象。隨著未來大數據的廣泛應用,涉及國家安全的政府和公用事業領域的大量數據資源也將進一步開放,但目前由於相關配套法律法規和監管機制尚不健全,極有可能造成國家關鍵數據資源的流失。
(二)大數據環境下用戶隱私安全威脅嚴重。隨著大數據挖掘分析技術的不斷發展,個人隱私保護和數據安全變得非常緊迫。一是大數據環境下人們對個人信息的控制權明顯下降,導致個人數據能夠被廣泛、詳實的收集和分析。二是大數據被應用於攻擊手段,黑客可最大限度地收集更多有用信息,為發起攻擊做准備,大數據分析讓黑客的攻擊更精準。三是隨著大數據技術發展,更多信息可以用於個人身份識別,個人身份識別信息的范圍界定困難,隱私保護的數據范圍變得模糊。四是以往建立在「目的明確、事先同意、使用限制」等原則之上的個人信息保護制度,在大數據場景下變得越來越難以操作。
(三)基於大數據挖掘技術的國家安全威脅日益嚴重。大數據時代美國情報機構已搶佔先機,美國通過遍布在全球的國安局監聽機構如地面衛星站、國內監聽站、海外監聽站等採集各種信息,對採集到的海量數據進行快速預處理、解密還原、分析比對、深度挖掘,並生成相關情報,供上層決策。2013年6月底,美中情局前雇員斯諾登爆料,美國情報機關通過思科路由器對中國內地移動運營商、中國教育和科研計算機網等骨幹網路實施長達4年之久的長期監控,以獲取網內海量簡訊數據和流量數據。
(四)基礎設施安全防護能力不足引發數據資產失控。一是基礎通信網路關鍵產品缺乏自主可控,成為大數據安全缺口。我國運營企業網路中,國外廠商設備的現網存量很大,國外產品存在原生性後門等隱患,一旦被遠程利用,大量數據信息存在被竊取的安全風險。二是我國大數據安全保障體系不健全,防禦手段能力建設處於起步階段,尚未建立起針對境外網路數據和流量的監測分析機制,對棱鏡監聽等深層次、復雜、高隱蔽性的安全威脅難以有效防禦、發現和處置。
二、國外大數據安全相關舉措及我國應對思路
目前世界各國均通過出台國家戰略、促進數據融合與開放、加大資金投入等推動大數據應用。相比之下,各國在涉及大數據安全方面的保障舉措則起剛剛起步,主要集中在通過立法加強對隱私數據的保護。德國在2009年對《聯邦數據保護法》進行修改並生效,約束范圍包括互聯網等電子通信領域,旨在防止因個人信息泄露導致的侵犯隱私行為;印度在2012年批准國家數據共享和開放政策的同時,通過擬定非共享數據清單以保護涉及國家安全、公民隱私、商業秘密和知識產權等數據信息;美國在2014年5月發布《大數據:把握機遇,守護價值》白皮書表示,在大數據發揮正面價值的同時,應該警惕大數據應用對隱私、公平等長遠價值帶來的負面影響,建議推進消費者隱私法案、通過全國數據泄露立法、修訂電子通信隱私法案等。
我國在布局、鼓勵和推動大數據發展應用的同時,也應提早謀劃、積極應對大數據帶來的安全挑戰,從戰略制定、法律法規、基礎設施防護等方面應對大數據安全問題。
(一)將大數據資源保護上升為國家戰略,建立分級分類安全管理機制。一是把數據資源視為國家戰略資源,將大數據資源保護納入到國家網路空間安全戰略框架中,構建大數據環境下的信息安全體系,提高應急處置能力和安全防範能力,提升服務能力和運作效率。二是通過國家層面的戰略布局,明確大數據資源保護的整體規劃和近遠期重點工作。三是對國內大數據資源按實施分級分類安全保護思路,保障數據安全、可靠,積極開展大數據安全風險評估工作,針對不同級別大數據特點加強安全防範。五是盡快制定不同級別的大數據採集、存儲、備份、遷移、處理和發布等關鍵環節的安全規范和標准,配套完善相應的監管措施。
