當前位置:首頁 » 安全設置 » 網路安全態勢可視化形式
擴展閱讀
手機怎麼分享網路信號 2025-10-03 13:27:03
網線未連接安裝網路適配 2025-10-03 13:16:44

網路安全態勢可視化形式

發布時間: 2023-02-11 15:09:59

Ⅰ 態勢感知,懂的人不用解釋,現在對於態勢感知更多的是信息網路的安全態勢感知,


大數據時代,除在信息網路的安全方面外,在無人機、無人駕駛、氣象分析、軍事、交通軌道等等方面,態勢感知的應用研究日益廣泛和必要!
一般來說,態勢感知在大規模系統環境中,對能夠引起系統狀態發生變化的安全要素進行獲取、理解、顯示以及預測未來的發展趨勢。聯合作戰、網路中心戰的提出,推動了態勢感知的產生和不斷發展,作為實現態勢感知的重要平台和物質基礎,態勢圖對數據和信息復雜的需求和特性構成了突出的大數據問題.從大數據的高度思考,解決態勢感知面臨的信息處理難題,是研究聯合作戰態勢感知的重要方法.通過分析聯合作戰態勢感知的數據類型、結構和特點,得出態勢感知面臨著大數據挑戰的結論.初步探討了可能需要解決的問題和前沿信息技術的應用需求,最後對關鍵數據和信息處理技術進行了研究.該研究對於「大數據」在軍事信息處理和數據化決策等領域的研究具有重要探索價值。
相關參考(摘錄網上):
1 引言

隨著計算機和通信技術的迅速發展, 計算機網路的應用越來越廣泛, 其規模越來越龐大, 多層面的網路安全威脅和安全風險也在不斷增加, 網路病毒、 Dos/DDos攻擊等構成的威脅和損失越來越大, 網路攻擊行為向著分布化、 規模化、 復雜化等趨勢發展, 僅僅依靠防火牆、 入侵檢測、 防病毒、 訪問控制等單一的網路安全防護技術, 已不能滿足網路安全的需求, 迫切需要新的技術, 及時發現網路中的異常事件, 實時掌握網路安全狀況, 將之前很多時候亡羊補牢的事中、 事後處理,轉向事前自動評估預測, 降低網路安全風險, 提高網路安全防護能力。
網路安全態勢感知技術能夠綜合各方面的安全因素, 從整體上動態反映網路安全狀況, 並對網路安全的發展趨勢進行預測和預警。 大數據技術特有的海量存儲、 並行計算、 高效查詢等特點, 為大規模網路安全態勢感知技術的突破創造了機遇, 藉助大數據分析, 對成千上萬的網路日誌等信息進行自動分析處理與深度挖掘, 對網路的安全狀態進行分析評價, 感知網路中的異常事件與整體安全態勢。
2 網路安全態勢相關概念
2.1 網路態勢感知
態勢感知(Situation Awareness, SA) 的概念是1988年Endsley提出的, 態勢感知是在一定時間和空間內對環境因素的獲取, 理解和對未來短期的預測。 整個態勢感知過程可由圖1所示的三級模型直觀地表示出來。

