當前位置:首頁 » 網路連接 » 路由器是哪種網路拓撲
擴展閱讀
場館計算機網路 2025-07-01 07:57:22
電腦端網路游戲什麼好玩 2025-07-01 07:56:47

路由器是哪種網路拓撲

發布時間: 2022-08-24 07:20:01

路由器屬於OSI體系結構的哪一層

路由器屬於OSI體系結構的第三層:網路層。

OSI體系結構,意為開放式系統互聯。國際標准組織(國際標准化組織)制定了OSI模型。這個模型把網路通信的工作分為7層,分別是物理層、數據鏈路層、網路層、傳輸層、會話層、表示層和應用層。

1至4層被認為是低層,這些層與數據移動密切相關。5至7層是高層,包含應用程序級的數據。每一層負責一項具體的工作,然後把數據傳送到下一層。

(1)路由器是哪種網路拓撲擴展閱讀

1、物理層(即OSI模型中的第一層也是最底層):

物理層實際上就是布線、光纖、網卡和其它用來把兩台網路通信設備連接在一起的東西。甚至一個信鴿也可以被認為是一個1層設備。網路故障的排除經常涉及到1層問題。

2、數據鏈路層:

運行乙太網等協議。網橋都在2層工作,僅關注乙太網上的MAC地址。有關MAC地址、交換機或者網卡和驅動程序,就是在第2層的范疇。集線器屬於第1層的領域,因為它們只是電子設備,沒有2層的知識。

3、網路層:

網路層的任務就是選擇合適的網間路由和交換結點, 確保數據及時傳送。如果你在談論一個IP地址,那麼你是在處理第3層的問題,這是「數據包」問題,而不是第2層的「幀」。

IP是第3層問題的一部分,此外還有一些路由協議和地址解析協議(ARP)。有關路由的一切事情都在第3層處理。地址解析和路由是3層的重要目的。

4、信息的傳輸層:

第4層的數據單元也稱作數據包(packets)。這個層負責獲取全部信息,因此,它必須跟蹤數據單元碎片、亂序到達的數據包和其它在傳輸過程中可能發生的危險。

理解第4層的另一種方法是,第4層提供端對端的通信管理。像TCP等一些協議非常善於保證通信的可靠性。有些協議並不在乎一些數據包是否丟失,UDP協議就是一個主要例子。

5、會話層:

這一層也可以稱為會晤層或對話層,在會話層及以上的高層次中,數據傳送的單位不再另外命名,統稱為報文。會話層不參與具體的傳輸,它提供包括訪問驗證和會話管理在內的建立和維護應用之間通信的機制。如伺服器驗證用戶登錄便是由會話層完成的。

6、表示層:

這一層主要解決用戶信息的語法表示問題。它將欲交換的數據從適合於某一用戶的抽象語法,轉換為適合於OSI系統內部使用的傳送語法。即提供格式化的表示和轉換數據服務。數據的壓縮和解壓縮, 加密和解密等工作都由表示層負責。

7、應用層:

是專門用於應用程序的。應用層確定進程之間通信的性質以滿足用戶需要以及提供網路與用戶應用軟體之間的介面服務。SMTP、DNS和FTP都是第7層協議。

什麼的網路拓撲結構,常見的有哪幾種

網路拓撲結構是指用傳輸媒體互連各種設備的物理布局,即用什麼方式把網路中的計算機等設備連接起來。

常見的網路拓撲結構主要有星型結構、環型結構、匯流排結構、分布式結構、樹型結構。

(2)路由器是哪種網路拓撲擴展閱讀:

1、星型網路拓撲結構

星型網路拓撲結構的特點是具有一個控制中心,採用集中式控制,各站點通過點到點的鏈路與中心站相連。

2、環型拓撲結構

環型拓撲結構是各站點通過通信介質連成一個封閉的環型,各節點通過中繼器連入網內,各中繼器首尾相連。環型網路通信方式是一個站點發出信息,網上的其他站點完全可以接收。

3、匯流排型拓撲結構

匯流排型拓撲結構是網路中所有的站點共享一條雙向數據通道。

4、樹狀結構

樹狀結構是匯流排狀結構的擴充形式,傳輸介質是不封閉的分支電纜。它主要用於多個網路組成的分級結構中,其特點與匯流排型結構網的特點大致相同。


參考資料來源:網路-網路拓撲結構

Ⅲ 利用路由器把四台主機連在一起是什麼拓撲結構

應該是樹形結構吧,是從事的達到相互通信而且共享網路。

Ⅳ 常見的網路拓撲結構主要有哪幾種,各有什麼特點

1、常見的網路拓撲結構主要有星型結構、環型結構、匯流排結構、分布式結構、樹型結構、網狀結構、蜂窩狀結構等。

2、特點

①星型結構。星型結構是最古老的一種連接方式,大家每天都使用的電話屬於這種結構。一般網路環境都被設計成星型拓撲結構。星型網是廣泛而又首選使用的網路拓撲設計之一。

星型結構是指各工作站以星型方式連接成網。網路有中央節點,其他節點(工作站、伺服器)都與中央節點直接相連,這種結構以中央節點為中心,因此又稱為集中式網路。

星型拓撲結構便於集中控制,因為端用戶之間的通信必須經過中心站。由於這一特點,也帶來了易於維護和安全等優點。端用戶設備因為故障而停機時也不會影響其它端用戶間的通信。同時星型拓撲結構的網路延遲時間較小,系統的可靠性較高。