(二)完善法律法規,加大個人信息保護監管力度。一是積極推動個人信息保護法律的立法工作,探索通過技術標准、行業自律等手段解決法律出台前的個人信息保護問題。加快《網路安全法》的出台,在《網路安全法》中對電信和互聯網行業用戶信息保護作出明確法律界定,為相關工作開展提供法律依據。二是加強對個人隱私保護的行政監管,同時要加大對侵害個人隱私行為的打擊力度,建立對個人隱私保護的測評機制,推動大數據行業的自律和監督。
(三)加強國家信息基礎設施保護,提升大數據安全保障與防範能力。一是促進技術研究和創新,通過加大財政支持力度,激勵關系國家安全和穩定的政府和國有企事業單位採用安全可控的產品,提升我國基礎設施關鍵設備的安全可控水平。二是加強大數據信息安全系統建設,針對大數據的收集、處理、分析、挖掘等過程設計與配置相應的安全產品,並組成統一的、可管控的安全系統,推動建立國家級、企業級的網路個人信息保護態勢感知、監控預警、測評認證平台。三是充分利用大數據技術應對網路攻擊,通過大數據處理技術實現對網路異常行為的識別和分析,基於大數據分析的智能驅動型安全模型,把被動的事後分析變成主動的事前防禦;基於大數據的網路攻擊追蹤,實現對網路攻擊行為的溯源。
以上是小編為大家分享的關於大數據安全問題及應對思路研究的相關內容,更多信息可以關注環球青藤分享更多干貨
6. 網路安全的前景趨勢 網路安全教育培訓機構哪家好
網路安全的前景趨勢怎麼說呢,個人感覺不太好,即使是這個安全形勢日益嚴峻,人們安全意識越來越強的今天,它的趨勢依然不是很好。
原因很簡單:它除了協議等一些比較精尖的技術外,其他的並沒有什麼太深技術含量,很多都是安全安全一般性質的,日常的工作,例如路由,防火牆,安全運維等等。大多數的網路安全工作成長的空間很小。培訓機構不是很了解,不推薦了。
現在安全行業相對比較適合發展的有兩個方向:web安全和底層信息安全。
web安全你可以通俗的理解為網站端的安全,是滲透測試,前端漏洞,網站數據這些,應用面較廣,入門也較為簡單,但是和網路安全一樣技術性一般。web安全的培訓機構很多,基本上市面上的安全培訓機構都是web安全這一系列。i春秋還可以,但是好像是網課,有沒有實地不知道。此外農夫好像也還不錯。
底層信息安全是安全裡面注重技術的一個方向,有病毒反病毒,漏洞挖掘利用,軟體逆向,以及當下比較火的移動安全等。入門難,就業面相對較窄,但是前景光明,從業幾年的人,年薪幾十萬算是保守的,培訓機構推薦十五派,因為從事這方面的培訓機構只有這一家。
7. 萬字干貨|新規下,車企如何建設數據安全體系
隨著智能網聯化、數字化發展,汽車數據安全和網路風險防範成為行業密切關注的難題。
汽車傳統的物理邊界被打破,出現了大量的雲上服務,比如車聯網、自動駕駛技術、OTA等等,相應的,汽車產生的數據也越來越多。相關數據顯示,一輛智能網聯汽車每天大概會產生 10TB 的數據,這些數據包含駕駛人員的出行軌跡、駕乘習慣、車內語音圖像等個人信息,也包含車輛實時收集到的地圖數據等。
隨著《個人信息保護法》、《汽車數據安全管理若干規定(試行)》的頒布實施,對數據的合規分類收集和使用提出了更為嚴格的要求。同時,也有汽車品牌近來遭受到網路黑客攻擊,造成不小的損失和安全風險。如何平衡數據使用的合規與高效,並在全面上雲的背景下構築扎實的安全防線,成為整個行業密切關注的話題和迫切需要解決的難題。
此此背景下,騰訊智慧出行與汽車之心聯合策劃了「行者有雲」系列沙龍第二期——《車企上雲,如何構築雲上安全防線?》,聚焦汽車數據的合規使用和安全防範問題,加速車企構建在數據網路安全領域的競爭力。
本期沙龍邀請到上海帆一尚行科技有限公司網路安全總監、上汽騰訊網路安全聯合實驗室負責人陳寧,騰訊安全策略發展中心總經理呂一平,共同探討車企數據安全防護建設和未來趨勢發展並發表了獨到精闢的見解。