所謂網路態勢是指由各種網路設備運行狀況、 網路行為以及用戶行為等因素所構成的整個網路當前狀態和變化趨勢。
網路態勢感知(Cyberspace Situation Awareness,CSA) 是1999年Tim Bass首次提出的, 網路態勢感知是在大規模網路環境中, 對能夠引起網路態勢發生變化的安全要素進行獲取、 理解、 顯示以及預測最近的發展趨勢。
態勢是一種狀態、 一種趨勢, 是整體和全局的概念, 任何單一的情況或狀態都不能稱之為態勢。 因此對態勢的理解特別強調環境性、 動態性和整體性, 環境性是指態勢感知的應用環境是在一個較大的范圍內具有一定規模的網路; 動態性是態勢隨時間不斷變化, 態勢信息不僅包括過去和當前的狀態, 還要對未來的趨勢做出預測; 整體性是態勢各實體間相互關系的體現,某些網路實體狀態發生變化, 會影響到其他網路實體的狀態, 進而影響整個網路的態勢。
2.2 網路安全態勢感知
網路安全態勢感知就是利用數據融合、 數據挖掘、智能分析和可視化等技術, 直觀顯示網路環境的實時安全狀況, 為網路安全提供保障。 藉助網路安全態勢感知, 網路監管人員可以及時了解網路的狀態、 受攻擊情況、 攻擊來源以及哪些服務易受到攻擊等情況, 對發起攻擊的網路採取措施; 網路用戶可以清楚地掌握所在網路的安全狀態和趨勢, 做好相應的防範准備, 避免和減少網路中病毒和惡意攻擊帶來的損失; 應急響應組織也可以從網 絡安全態勢中了解所服務網 絡的安全狀況和發展趨勢, 為 制定有預見性的應急預案提供基礎。
3 網路安全態勢感知相關技術
對於大規模網路而言, 一方面網路節點眾多、 分支復雜、 數據流量大, 存在多種異構網路環境和應用平台; 另一方面網路攻擊技術和手段呈平台化、 集成化和自 動化的發展趨勢, 網路攻擊具有更強的隱蔽性和更長的潛伏時間, 網路威脅不斷增多且造成的損失不斷增大。 為了實時、 准確地顯示整個網路安全態勢狀況, 檢測出潛在、 惡意的攻擊行為, 網路安全態勢感知要在對網路資源進行要素採集的基礎上, 通過數據預處理、 網路安全態勢特徵提取、 態勢評估、 態勢預測和態勢展示等過程來完成, 這其中涉及許多相關的技術問題, 主要包括數據融合技術、 數據挖掘技術、 特徵提取技術、 態勢預測技術和可視化技術等。
3.1 數據融合技術
由於網路空間態勢感知的數據來自眾多的網路設備, 其數據格式、 數據內容、 數據質量千差萬別, 存儲形式各異, 表達的語義也不盡相同。 如果能夠將這些使用不同途徑、 來源於不同網路位置、 具有不同格式的數據進行預處理, 並在此基礎上進行歸一化融合操作,就可以為網路安全態勢感知提供更為全面、 精準的數據源, 從而得到更為准確的網路態勢。 數據融合技術是一個多級、 多層面的數據處理過程, 主要完成對來自網路中具有相似或不同特徵模式的多源信息進行互補集成, 完成對數據的自動監測、 關聯、 相關、 估計及組合等處理, 從而得到更為准確、 可靠的結論。 數據融合按信息抽象程度可分為從低到高的三個層次: 數據級融合、 特徵級融合和決策級融合, 其中特徵級融合和決策級融合在態勢感知中具有較為廣泛的應用。
3.2 數據挖掘技術
網路安全態勢感知將採集的大量網路設備的數據經過數據融合處理後, 轉化為格式統一的數據單元。這些數據單元數量龐大, 攜帶的信息眾多, 有用信息與無用信息魚龍混雜, 難以辨識。 要掌握相對准確、 實時的網路安全態勢, 必須剔除干擾信息。 數據挖掘就是指從大量的數據中挖掘出有用的信息, 即從大量的、 不完全的、 有雜訊的、 模糊的、 隨機的實際應用數據中發現隱含的、 規律的、 事先未知的, 但又有潛在用處的並且最終可理解的信息和知識的非平凡過程( NontrivialProcess) [1 ]。 數據挖掘可分為描述性挖掘和預測性挖掘, 描述性挖掘用於刻畫資料庫中數據的一般特性; 預測性挖掘在當前數據上進行推斷, 並加以預測。 數據挖掘方法主要有: 關聯分析法、 序列模式分析法、 分類分析法和聚類分析法。 關聯分析法用於挖掘數據之間的聯系; 序列模式分析法側重於分析數據間的因果關系;分類分析法通過對預先定義好的類建立分析模型, 對數據進行分類, 常用的模型有決策樹模型、 貝葉斯分類模型、 神經網路模型等; 聚類分析不依賴預先定義好的類, 它的劃分是未知的, 常用的方法有模糊聚類法、 動態聚類法、 基於密度的方法等。
3.3 特徵提取技術
網路安全態勢特徵提取技術是通過一系列數學方法處理, 將大規模網路安全信息歸並融合成一組或者幾組在一定值域范圍內的數值, 這些數值具有表現網路實時運行狀況的一系列特徵, 用以反映網路安全狀況和受威脅程度等情況。 網路安全態勢特徵提取是網路安全態勢評估和預測的基礎, 對整個態勢評估和預測有著重要的影響, 網路安全態勢特徵提取方法主要有層次分析法、 模糊層次分析法、 德爾菲法和綜合分析法。
3.4 態勢預測技術
網路安全態勢預測就是根據網路運行狀況發展變化的實際數據和歷史資料, 運用科學的理論、 方法和各種經驗、 判斷、 知識去推測、 估計、 分析其在未來一定時期內可能的變化情況, 是網路安全態勢感知的一個重要組成部分。 網路在不同時刻的安全態勢彼此相關, 安全態勢的變化有一定的內部規律, 這種規律可以預測網路在將來時刻的安全態勢, 從而可以有預見性地進行安全策略的配置, 實現動態的網路安全管理, 預防大規模網路安全事件的發生。 網路安全態勢預測方法主要有神經網路預測法、 時間序列預測法、 基於灰色理論預測法。
3.5 可視化技術
網路安全態勢生成是依據大量數據的分析結果來顯示當前狀態和未來趨勢, 而通過傳統的文本或簡單圖形表示, 使得尋找有用、 關鍵的信息非常困難。 可視化技術是利用計算機圖形學和圖像處理技術, 將數據轉換成圖形或圖像在屏幕上顯示出來, 並進行交互處理的理論、 方法和技術。 它涉及計算機圖形學、 圖像處理、 計算機視覺、 計算機輔助設計等多個領域。 目前已有很多研究將可視化技術和可視化工具應用於態勢感知領域, 在網路安全態勢感知的每一個階段都充分利用可視化方法, 將網路安全態勢合並為連貫的網路安全態勢圖, 快速發現網路安全威脅, 直觀把握網路安全狀況。
4 基於多源日誌的網路安全態勢感知
隨著網 絡規模的 擴大以及網 絡攻擊復雜度的增加, 入侵檢測、 防火牆、 防病毒、 安全審計等眾多的安全設備在網路中得到廣泛的應用, 雖然這些安全設備對網路安全發揮了一定的作用, 但存在著很大的局限,主要表現在: 一是各安全設備的海量報警和日誌, 語義級別低, 冗餘度高, 佔用存儲空間大, 且存在大量的誤報, 導致真實報警信息被淹沒。 二是各安全設備大多功能單一, 產生的報警信息格式各不相同, 難以進行綜合分析整理, 無法實現信息共享和數據交互, 致使各安全設備的總體防護效能無法得以充分的發揮。 三是各安全設備的處理結果僅能單一體現網路某方面的運行狀況, 難以提供全面直觀的網路整體安全狀況和趨勢信息。 為了有效克服這些網路安全管理的局限, 我們提出了基於多源日誌的網路安全態勢感知。
4.1 基於多源日誌的網路安全態勢感知要素獲取
基於多源日誌的網路安全態勢感知是對部署在網路中的多種安全設備提供的日誌信息進行提取、 分析和處理, 實現對網路態勢狀況進行實時監控, 對潛在的、惡意的網路攻擊行為進行識別和預警, 充分發揮各安全設備的整體效能, 提高網路安全管理能力。
基於多源日誌的網路安全態勢感知主要採集網路入口處防火牆日誌、 入侵檢測日誌, 網路中關鍵主機日誌以及主機漏洞信息, 通過融合分析這些來自不同設備的日誌信息, 全面深刻地挖掘出真實有效的網路安全態勢相關信息, 與僅基於單一日誌源分析網路的安全態
勢相比, 可以提高網路安全態勢的全面性和准確性。
4.2 利用大數據進行多源日誌分析處理
基於多源日誌的網路安全態勢感知採集了多種安全設備上以多樣的檢測方式和事件報告機制生成的海量數據, 而這些原始的日 志信息存在海量、 冗餘和錯誤等缺陷, 不能作為態勢感知的直接信息來源, 必須進行關聯分析和數據融合等處理。 採用什麼樣的技術才能快速分析處理這些海量且格式多樣的數據?
大數據的出現, 擴展了計算和存儲資源, 大數據自身擁有的Variety支持多類型數據格式、 Volume大數據量存儲、Velocity快速處理三大特徵, 恰巧是基於多源日誌的網路安全態勢感知分析處理所需要的。 大數據的多類型數據格式, 可以使網路安全態勢感知獲取更多類型的日誌數據, 包括網路與安全設備的日誌、 網路運行情況信息、 業務與應用的日誌記錄等; 大數據的大數據量存儲正是海量日誌存儲與處理所需要的; 大數據的快速處理為高速網路流量的深度安全分析提供了技術支持, 為高智能模型演算法提供計算資源。 因此, 我們利用大數據所提供的基礎平台和大數據量處理的技術支撐, 進行網路安全態勢的分析處理。
關聯分析。 網路中的防火牆日誌和入侵檢測日誌都是對進入網路的安全事件的流量的刻畫, 針對某一個可能的攻擊事件, 會產生大量的日誌和相關報警記錄,這些記錄存在著很多的冗餘和關聯, 因此首先要對得到的原始日誌進行單源上的關聯分析, 把海量的原始日誌轉換為直觀的、 能夠為人所理解的、 可能對網路造成危害的安全事件。 基於多源日誌的網路安全態勢感知採用基於相似度的報警關聯, 可以較好地控制關聯後的報警數量, 有利於減少復雜度。 其處理過程是: 首先提取報警日誌中的主要屬性, 形成原始報警; 再通過重復報警聚合, 生成聚合報警; 對聚合報警的各個屬性定義相似度的計算方法, 並分配權重; 計算兩個聚合報警的相似度, 通過與相似度閥值的比較, 來決定是否對聚合報警進行超報警; 最終輸出屬於同一類報警的地址范圍和報警信息, 生成安全事件。
融合分析。 多源日誌存在冗餘性、 互補性等特點,態勢感知藉助數據融合技術, 能夠使得多個數據源之間取長補短, 從而為感知過程提供保障, 以便更准確地生成安全態勢。 經過單源日誌報警關聯過程, 分別得到各自的安全事件。 而對於來自防火牆和入侵檢測日誌的的多源安全事件, 採用D-S證據理論(由Dempster於1967年提出, 後由Shafer於1976年加以推廣和發展而得名) 方法進行融合判別, 對安全事件的可信度進行評估, 進一步提高准確率, 減少誤報。 D-S證據理論應用到安全事件融合的基本思路: 首先研究一種切實可行的初始信任分配方法, 對防火牆和入侵檢測分配信息度函數; 然後通過D-S的合成規則, 得到融合之後的安全事件的可信度。
態勢要素分析。 通過對網路入口處安全設備日 志的安全分析, 得到的只是進入目 標網路的可能的攻擊信息, 而真正對網路安全狀況產生決定性影響的安全事件, 則需要通過綜合分析攻擊知識庫和具體的網路環境進行最終確認。 主要分為三個步驟: 一是通過對大量網路攻擊實例的研究, 得到可用的攻擊知識庫, 主要包括各種網路攻擊的原理、 特點, 以及它們的作用環境等; 二是分析關鍵主機上存在的系統漏洞和承載的服務的可能漏洞, 建立當前網路環境的漏洞知識庫, 分析當前網路環境的拓撲結構、 性能指標等, 得到網路環境知識庫; 三是通過漏洞知識庫來確認安全事件的有效性, 也即對當前網路產生影響的網路攻擊事件。 在網路安全事件生成和攻擊事件確認的過程中, 提取出用於對整個網路安全態勢進行評估的態勢要素, 主要包括整個網路面臨的安全威脅、 分支網路面臨的安全威脅、 主機受到的安全威脅以及這些威脅的程度等。
5 結語
為了解決日益嚴重的網路安全威脅和挑戰, 將態勢感知技術應用於網路安全中, 不僅能夠全面掌握當前網路安全狀態, 還可以預測未來網路安全趨勢。 本文在介紹網路安全態勢相關概念和技術的基礎上, 對基於多源日誌的網路安全態勢感知進行了探討, 著重對基於多源日誌的網路安全態勢感知要素獲取, 以及利用大數據進行多源日誌的關聯分析、 融合分析和態勢要素分析等內容進行了研究, 對於態勢評估、 態勢預測和態勢展示等相關內容, 還有待於進一步探討和研究。