以下為沙龍對話實錄:
主持人:大家好!歡迎收看「行者有雲」系列沙龍,本期我們討論的話題是「車企數據上雲,如何構築雲上安全防線」,我們將圍繞數據安全和風險防禦問題討論。車企在系列新規背景下,將採用怎樣的新手段、新模式來保證數據的合理開發利用,並有效防範潛在風險。非常有幸我們請到了兩位嘉賓和我們一起分享討論。一位是上海帆一尚行科技有限公司網路安全總監、上汽騰訊網路安全實驗室聯合負責人陳寧;另一位是騰訊安全策略發展中心總經理呂一平。
在智能化網聯化大變革下,一輛汽車在使用過程中產生的數據越來越多,隨著《個人信息保護法》和《汽車數據安全管理若干規定(試行)》頒布實施,企業在使用處理數據的時候,要遵守哪些行為准則?
陳寧:在《個網法》講得比較細致針對《個人信息保護法》有8類處理原則,大概總結:
第一,對於用戶個人信息數據的授權,信息處理,告訴用戶要收集個人信息,個人隱私數據要進行處理。
第二,處理過程中要注意處理流程,要保護和保密。
第三,數據收集,要符合相關的規定。對於汽車來說,有《汽車數據安全管理若干規定(試行)》,定得比較明確,這和《個網法》有相互呼應的關系,上面有《數據安全法》,以此為由展開。
呂一平:還有一點,去年下半年國家集中出台了比如《個人隱私信息保護》,及《數據安全法》等法律法規。同時面向汽車行業,汽車行業本身屬於關鍵信息基礎設施行業,針對「關基」(關鍵信息基礎)行業也有一些相應的針對基礎安全和數據安全的要求。所以,這也是需要汽車行業各位同仁需要考慮的問題。
主持人:如果針對整個汽車數據來說,我們有什麼樣的分類界定?
陳寧:現在最關鍵的第一步是,汽車數據不可避免要收集。汽車聯網以後,很多服務雲化後,為了對汽車的一些服務以及汽車這狀態甚至說自動駕駛,這天然需要搜集很多數據,所以說數據搜集是不可避免的。現在我們覺得對於汽車數據搜集,首先真正的明確怎樣服務搜集數據,如果說要做自動駕駛相關的,那麼最少應該搜集什麼樣的數據,盡可能的還是少搜。不要說不做分類,不做區分一概搜集上來後面處理,這是不合法不合情的,這是第一個按照服務的細分來分。第二,數據的共享和流動,這也是很重要的因素,現在很多服務在雲上之後,不僅是主機廠要收集數據,很多合作夥伴,比如車上應用需要第三方的數據,我們要把數據給他,數據在流通的過程中以什麼樣的合法合規方式流通,以及我如何對它授權,如何對它約束,這要處理好。
最後,敏感數據的收集,現在汽車廠有大量的感測器、攝像頭,對於用戶的面部輪廓,關鍵設施和關鍵單位的識別、存儲,是否要做相關的模糊化處理或透明處理,這也比較關鍵。
呂一平:我主要做補充,從汽車行業數據來講,不僅要保護數據,要脫敏,盡量按照服務手續收集數據。基於很大的前提是,收集數據時要進行分類分型,針對不同的類型利用手段去保護數據。汽車行業有幾大數據比較重要:
1、汽車研發過程中的車輛狀態,這些數據傳統一直做收集,這方面更多是車企自用,甚至從數據保護角度來講是比較容易實現的,因為汽車公司內部流轉數據。
2、和用戶相關的隱私數據,國家有明確的法律法規要做到保護和保密。針對不同的使用場景我們應該如何給到數據,需要通過分類分級的方法做明確的界定,並有對應的使用要求和規則。
3、從技術進入到其他行業帶來新的需求,比如感測器受地理位置數據,高清地圖數據,這是相當敏感的數據領域,這會涉及到國家安全部分,車企需要非常關注這類問題。去年國家重點關注了一家海外車企這方面的問題,所以這也值得汽車行業重點關注的信息。
主持人:隨著一系列的新規的出台,從車企角度來講,在主動防範上有哪些變化?
陳寧:有很多,結合各方數據安全規定,首先,按照上位法《網安法》來講車企相關車輛應用服務,肯定要通過等保測評。第二,通過等保,配套相關的網路安全或者數據安全,配套的防範措施和防範的管理體系建立起來。第三,提出明確要求,用戶上車默認情況不收集數據。如果要收集數據要告訴用戶,清晰地告訴用戶要收集一些數據,且收集哪些數據。第四,在收集數據狀態中讓用戶知道我們正在收集你的數據,用戶有地方說不希望收集數據,屏蔽它。第五,盡量在車里將敏感的數據輪廓化和清晰化去掉,模糊化。盡量不要通過數據清楚地定義出一個人,這樣方便處理。
再往後,數據共享方面,該企業一開始只做商業合作,後面可能有一些約束,同時很重要的是按照《數據安全法》和汽車相關規定,每年12月25日左右要上報數據安全報告。中國汽車品牌開始向海外發展,根據規定要求要對相關的監管部門進行報備,並且在企業數據安全方面寫清楚,今年發生過幾次數據向境外輸出,以及經過相關評審,這些情況要說清楚。企業不僅僅是義務合規,還要滿足國家戰略需要。
主持人:在上述規定的使用數據和國家安全的前提下,數據如何反哺研發,開發相應的車聯網服務?
陳寧:這挑戰很大。
主持人:要實現兩者的平衡?
陳寧:對,基於我服務的內容收集相關數據,這是做到平衡的關鍵。如果只是判斷車的自動駕駛,只收一些和路況相關的信息,就不要收多餘的信息,盡量精簡收集內容,比如只是採集一些路邊的圖象,車內的信息就不要收。現在有汽車保險,主要是根據用戶的駕駛習慣收集車輛數據,收集一般駕駛者的駕駛習慣就不要收集個人信息,這樣才能合法合情,又能反哺到業務。
第二,做分析時,流通方面盡量做到應用和數據分開,舉個典型的例子,現在自動駕駛數據的安全屋,可能確實採集了很多數據,經過合理處理之後放在數據模型箱里,我們做的事情是將計算模型放進去,用數據計算完之後最後拿出來是模型計算結果或者是模型存儲的演算法,而不是數據本身,這不合理。在模型足夠成熟之後,這些數據可能銷毀掉或者撤掉,這可以比較好達成平衡。這需要付出很多努力。
呂一平:我們在去年國家出台一系列數據安全相關規定時我們非常關注,因為互聯網有大量數據,很多互聯網業務都在線上。我們自己在推進數據安全保護方面做了很完整的展開,從產品的設計上,比如數據收集的最小化,包括用戶知情角度,數據使用需要用戶充分知悉並且充分授權,然後才能進行相應使用。
另外,應用和數據相應分離,騰訊在《數據安全法》出台前兩三年已經做這方面的工作。特別是在不應該使用不合理數據提供下如何規避掉,我們在內部進行了工作。騰訊可以給汽車行業做一些交流和傳遞的工作,幫助行業更好地理解如何做數據安全建立。
主持人:對於外資或者合資車企來說,《個人信息保護法》和《汽車數據安全管理若干規定(試行)》相關規定對他們的影響是否更大?