Ⅱ 網路安全可視化有什麼好處

網路安全可視化之所以重要,可以從現實生活中的安全可視化進行類比。現實世界中,平安城市、雪亮工程等治安防控工程中,關於視頻監控系統的可視化方面建設都十分突出,其意義體現在以下方面:
預警
通過對全局地區的可視化監控,可以進行針對性的人流量分析、人臉識別、信息採集等早期管理手段,通過這些手段能夠進行早期預警,將安全問題控制在萌芽狀態,做到防患於未然。
調度
在可視化平台的支撐下,一旦發生了安全隱患,可以通過多個區域的同時觀測,及時地完成指揮調度和資源調配,對於問題嚴重的區域進行重點布防。
回放
在安全相關案件調查取證過程中,監控錄像回放起到重要的作用,即使犯罪過程沒有被發現或目標對象離開了布防區域,還是可以通過多個監控錄像回放的配合準確定位作案事實和目標移動的路徑,為抓捕和偵破提供了第一手材料。
提高犯罪難度和成本
使用以上全方位的可視化手段,結合經驗豐富的分析人員,將犯罪的難度和成本變得極高,降低了治安事件發生的風險,即使問題發生也有完善的應對方法。
上述道理在網路安全領域也同樣適用,隨著攻擊行為越來越復雜,APT(高級持續性威脅)、勒索病毒等事件頻繁發生,這些攻擊不是單點短時間攻擊,而是持續時間長達十幾個小時甚至幾天,有多個復雜的環節組成,對付這些惡意行為,同樣需要網路安全領域的可視化技術。
通過對安全路徑、流量分析、數據安全、主機安全等多個層面的可視化展現,打造一張網路安全作戰地圖,同樣可以起到以下作用:
攻擊預測
通過設定正常訪問情況下的路徑和流量基線,對發生的異常狀況進行及時發現和告警,並通過多個層面的關聯分析迅速在攻擊的早期解決問題。
路徑和流量調度
發現攻擊現象後,需要盡快通過可視化手段找出導致攻擊的錯誤路徑,並盡快配合流量調度系統將流量通過其它路徑轉發,再及時關閉錯誤路徑,將攻擊者打開的後門盡快關閉。
回溯
對於已經發生了安全事件,就像調取監控錄像一樣,需要調取事發當時的全部數據報文,通過精細化地分析取證,確保100%還原事件現場。通過多個流量採集器的配合,可以分析出攻擊者的軌跡和路徑,為追蹤攻擊者提供了事實依據。
通過網路安全可視化系統的部署,可以縮小攻擊面、延長攻擊時間、提高攻擊者成本和防禦成功率,起到震懾、預測、防禦、處置、追溯的全方位作用。