陳寧:相對會大一點,但大體上差不多。首先是對於敏感信息的定義,對外資企業來說風險一樣。另外,用戶的存儲、流動也是一樣。對於外企挑戰最大的是數據不能出境,最大變化是跨境的問題。由於《個人信息保護法》和數據安全定義上,外資也要跟隨國家相關規定,可能要對自己做出規范。但大方向比較好,主要是促進問題。
主持人:騰訊和外資車企在這些領域是否有一些合作?
呂一平:其實外資車企面臨,在中國市場如何滿足國家合規性要求和規定,現在有一些海外業務在推進。不管歐洲還是美國地區,相應的個人信息隱私保護和合規,及數據使用的要求可能都有相應的要求。所以在歐洲和美國,中國企業屬於外資,其實大家遇到的挑戰一樣。對於車企來講,不管是合資還是外資品牌,都要考慮如何滿足本地的個人隱私保護和數據安全合規使用的要求,這其實是基本需要做到的工作。
從騰訊角度來講,騰訊在汽車行業定位一直是數字化助手的角色。我們不僅和合資和外資的車企,和上汽也在數據安全方面有很多交流,我們一起研究如何將數據安全保護的工作做好。相對來講,這個領域比較新,比如網路安全、基礎的安全建設方面,中國已經經歷了幾十年的發展和建設,但數據安全對大家來說是一個新課題。隨著車企聯網和相應技術不斷落地的情況下,數據量會非常大,而且數據的集中度也不一定這么高。如何將數據安全保護工作做好是很有挑戰的課題。先要從汽車數據的分類分級開始,以此作為基礎再去延伸,根據不同級別和類別的數據進行相應保護措施,對應有技術的部分。
陳寧:關鍵是立法,以前沒有明確上位法,2016年有上位法出來之後,車企必須要符合法律。
主持人:除了數據合規收集和處理,也不能忽略的是汽車智能度越高,面臨潛在被攻擊的風險也越來越高,我們也出現過車子被攻擊的案例。這樣的場景在汽車中,是真的能實現的嗎?在車聯網中真的會有這樣的風險嗎?
陳寧:汽車傳統的物理邊界被打破了,大量的雲上服務,大家可以用手機跟車進行互動。汽車擁抱了數字化,但擁抱了數字化的福利和變革也擁抱了數字化的風險,最典型的是雲上服務,比如遠程車控、OTA等等,被不法分子利用之後,遠程的車輛造成一些群體性的影響。另外,手機APP,手機上有藍牙,APP設計或者介面不嚴謹,可能出現批量控制用戶APP,可以隨意開走任何一輛車。另外車聯網在車上暴露大屏、智能駕駛艙等等,這些是數字化東西,數字化的東西多少有軟體的問題會被人利用。1月份德國的小孩才19歲,利用了特斯拉的第三方的軟體的漏洞同時控制不同國家的車輛。數字化是大量的軟體大量的應用,人設計的東西總有一些問題。
主持人:呂總,之前設計的科恩實驗室破解了特斯拉和寶馬,反響很大,為什麼做這樣的實驗?
呂一平:我們不是定義成「黑客」,我們定義為「白帽」,我們希望能改善各類產品和網路的安全性,為之努力的一群專業技術研究團隊。當時為什麼關注特斯拉和寶馬?我們在2016年看到了比較大的趨勢,汽車行業「四化」,對我們來講比較關心是網聯化和智能化,汽車聯網了,汽車的自動駕駛的能力,這和數字化結合程度非常高,當享受數字化福利的時候,肯定會面臨新技術引入帶來的風險。
汽車行業本身對安全非常關注的行業,那個安全叫「safety」,當時汽車行業更多關注safety的部分,對security部分理解不那麼強。Security能對safety造成的影響理解不是很充分,當時我們選了兩個比較有代表性的車企,一是原生數字化,即網聯、智能化、新能源化的特斯拉。另外是傳統的從互聯網非智能化到智能化的標桿,寶馬在全球保有量非常高,我們做了相應的研究。的確發現了網路安全問題,不僅對虛擬世界造成影響,對實際的行駛安全、人身安全,放大一點是公共安全。作為一個負責任的團隊,我們發現問題之後第一時間和特斯拉和寶馬做了相應的溝通,並且在沒有第三方參與情況下,全部將數據暴露給他們,他們修復之後一起聯合對外做發聲的工作,做發聲的工作目的是幫助行業更好地理解,在未來數字化的時代安全有重要的影響,也是讓它回歸到汽車行業對security的關注。
主持人:現階段網路安全技術處於什麼樣的水平?