Ⅲ 人工智慧在網路安全領域的應用有哪些

近年來,在網路安全防禦中出現了多智能體系統、神經網路、專家系統、機器學習等人工智慧技術。一般來說,AI主要應用於網路安全入侵檢測、惡意軟體檢測、態勢分析等領域。


1、人工智慧在網路安全領域的應用——在網路入侵檢測中。


入侵檢測技術利用各種手段收集、過濾、處理網路異常流量等數據,並為用戶自動生成安全報告,如DDoS檢測、僵屍網路檢測等。目前,神經網路、分布式代理系統和專家系統都是重要的人工智慧入侵檢測技術。2016年4月,麻省理工學院計算機科學與人工智慧實驗室(CSAIL)與人工智慧初創企業PatternEx聯合開發了基於人工智慧的網路安全平台AI2。通過分析挖掘360億條安全相關數據,AI2能夠准確預測、檢測和防範85%的網路攻擊。其他專注於該領域的初創企業包括Vectra Networks、DarkTrace、Exabeam、CyberX和BluVector。


2、人工智慧在網路安全領域的應用——預測惡意軟體防禦。


預測惡意軟體防禦使用機器學習和統計模型來發現惡意軟體家族的特徵,預測進化方向,並提前防禦。目前,隨著惡意病毒的增多和勒索軟體的突然出現,企業對惡意軟體的保護需求日益迫切,市場上出現了大量應用人工智慧技術的產品和系統。2016年9月,安全公司SparkCognition推出了DeepArmor,這是一款由人工智慧驅動的“Cognition”殺毒系統,可以准確地檢測和刪除惡意文件,保護網路免受未知的網路安全威脅。在2017年2月舉行的RSA2017大會上,國內外專家就人工智慧在下一代防病毒領域的應用進行了熱烈討論。預測惡意軟體防禦的公司包括SparkCognition、Cylance、Deep Instinct和Invincea。


3、人工智慧在網路安全領域的應用——在動態感知網路安全方面。


網路安全態勢感知技術利用數據融合、數據挖掘、智能分析和可視化技術,直觀地顯示和預測網路安全態勢,為網路安全預警和防護提供保障,在不斷自我學習的過程中提高系統的防禦水平。美國公司Invincea開發了基於人工智慧的旗艦產品X,以檢測未知的威脅,而英國公司Darktrace開發了一種企業安全免疫系統。國內偉達安防展示了自主研發的“智能動態防禦”技術,以及“人工智慧”與“動態防禦”六大“魔法”系列產品的整合。其他參與此類研究的初創企業包括LogRhythm、SecBI、Avata Intelligence等。


此外,人工智慧應用場景被廣泛應用於網路安全運行管理、網路系統安全風險自評估、物聯網安全問題等方面。一些公司正在使用人工智慧技術來應對物聯網安全挑戰,包括CyberX、network security、PFP、Dojo-Labs等。


以上就是《人工智慧在網路安全領域的應用是什麼?這個領域才是最關鍵的》,近年來,在網路安全防禦中出現了多智能體系統、神經網路、專家系統、機器學習等人工智慧技術,如果你想知道更多的人工智慧安全的發展,可以點擊本站其他文章進行學習。

Ⅳ 可視化技術屬於數據安全技術嗎

網路安全可視化是一類新式的計算機可視化技術,主要是使用人類視覺對結構以及模型的信息提取功能,把較為抽象難懂的網路信息數據使用圖像的方式進行表現,為網路信息分析人員提供幫助,使得分析人員能夠更加便捷的判斷網路中是否存在異常狀況,在有危險因素入侵網路時能夠及時發現並處理,同時還具有一定的網路安全事故預測能力。其關鍵應用范圍如下:

1、科學計算可視化

科學計算可視化的理論基礎為將規模較大的數據轉變成為能夠被人更加容易理解、更加具有直觀性的圖形或者圖像,這一信息表現方式可以使人們能夠更加直接的理解一些較為復雜的現象。並且,還具有計算以及模擬的視覺交互功能,操作起來簡單便捷,並有著高效的網路安全防護能力。在計算機技術的持續發展背景下,這一技術具有廣闊的應用前景,將來計算機圖形學一定能夠得到更好的發展,而科學計算可視化技術也將得到更好的完善。

2、信息可視化

信息可視化與人們平日的生產生活活動具有重要的聯系,對於網路安全數據可視化而言具有十分重要的地位。計算機科學技術的發展,促進了信息可視化技術的提升,同時也是當前計算機技術領域內的重點研究對象。計算機可視化即指使用計算機技術將內容結構十分復雜難懂的信息進行簡化,使其能夠用一種更加直觀的方式表現處理,信息可視化技術是由多種學科知識的綜合所得。由於當前網路信息呈現爆發式增長的狀態,造成信息的數量愈來愈龐大,復雜的、多餘的信息使得人們甄選出的想要信息的效率越來越低,造成嚴重的信息危機。但是信息可視化的使用能夠有效的處理上述問題,因為其具有能夠將復雜的信息轉變成直觀、易懂的信息,從而降低了人們獲取信息的難度,給人們的信息處理和查找帶來了便利。

3、數據挖掘和可視化

數據挖掘可視化即在海量的數據中搜尋獲得時效性好、潛能強且有效的信息。使用數據挖掘技術來獲取信息主要依照下述步驟;數據管理、數據存儲、數據分析、數據轉換、數據挖掘、價值評價、數據顯示。其在搜尋數據的同時能夠與知識庫以及使用者之間進行互動,從而使其獲得數據更加具有正對性。數據可視化技術能夠使用分析和觀察數據表格的方式來獲取想要的信息,能夠更加全面的分析數據的內在含義,從而據此准確發現網路中存在的異常狀況。數據可視化的使用能夠使使用者更加直接的了解數據信息,同時分析數據的功能也比較強大,從而使用戶獲得更好的使用體驗。

4、安全數據可視化

網路安全數據的可視化的原

Ⅳ 網路信息安全的主要表現形式從社會層面的角度分析哪三個方面�

個人:
增強了防範意識,保持一個良好上網習慣:如不要設置弱口令、常清空緩存、盡量不要填寫真實信息。
企業:

就目前而已,還有很多企業的信息安全以老三樣(防火牆、入侵監測和病毒防範)為主要構成的傳統信息安全系統,是以防外與封堵為特徵。要知道防火牆這類傳統的信息安全系統是企業最基礎的防護,所以建立一套完善的網路安全管理體系,利用如:UniAccess終端安全管理和UniBDP業務數據防泄露等這類系統,監控與審計 「內部人」的網路行為並進行操作流程的記錄,實現管理的可視化。對於客戶端來說,終端安全管理和業務數據防泄露系統不僅對控制「內部人」風險起到有效的防範作用,還能實時保護企業網路安全不受外部攻擊。
國家:
除建立起網路安全審查制度外,還要從根本上提升中國網路安全自我防護能力,用自主可控的國產軟硬體和服務來替代進口產品。只有建立起完全自主、安全可控的核心系統,才能確保國家網路安全和信息安全。

Ⅵ 大數據可視化設計到底是啥,該怎麼

大數據可視化是個熱門話題,在信息安全領域,也由於很多企業希望將大數據轉化為信息可視化呈現的各種形式,以便獲得更深的洞察力、更好的決策力以及更強的自動化處理能力,數據可視化已經成為網路安全技術的一個重要趨勢。

文章目錄

        一、什麼是網路安全可視化

1.1 故事+數據+設計 =可視化

1.2 可視化設計流程

二、案例一:大規模漏洞感知可視化設計

2.1整體項目分析

2.2分析數據

2.3匹配圖形

2.4確定風格

2.5優化圖形

2.6檢查測試

三、案例二:白環境蟲圖可視化設計

3.1整體項目分析

3.2分析數據

3.3 匹配圖形

3.4優化圖形

3.5檢查測試

一、什麼是網路安全可視化

攻擊從哪裡開始?目的是哪裡?哪些地方遭受的攻擊最頻繁……通過大數據網路安全可視化圖,我們可以在幾秒鍾內回答這些問題,這就是可視化帶給我們的效率 。 大數據網路安全的可視化不僅能讓我們更容易地感知網路數據信息,快速識別風險,還能對事件進行分類,甚至對攻擊趨勢做出預測。可是,該怎麼做呢?

1.1 故事+數據+設計 =可視化

做可視化之前,最好從一個問題開始,你為什麼要做可視化,希望從中了解什麼?是否在找周期性的模式?或者多個變數之間的聯系?異常值?空間關系?比如政府機構,想了解全國各個行業漏洞的分布概況,以及哪個行業、哪個地區的漏洞數量最多;又如企業,想了解內部的訪問情況,是否存在惡意行為,或者企業的資產情況怎麼樣。總之,要弄清楚你進行可視化設計的目的是什麼,你想講什麼樣的故事,以及你打算跟誰講。

有了故事,還需要找到數據,並且具有對數據進行處理的能力,圖1是一個可視化參考模型,它反映的是一系列的數據的轉換過程:

我們有原始數據,通過對原始數據進行標准化、結構化的處理,把它們整理成數據表。

將這些數值轉換成視覺結構(包括形狀、位置、尺寸、值、方向、色彩、紋理等),通過視覺的方式把它表現出來。例如將高中低的風險轉換成紅黃藍等色彩,數值轉換成大小。

將視覺結構進行組合,把它轉換成圖形傳遞給用戶,用戶通過人機交互的方式進行反向轉換,去更好地了解數據背後有什麼問題和規律。

最後,我們還得選擇一些好的可視化的方法。比如要了解關系,建議選擇網狀的圖,或者通過距離,關系近的距離近,關系遠的距離也遠。

總之,有個好的故事,並且有大量的數據進行處理,加上一些設計的方法,就構成了可視化。

1.2 可視化設計流程

一個好的流程可以讓我們事半功倍,可視化的設計流程主要有分析數據、匹配圖形、優化圖形、檢查測試。首先,在了解需求的基礎上分析我們要展示哪些數據,包含元數據、數據維度、查看的視角等;其次,我們利用可視化工具,根據一些已固化的圖表類型快速做出各種圖表;然後優化細節;最後檢查測試。

具體我們通過兩個案例來進行分析。

二、案例一:大規模漏洞感知可視化設計

圖2是全國范圍內,各個行業漏洞的分布和趨勢,橙黃藍分別代表了漏洞數量的高中低。

2.1整體項目分析

我們在拿到項目策劃時,既不要被大量的信息資料所迷惑而感到茫然失措,也不要急於完成項目,不經思考就盲目進行設計。首先,讓我們認真了解客戶需求,並對整體內容進行關鍵詞的提煉。可視化的核心在於對內容的提煉,內容提煉得越精確,設計出來的圖形結構就越緊湊,傳達的效率就越高。反之,會導致圖形結構臃腫散亂,關鍵信息無法高效地傳達給讀者。

對於大規模漏洞感知的可視化項目,客戶的主要需求是查看全國范圍內,各個行業的漏洞分布和趨勢。我們可以概括為三個關鍵詞:漏洞量、漏洞變化、漏洞級別,這三個關鍵詞就是我們進行數據可視化設計的核心點,整體的圖形結構將圍繞這三個核心點來展開布局。

2.2分析數據

想要清楚地展現數據,就要先了解所要繪制的數據,如元數據、維度、元數據間關系、數據規模等。根據需求,我們需要展現的元數據是漏洞事件,維度有地理位置、漏洞數量、時間、漏洞類別和級別,查看的視角主要是宏觀和關聯。涉及到的視覺元素有形狀、色彩、尺寸、位置、方向,如圖4。

2.3匹配圖形

2.4確定風格

匹配圖形的同時,還要考慮展示的平台。由於客戶是投放在大屏幕上查看,我們對大屏幕的特點進行了分析,比如面積巨大、深色背景、不可操作等。依據大屏幕的特點,我們對設計風格進行了頭腦風暴:它是實時的,有緊張感;需要新穎的圖標和動效,有科技感;信息層次是豐富的;展示的數據是權威的。

最後根據設計風格進一步確定了深藍為標准色,代表科技與創新;橙紅藍分別代表漏洞數量的高中低,為輔助色;整體的視覺風格與目前主流的扁平化一致。

2.5優化圖形

有了圖形後,嘗試把數據按屬性繪制到各維度上,不斷調整直到合理。雖然這里說的很簡單,但這是最耗時耗力的階段。維度過多時,在信息架構上廣而淺或窄而深都是需要琢磨的,而後再加上交互導航,使圖形更「可視」。

在這個任務中,圖形經過很多次修改,圖7是我們設計的過程稿,深底,高亮的地圖,多顏色的攻擊動畫特效,營造緊張感;地圖中用紅、黃、藍來呈現高、中、低危的漏洞數量分布情況;心理學認為上方和左方易重視,「從上到下」「從左至右」的「Z」字型的視覺呈現,簡潔清晰,重點突出。

完成初稿後,我們進一步優化了維度、動效和數量。維度:每個維度,只用一種表現,清晰易懂;動效:考慮時間和情感的把控,從原來的1.5ms改為3.5ms;數量:考慮了太密或太疏時用戶的感受,對圓的半徑做了統一大小的處理。