呂一平:中國網路安全技術能力非常出色,我們可以代表國際領先水平。對汽車行業來講,汽車進入到數字化時代才開始逐步關注網路安全部分,所以起步相對晚一些。但我們看到很明顯的趨勢,即國內的各大OEM都在積極地布局網路安全的專業能力和專業團隊的建設,比如陳寧博士帶領的上汽實驗室,4年前成立起來有專職的安全的人員,也有專項的安全能力的建設,逐步形成了上汽進入比較相對安全網路體系,這是比較好的例子。國內其他OEM廠商也在實踐同樣的工作,專業團隊和專業能力建設在不斷地前進。
主持人:在已經有潛在風險存在的前提下,車企可以做哪些方案防禦外部的攻擊,尤其是來自惡意的攻擊。
陳寧:我現在在上汽帆一尚行,現在的防禦從雲管邊端一層層防下來,傳統雲驅動安全內容全部適用,不管從邊界的應用防火牆、APS到裡面的防護,再到探視感知,我們對車輛相關的服務做保護。通道方面,主要是從雲端到車端的通訊鏈路用加密方法進行加密,確保我們鏈路不會被截斷或者被中間人截取掉。同時對車之間相關傳輸的信息做加密,保證安全性和唯一性。
車上現在dirty端和clean端,前者是指暴露在外面,可以觸手可及的大屏,這些最明顯。在它投產之前不管做技術還是流程,設計方面從風險評估、安全設置、投產運營,對於產品的零件或者整車做一系列的測試研發,然後交付。交付之後有相關的防禦措施,比如網關或者IDPS等等,通過它將車輛相關的模塊或者相關的服務隔開,確保車輛在行使過程中,關鍵通信和關鍵指令不會被人惡意篡改。
主持人:具體什麼情況會用到安全網關,對車企研發來講是否剛需?
陳寧:隨著智能網聯化和電動化之後,網關已經是標准選配,相當於是一道防火牆,阻擋了相關請求。現在很難說硬體和軟體哪一項技術更重要,隨著零件集成度高了之後,對硬體晶元依賴層次更高,晶元越好,表示應用軟體的復雜度或者功能會越好。當然,從網關模塊的必要性來看不排除現在也有把網關做到相當重要的零部件,保證零件模塊之間也有防火牆,這是所謂預控的思路。
主持人:隨著我們對數據合規、安全要求越來越高,對車企來說是否意味著要更多投入?
陳寧:肯定要增加投入,因為國家立法,現在不是講人情,而是講法,肯定要增加投入。
呂一平:對,從我的角度來看,汽車行業是對安全關注度非常高的行業。在過去二三十年裡,車企在功能安全方面和研發的投入和體系建設非常完備,功能安全成為了汽車質量管理體系很重要的關注點。隨著這兩年數字化帶來網路安全風險和挑戰,這方面還是需要加強和加大投入。我個人希望網路安全逐步進入到汽車質量管理體系,成為它的一部分。在網路安全方面的投入更加成為研發投入的必要。
陳寧:這種投入可能並不是額外的投入。
呂一平:沒錯。
陳寧:就像security和safety,security引發了safety的問題,所以這些投入不是憑空多出來的投入,而是為了保證車輛質量投入必要的研發資金,從行業發展來說,這方面的投入必不可少。
主持人:剛剛兩位嘉賓的分享我們也意識到數據安全的重要性,從意識到重要性,到車企打造完善的網路安全體系我們大概要經歷一個什麼樣過程?