2.6檢查測試

最後還需要檢查測試,從頭到尾過一遍是否滿足需求;實地投放大屏幕後,用戶是否方便閱讀;動效能否達到預期,色差是否能接受;最後我們用一句話描述大屏,用戶能否理解。

三、案例二:白環境蟲圖可視化設計

如果手上只有單純的電子表格(左),要想找到其中IP、應用和埠的訪問模式就會很花時間,而用蟲圖(右)呈現之後,雖然增加了很多數據,但讀者的理解程度反而提高了。

3.1整體項目分析

當前,企業內部IT系統復雜多變,存在一些無法精細化控制的、非法惡意的行為,如何精準地處理安全管理問題呢?我們的主要目標是幫助用戶監測訪問內網核心伺服器的異常流量,概括為2個關鍵詞:內網資產和訪問關系,整體的圖形結構將圍繞這兩個核心點來展開布局。

3.2分析數據

接下來分析數據,案例中的元數據是事件,維度有時間、源IP、目的IP和應用,查看的視角主要是關聯和微觀。

3.3 匹配圖形

根據以往的經驗,帶有關系的數據一般使用和弦圖和力導向布局圖。最初我們採用的是和弦圖,圓點內部是主機,用戶要通過3個維度去尋找事件的關聯。通過測試發現,用戶很難理解,因此選擇了力導向布局圖(蟲圖)。第一層級展示全局關系,第二層級通過對IP或埠的鑽取進一步展現相關性。

3.4優化圖形

優化圖形時,我們對很多細節進行了調整: – 考慮太密或太疏時用戶的感受,只展示了TOP N。 – 弧度、配色的優化,與我們UI界面風格相一致。 – IP名稱超長時省略處理。 – 微觀視角中,源和目的分別以藍色和紫色區分,同時在線上增加箭頭,箭頭向內為源,向外是目的,方便用戶理解。 – 交互上,通過單擊鑽取到單個埠和IP的信息;滑鼠滑過時相關信息高亮展示,這樣既能讓畫面更加炫酷,又能讓人方便地識別。

3.5檢查測試

通過調研,用戶對企業內部的流向非常清楚,視覺導向清晰,鑽取信息方便,色彩、動效等細節的優化幫助用戶快速定位問題,提升了安全運維效率。

四、總結

總之,藉助大數據網路安全的可視化設計,人們能夠更加智能地洞悉信息與網路安全的態勢,更加主動、彈性地去應對新型復雜的威脅和未知多變的風險。

可視化設計的過程中,我們還需要注意:1、整體考慮、顧全大局;2、細節的匹配、一致性;3、充滿美感,對稱和諧。

Ⅶ 基於隱馬爾可夫模型的網路安全態勢預測方法

論文:文志誠,陳志剛.基於隱馬爾可夫模型的網路安全態勢預測方法[J].中南大學學報(自然科學版),2015,46(10):3689-3695.
摘要
為了給網路管理員制定決策和防禦措施提供可靠的依據,通過考察網路安全態勢變化特點,提出構建隱馬 爾可夫預測模型。利用時間序列分析方法刻畫不同時刻安全態勢的前後依賴關系,當安全態勢處於亞狀態或偏離 正常狀態時,採用安全態勢預測機制,分析其變化規律,預測系統的安全態勢變化趨勢。最後利用模擬數據,對 所提出的網路安全態勢預測演算法進行驗證。訪真結果驗證了該方法的正確性。

隱馬爾可夫模型(Hidden Markov Model,HMM)是統計模型,其難點是從可觀察的參數中確定該過程的隱含參數。隱馬爾可夫模型是關於時序的概率模型,描述由一個隱藏的馬爾科夫鏈隨機生成不可觀測的狀態隨機序列,再由各個狀態生成一個觀測而產生觀測隨機序列的過程。如果要利用隱馬爾可夫模型,模型的狀態集合和觀測集合應該事先給出。

舉個例子:有個孩子叫小明,小明每天早起上學晚上放學。假設小明在學校里的狀態有三種,分別是丟錢了,撿錢了,和沒丟沒撿錢,我們記作{q0,q1,q2}。

那麼對於如何確定他的丟錢狀態?如果小明丟錢了,那他今天應該心情不好,如果撿錢了,他回來肯定心情好,如果沒丟沒撿,那他肯定心情平淡。我們將他的心情狀態記作{v0,v1v2}。我們這里觀測了小明一周的心情狀態,心情狀態序列是{v0,v0,v1,v1,v2,v0,v1}。那麼小明這一周的丟撿錢狀態是什麼呢?這里引入隱馬爾科夫模型。

隱馬爾科夫模型的形式定義如下:

一個HMM模型可以由狀態轉移矩陣A、觀測概率矩陣B、以及初始狀態概率π確定,因此一個HMM模型可以表示為λ(A,B,π)。

利用隱馬爾可夫模型時,通常涉及三個問題,分別是:

後面的計算啥的和馬爾科夫差不多我就不寫了。。。。。。

2.1網路安全態勢

在網路態勢方面,國內外相關研究多見於軍事戰 場的態勢獲取,網路安全領域的態勢獲取研究尚處於 起步階段,還未有普遍認可的解決方法。張海霞等[9] 提出了一種計算綜合威脅值的網路安全分級量化方 法。該方法生成的態勢值滿足越危險的網路實體,威 脅值越高。本文定義網路安全態勢由網路基礎運行性 (runnability)、網路脆弱性(vulnerability)和網路威脅性 (threat)三維組成,從 3 個不同的維度(或稱作分量)以 直觀的形式向用戶展示整個網路當前安全態勢 SA=( runnability, vulnerability, threat)。每個維度可通過 網路安全態勢感知,從網路上各運行組件經信息融合 而得到量化分級。為了方便計算實驗與降低復雜度, 本文中,安全態勢每個維度取「高、中、差」或「1,2, 3」共 3 個等級取值。本文主要進行網路安全態勢預測

2.2構建預測模型
隱馬爾可夫模型易解決一類對於給定的觀測符號序列,預測新的觀測符號序列出現概率的基本問題。 隱馬爾可夫模型是一個關於可觀測變數O與隱藏變數 S 之間關系的隨機過程,與安全態勢系統的內部狀態 (隱狀態)及外部狀態(可觀測狀態)相比,具有很大的相 似性,因此,利用隱馬爾可夫模型能很好地分析網路 安全態勢問題。本文利用隱馬爾可夫的時間序列分析 方法刻畫不同時刻安全態勢的前後依賴關系。

已知 T 時刻網路安全態勢,預測 T+1,T+2,⋯, T+n 時刻可能的網路安全態勢。以網路安全態勢的網路基礎運行性(runnability)、網路脆弱性(vulnerability) 和網路威脅性(threat)三維組成隱馬爾可夫模型的外在表現特徵,即可觀測狀態或外部狀態,它們分別具有 「高、中、差」 或「1, 2,3」取值,則安全態勢共有 33=27 種外部組合狀態。模型的內部狀態(隱狀態)為安全態 勢 SA的「高、中高、中、中差、差」取值。注意:在本 文中外部特徵的 3 個維度,每個維度三等取值,而內部 狀態 SA為五等取值。模型示例如圖 1 所示。

網路安全態勢SA一般以某個概率aij在「高、中高、 中、中差、差」這 5 個狀態之間相互轉換,從一個狀態 向另一個狀態遷移,這些狀態稱為內部狀態或隱狀態, 外界無法監測到。然而,可以通過監測工具監測到安 全態勢外在的表現特徵,如網路基礎運行性 (runnability)、網路脆弱性(vulnerability)和網路威脅性 (threat)三維。監測到的這些參數值組合一個整體可以 認為是一個可觀測狀態(外部狀態,此觀測狀態由 L 個 分量構成,是 1 個向量)。圖 1 中,設狀態 1 為安全態 勢「高」狀態,狀態 5 為安全態勢「差」狀態。在實際應 用中,根據具體情況可自行設定,本文取安全態勢每 維外在表現特徵 L=3,則有 27 種安全態勢可觀測外部 狀態,而其內部狀態(隱狀態)N 共為 5 種。

定義 1: 設網路安全態勢 SA內部隱狀態可表示為S1,S2,⋯,S5,則網路安全態勢將在這 5 個隱狀態之 間以某個概率 aij自由轉移,其中 0≤aij≤1。
定義 2: 網路安全態勢 SA外在表現特徵可用 L 個 隨機變數 xi(1≤i≤L, 本處 L=3)表示,令 v=(x1, x2,⋯, xL)構成 1 個 L 維隨機變數 v;在時刻 I,1 次具體觀測 oi的觀測值表示為 vi,則經過 T 個時刻對 v 觀測得到 1 個安全態勢狀態觀測序列 O={o1,o2,⋯,oT}。

本文基本思路是:建立相應的隱馬爾可夫模型, 收集內、外部狀態總數訓練隱馬爾可夫模型;當網路安全態勢異常時,通過監測器收集網路外在表現特徵數據,利用已訓練好 HMM 的模型對網路安全態勢進行預測,為管理員提供決策服務。

基本步驟如下:首先,按引理 1 賦 給隱馬爾可夫模型 λ=(π,A,B)這 3 個參數的先驗值; 其次,按照一定規則隨機採集樣本訓練 HMM 模型直 至收斂,獲得 3 個參數的近似值;最後,由一組網路 安全態勢樣本觀測序列預測下一階段態勢。

本實驗採集一組 10 個觀測樣本數據為:

<高、高、 高>,<高、高、高>,<高、中、高>,
<高、中、中>, <中、中、中>,<中、中、中>,
<中、中、高>,<中、 高、高>,<高、高、高>和<高、高、高>。

輸入到隱馬爾可夫模型中,經解碼為安全態勢隱狀態: 「高、高、 中高、中高、中、中、中高、中高、高、高」。最後 1 個隱狀態 qT=「高」。由於 a11=0.682 6(上一次為高,下一次為高的狀態轉移概率),在所有的隱狀態 轉移概率中為最高,所以,在 T+1 時刻的安全態勢 SA 為 qT+1=「高」。網路安全態勢預測對比圖如圖 4 所示, 其中,縱軸表示安全態勢等級,「5」表示「高」,「0」表 示「低」;橫軸表示時間,在采樣序號 10 時,安全態勢 為高,經預測下一個時刻 11 時,安全態勢應該為高, 可信度達 68.26%。通過本實驗,依據訓練好的隱馬爾 可夫預測模式可方便地預測下一時刻的網路安全態勢 發展趨勢。從圖 4 可明顯看出本文的 HMM 方法可信 度比貝葉斯預測方法的高。

Ⅷ 知識普及-安全態勢

隨著網路規模和復雜性不斷增大,網路的攻擊技術不斷革新,新型攻擊工具大量涌現,傳統的網路安全技術顯得力不從心,網路入侵不可避免,網路安全問題越發嚴峻。

單憑一種或幾種安全技術很難應對復雜的安全問題,網路安全人員的關注點也從單個安全問題的解決,發展到研究整個網路的安全狀態及其變化趨勢。

網路安全態勢感知對影響網路安全的諸多要素進行獲取、理解、評估以及預測未來的發展趨勢,是對網路安全性定量分析的一種手段,是對網路安全性的精細度量,態勢感知成已經為網路安全2.0時代安全技術的焦點,對保障網路安全起著非常重要的作用。

一、態勢感知基本概念

1.1 態勢感知通用定義

隨著網路安全態勢感知研究領域的不同,人們對於態勢感知的定義和理解也有很大的不同,其中認同度較高的是Endsley博士所給出的動態環境中態勢感知的通用定義:

態勢感知是感知大量的時間和空間中的環境要素,理解它們的意義,並預測它們在不久將來的狀態。

在這個定義中,我們可以提煉出態勢感知的三個要素:感知、理解和預測,也就是說態勢感知可以分成感知、理解和預測三個層次的信息處理,即:

感知:感知和獲取環境中的重要線索或元素;

理解:整合感知到的數據和信息,分析其相關性;

預測:基於對環境信息的感知和理解,預測相關知識的未來的發展趨勢。

1.2 網路安全態勢感知概念

目前,對網路安全態勢感知並未有一個統一而全面的定義,我們可以結合態勢感知通用定義來對對網路安全態勢感知給出一個基本描述,即:

網路安全態勢感知是綜合分析網路安全要素,評估網路安全狀況,預測其發展趨勢,並以可視化的方式展現給用戶,並給出相應的報表和應對措施。

根據上述概念模型,網路安全態勢感知過程可以分為一下四個過程:

1)數據採集:通過各種檢測工具,對各種影響系統安全性的要素進行檢測採集獲取,這一步是態勢感知的前提;

2)態勢理解:對各種網路安全要素數據進行分類、歸並、關聯分析等手段進行處理融合,對融合的信息進行綜合分析,得出影響網路的整體安全狀況,這一步是態勢感知基礎;

3)態勢評估:定性、定量分析網路當前的安全狀態和薄弱環節,並給出相應的應對措施,這一步是態勢感知的核心;