陳寧:這個過程很漫長,需要時間積累。對大部分汽車企業來說數字化是相對新的東西,就我前面提到,數字化有很多新的東西,也有很多風險,需要消化。具體到車上,汽車廠特別關注數據安全,但是我覺得數據安全只是大的安全里的一個內容,想做好數據安全要打好很多所謂的低階工作,比如雲上安全、技術架構安全,很多相關的網路安全建設先跟上去,比如雲上的邊界防護、安全的監測、網路安全的漏洞或者網路安全響應的能力,這些都需要時間打磨。技術完全落地,這其實和汽車的有些概念不太完全一樣,因為對汽車來說,比如汽車某一個功能可能做不好的情況下換一個零件,或者買一個方案測試下可以用。但網路安全本身和汽車所謂的功能安全有一點點不一樣,它的邊界相對模糊,沒有絕對的安全,也沒有絕對的攻不破的堡壘,這註定了需要很多時間去打磨和完善。現在汽車行業慢慢向網路安全轉,很多功能要求是為了safety服務,但security也要慢慢理解safety的東西,對於主機廠來說,到底造成了什麼樣的影響,對safety來說是比較抽象的東西,那麼需要具體化,比如影響到車輛駕駛有很多safety,如果影響了數據安全,可能和safety沒有關系,而完全和security掛鉤,所以融合需要時間。同時在技術方面也需要時間去匹配,比如騰訊等互聯網企業、安全企業也需要時間更好地了解車輛技術,車輛技術天生需要注重安全,有些內容可以重合,比如個人隱私方面可以高度重合。
除了技術因素之外很重要的是人的因素,中國現在網路安全的每年高校輸送畢業生大概是十來萬,但去年缺口是非常大,人才缺口越來越大,涉及到汽車網路安全的人才缺口更大。所以我們需要時間找到這樣的人,或者培養這樣的團隊,讓他們適應到環境中,貢獻自己,將更好的技術能力賦能上去。
同時,以前汽車賣出去之後,使命基本上結束了,除非維修或者維保,不再關注車輛本身。但是,電動化和網路化之後,車輛出去進入到一個新階段,稱之為車輛運營階段。因為要關注車輛的自動駕駛的狀態,關注用戶駕駛習慣或者用戶車輛的狀態,這些數據和狀態都需要專業的人,實時地提供所謂的監控或者服務或者異地響應,並不是買了一套工具,如果這么簡單的話找騰訊買一套工具擺在這里就萬事無憂了。但並不是如此,優秀的工具需要優秀的人才或者優秀的團隊使用,成熟的團隊人力因素很重要。
呂一平:剛才陳寧博士提到今天主要議題是如何做好數據安全底座,造堅固的城牆底座沒有做好的話,數據安全基本上是做不好的事情,的確需要周期。國家在出台安全合規性要求越來越快,能給車企應對的時間非常緊張。所以在這個情況下,怎麼樣能快速地將能力建立起來很重要,但目前看到一個挑戰是,對汽車行業來講,在數字化投入部分,在網路安全投入只有2%到3%左右,而對於金融行業經歷了二十年的IT能力建設,目前網路安全投入大概8%到10%。所以,投入加大可以加速能力建設。所以,我們非常建議汽車行業投入,要考慮到時間窗口並不太長,這是一個很大的挑戰和風險。
第二,關於人才能力建設和人才梯隊建設來看,我們看到這點,每年國家能夠通過高校體制培養出來的人才和行業真正需求有很大的差距,而且當出現嚴重失衡的情況下;人才有更大溢價能力,看到信息安全專業水平不斷地上來,這是供求關系失衡造成的問題。所以人才引入和培養是很大的過程,這是長周期的過程,但在市場上我們從外圍觀察,汽車行業傳統的新生代的體系是否可以支撐數字化時代下的需求。這是很大的挑戰,也是車企需要思考的問題,如何快速成為數字化公司,在數字化體系下對人才引入的政策更加靈活,人才薪酬待遇更加靈活,汽車行業在數字化時代所需要的新型人才和新型能力,這和投入相關,這個過程不會那麼快。所以這需要汽車行業思考的重點。