4)態勢預測:通過對態勢評估輸出的數據,預測網路安全狀況的發展趨勢,這一步是態勢感知的目標。

網路安全態勢感知要做到深度和廣度兼備,從多層次、多角度、多粒度分析系統的安全性並提供應對措施,以圖、表和安全報表的形式展現給用戶。

二、態勢感知常用分析模型

在網路安全態勢感知的分析過程中,會應用到很多成熟的分析模型,這些模型的分析方法雖各不相同,但多數都包含了感知、理解和預測的三個要素。

2.1 始於感知:Endsley模型

Endsley模型中,態勢感知始於感知。

感知包含對網路環境中重要組成要素的狀態、屬性及動態等信息,以及將其歸類整理的過程。

理解則是對這些重要組成要素的信息的融合與解讀,不僅是對單個分析對象的判斷分析,還包括對多個關聯對象的整合梳理。同時,理解是隨著態勢的變化而不斷更新演變的,不斷將新的信息融合進來形成新的理解。

在了解態勢要素的狀態和變化的基礎上,對態勢中各要素即將呈現的狀態和變化進行預測。

2.2 循環對抗:OODA模型

OODA是指觀察(Oberve)、調整(Orient)、決策(Decide)以及行動(Act),它是信息戰領域的一個概念。OODA是一個不斷收集信息、評估決策和採取行動的過程。

將OODA循環應用在網路安全態勢感知中,攻擊者與分析者都面臨這樣的循環過程:在觀察中感知攻擊與被攻擊,在理解中調整並決策攻擊與防禦方法,預測對手下一個動作並發起行動,同時進入下一輪的觀察。

如果分析者的OODA循環比攻擊者快,那麼分析者有可能「進入」對方的循環中,從而占據優勢。例如通過關注對方正在進行或者可能進行的事情,即分析對手的OODA環,來判斷對手下一步將採取的動作,而先於對方採取行動。

2.3 數據融合:JDL模型

JDL(Joint Directors of Laboratories)模型是信息融合系統中的一種信息處理方式,由美國國防部成立的數據融合聯合指揮實驗室提出。

JDL模型將來自不同數據源的數據和信息進行綜合分析,根據它們之間的相互關系,進行目標識別、身份估計、態勢評估和威脅評估,融合過程會通過不斷的精煉評估結果來提高評估的准確性。

在網路安全態勢感知中,面對來自內外部大量的安全數據,通過JDL模型進行數據的融合分析,能夠實現對分析目標的感知、理解與影響評估,為後續的預測提供重要的分析基礎和支撐。

2.4 假設與推理:RPD模型

RPD(Recognition Primed Decision)模型中定義態勢感知分為兩個階段:感知和評估。

感知階段通過特徵匹配的方式,將現有態勢與過去態勢進行對比,選取相似度高的過去態勢,找出當時採取的哪些行動方案是有效的。評估階段分析過去相似態勢有效的行動方案,推測當前態勢可能的演化過程,並調整行動方案。

以上方式若遇到匹配結果不理想的情況,則採取構造故事的方式,即根據經驗探索潛在的假設,再評估每個假設與實際發生情況的相符度。在RPD模型中對感知、理解和預測三要素的主要體現為:基於假設進行相關信息的收集(感知),特徵匹配和故事構造(理解),假設驅動思維模擬與推測(預測)。

三、態勢感知應用關鍵點

當前,單維度的網路安全防禦技術手段,已經難以應對復雜的網路環境和大量存在的安全問題,對網路安全態勢感知具體模型和技術的研究,已經成為2.0時代網路安全技術的焦點,同時很多機構也已經推出了網路安全態勢感知產品和解決方案。

但是,目前市場上的的相關產品和解決方案,都相對偏重於網路安全態勢的某一個或某幾個方面的感知,網路安全態勢感知的數據分析的深度和廣度還需要進一步加強,同時網路安全態勢感知與其它系統平台的聯動不足,無法將態勢感知與安全運營深入融合。

為此,太極信安認為網路安全態勢感知平台的建設,應著重考慮以下幾個方面的內容:

1、在數據採集方面,網路安全數據來源要盡可能的豐富,應該包括網路結構數據、網路服務數據、漏洞數據、脆弱性數據、威脅與入侵數據、用戶異常行為數據等等,只有這樣態勢評估結果才能准確。

2、在態勢評估方面,態勢感評估要對多個層次、多個角度進行評估,能夠評估網路的業務安全、數據安全、基礎設施安全和整體安全狀況,並且應該針對不同的應用背景和不同的網路規模選擇不同的評估方法。

3、在態勢感知流程方面,態勢感知流程要規范,所採用的演算法要簡單,應該選擇規范化的、易操作的評估模型和預測模型,能夠做到實時准確的評估網路安全態勢。

4、在態勢預測方面,態勢感知要能支持對不同的評估結果預測其發展趨勢,預防大規模安全事件的發生。

5、在態勢感知結果顯示方面,態勢感知能支持多種形式的可視化顯示,支持與用戶的交互,能根據不同的應用需求生成態勢評測報表,並提供相應的改進措施。

四、總結

上述幾種模型和應用關鍵點對網路安全態勢感知來講至關重要,將這些基本概念和關鍵點進行深入理解並付諸於實踐,才能真正幫助決策者獲得網路安全態勢感知能力。

太極信安認為,建設網路安全態勢感知平台,應以「業務+數據定義安全」戰略為核心驅動,基於更廣、更深的數據來源分析,以用戶實際需求為出發點,從綜合安全、業務安全、數據安全、信息基礎設施安全等多個維度為用戶提供全面的安全態勢感知,在認知、理解、預測的基礎上,真正幫助用戶實現看見業務、看懂威脅、看透風險、輔助決策。

                            摘自 CSDN 道法一自然

Ⅸ 態勢分析是如何保障網路安全的

態勢感知是一種基於環境的、動態、整體地洞悉安全風險的能力,是以安全大數據為基礎,從全局視角提升對安全威脅的發現識別、理解分析、響應處置能力的一種方式,最終是為了決策與行動,是安全能力的落地。

Ⅹ 網路可視化什麼意思

網路安全可視化是指在網路安全領域中的呈現技術,將網路安全加固、檢測、防禦、響應等過程中的數據和結果轉換成圖形界面,通過C/S或B/S方式呈現在屏幕或其它介質上,並通過人機交互的方式進行搜索、加工、匯總等操作的理論、方法和技術。
網路安全可視化是數據可視化研究中較為廣泛的一個方向,利用人類視覺對模型和結構的獲取能力,將抽象的網路和系統數據以圖形圖像的方式展現出來,協助分析網路狀況,識別網路異常或入侵行為,預測網路安全事件的發展趨勢。
網路態勢可視化技術作為一項新技術,是網路安全態勢感知與可視化技術的結合,將網路中蘊涵的態勢狀況通過可視化圖形方式展示給用戶,並藉助於人在圖形圖像方面強大的處理能力,實現對網路異常行為的分析和檢測。