陳寧:逐步發展的速度不能滿足現在國家政策或者國家監管的要求了,因為從2016年「網安法」(《網路安全法》)發布之後,中間兩
8. 大數據時代安全要怎樣的分析技術
大數據時代安全要怎樣的分析技術
網路時代的發展日新月異,技術與體驗的改變與改進正變得異常迅速。如今,我們的網路已經從千兆邁向了萬兆時代,這便使得諸多網路安全設備要分析的數據包數據量急劇上升。而隨著下一代防火牆等安全產品的出現,安全網關所要進行的分析的數據量大增、安全監測的內容不斷細化使得安全產品所要監測和分析比以往更多的數據。除了數據包、日誌、資產數據,更多的諸如漏洞信息、配置信息、身份與訪問信息、用戶行為信息、應用信息、業務信息、外部情報信息等正在逐漸加入安全要素信息中。正如上述情況所說的那樣,隨著企業和組織安全體系架構變得越來越復雜,與之俱來的是各類安全數據正在變得越來越多。而傳統的分析能力已不足以應對當下安全數據的分析。在面對新型威脅的興起時,傳統的分析方法無法對更多的安全信息做出准確分析,也就更加無從談起更加快速的做出判定和響應。而以上信息安全所面臨的這些問題,正是大數據時代帶來的挑戰。
在此背景下,對信息安全業而言,如何將大數據技術應用於安全領域、將大數據分析技術應用於信息安全的技術的大數據安全分析的需求正變得愈加急迫。而與此同時,安全數據的數量、速度、種類的迅速膨脹,不僅帶來了海量異構數據的融合、存儲和管理的問題,更是對傳統的安全分析方法帶來了挑戰。
目前,市場上絕大多數安全分析工具和方法都是針對小數據量設計的,在面對大數據量時難以為繼。新的攻擊手段層出不窮,需要檢測的數據越來越多,傳統的分析技術已是不堪重負。
一方面,高速海量安全數據的採集和存儲變得困難,而異構數據的存儲和管理同樣變得困難;而傳統的安全分析技術對歷史數據的檢測能力很弱,對安全事件的調查效率十分低;以往,安全系統相互獨立,無法有效地進行協同工作,對於趨勢性的威脅更是無法預測,在應對當今諸如APT等高級威脅的攻擊時防護效果十分薄弱。另一方面,傳統的分析方法大都採用基於規則和特徵的分析引擎,必須要有規則庫和特徵庫才能工作,而規則和特徵只能對已知的攻擊和威脅進行描述,無法識別未知的攻擊,或者是尚未被描述成規則的攻擊和威脅。
可見,對於大數據安全分析而言,如何以安全數據自身的特點和安全分析為目標,讓大數據安全分析的應用更加凸顯其價值是十分必要的。
如今,對於信息與網路安全分析出現了兩個基本趨勢:情境感知的安全分析與智能化的安全分析。Gartner曾經在2010年的兩份報告中分別指出:「未來的信息安全將是情境感知的和自適應的。」以及「要為企業安全智能的興起做好准備。」
情境感知的安全分析,更多地需要利用相關性要素信息的綜合研判來提升安全決策的能力,例如:資產感知、位置感知、拓撲感知、應用感知、身份感知、內容感知,等等。利用情境感知分析技術,安全分析會得以在縱深方面得到極大的擴展;而更多的安全要素信息的納入,也拉升了分析的空間和時間范圍。而安全智能則更加強調將過去分散的安全信息進行集成與關聯,獨立的分析方法和工具進行整合形成交互,最終實現智能化的安全分析與決策。
從長遠看,藉助大數據安全分析技術,能夠更好地解決大量安全要素信息的採集、存儲的問題,藉助基於大數據分析技術的機器學習和數據挖據演算法,亦能夠更加智能地洞悉信息與網路安全的態勢,從而更加主動、彈性地去應對新型復雜的威脅和未知多變的風險。在未來一段時期內,關於大數據安全分析技術的探究,必會成為新的市場熱點。
以上是小編為大家分享的關於大數據時代安全要怎樣的分析技術的相關內容,更多信息可以關注環球青藤分享更多干貨