⑦蜂窩拓撲結構是無線區域網中常用的結構,它以無線傳輸介質(微波、衛星、紅外等)點到點和多點傳輸為特徵,是一種無線網,適用於城市網、校園網、企業網。

拓展資料:

拓撲這個名詞是從幾何學中借用來的。網路拓撲是網路形狀,或者是網路在物理上的連通性。網路拓撲結構是指用傳輸媒體互連各種設備的物理布局,即用什麼方式把網路中的計算機等設備連接起來。拓撲圖給出網路伺服器、工作站的網路配置和相互間的連接。網路的拓撲結構有很多種,主要有星型結構、環型結構、匯流排結構、分布式結構、樹型結構、網狀結構、蜂窩狀結構等。

Ⅳ 在OSI七層網路模型結構中路由器工作在哪一層

路由器與交換機的主要區別體現在以下幾個方面:
(1)工作層次不同
最初的的交換機是工作在OSI/RM開放體系結構的數據鏈路層,也就是第二層,而路由器一開始就設計工作在OSI模型的網路層。由於交換機工作在OSI的第二層(數據鏈路層),所以它的工作原理比較簡單,而路由器工作在OSI的第三層(網路層),可以得到更多的協議信息,路由器可以做出更加智能的轉發決策。
(2)數據轉發所依據的對象不同
交換機是利用物理地址或者說MAC地址來確定轉發數據的目的地址。而路由器則是利用不同網路的ID號(即IP地址)來確定數據轉發的地址。IP地址是在軟體中實現的,描述的是設備所在的網路,有時這些第三層的地址也稱為協議地址或者網路地址。MAC地址通常是硬體自帶的,由網卡生產商來分配的,而且已經固化到了網卡中去,一般來說是不可更改的。而IP地址則通常由網路管理員或系統自動分配。
(3)傳統的交換機只能分割沖突域,不能分割廣播域;而路由器可以分割廣播域
由交換機連接的網段仍屬於同一個廣播域,廣播數據包會在交換機連接的所有網段上傳播,在某些情況下會導致通信擁擠和安全漏洞。連接到路由器上的網段會被分配成不同的廣播域,廣播數據不會穿過路由器。雖然第三層以上交換機具有VLAN功能,也可以分割廣播域,但是各子廣播域之間是不能通信交流的,它們之間的交流仍然需要路由器。
(4)路由器提供了防火牆的服務
路由器僅僅轉發特定地址的數據包,不傳送不支持路由協議的數據包傳送和未知目標網路數據包的傳送,從而可以防止廣播風暴。
交換機一般用於LAN-WAN的連接,交換機歸於網橋,是數據鏈路層的設備,有些交換機也可實現第三層的交換。 路由器用於WAN-WAN之間的連接,可以解決異性網路之間轉發分組,作用於網路層。他們只是從一條線路上接受輸入分組,然後向另一條線路轉發。這兩條線路可能分屬於不同的網路,並採用不同協議。相比較而言,路由器的功能較交換機要強大,但速度相對也慢,價格昂貴,第三層交換機既有交換機線速轉發報文能力,又有路由器良好的控制功能,因此得以廣泛應用
1》什麼是路由器
路由器是一種連接多個網路或網段的網路設備,它能將不同網路或網段之間的數據信息進行「翻譯」,以使它們能夠相互「讀」懂對方的數據,從而構成一個更大的網路。

路由器有兩大典型功能,即數據通道功能和控制功能。數據通道功能包括轉發決定、背板轉發以及輸出鏈路調度等,一般由特定的硬體來完成;控制功能一般用軟體來實現,包括與相鄰路由器之間的信息交換、系統配置、系統管理等。
多少年來,路由器的發展有起有伏。90年代中期,傳統路由器成為制約網際網路發展的瓶頸。ATM交換機取而代之,成為IP骨幹網的核心,路由器變成了配角。進入90年代末期,Internet規模進一步擴大,流量每半年翻一番,ATM網又成為瓶頸,路由器東山再起,Gbps路由交換機在1997年面世後,人們又開始以Gbps路由交換機取代ATM交換機,架構以路由器為核心的骨幹網。
2》路由器的原理與作用
路由器是一種典型的網路層設備。它是兩個區域網之間接幀傳輸數據,在OSI/RM之中被稱之為中介系統,完成網路層中繼或第三層中繼的任務。路由器負責在兩個區域網的網路層間接幀傳輸數據,轉發幀時需要改變幀中的地址。

一、原理與作用
路由器(Router)是用於連接多個邏輯上分開的網路,所謂邏輯網路是代表一個單獨的網路或者一個子網。當數據從一個子網傳輸到另一個子網時,可通過路由器來完成。因此,路由器具有判斷網路地址和選擇路徑的功能,它能在多網路互聯環境中,建立靈活的連接,可用完全不同的數據分組和介質訪問方法連接各種子網,路由器只接受源 站或其他路由器的信息,屬網路層的一種互聯設備。它不關心各子網使用的硬體設備,但要求運行與網路層協議相一致的軟體。路由器分本地路由器和遠程路由器,本地路由器是用來連接網路傳輸介質的,如光纖、同軸電纜、雙絞線;遠程路由器是用來連接遠程傳輸介質,並要求相應的設備,如電話線要配數據機,無線要通過無線接收機、發射機。
一般說來,異種網路互聯與多個子網互聯都應採用路由器來完成。
路由器主要工作就是為經過路由器的每個數據幀尋找一條最佳傳輸路徑,並將該數據有效地傳送到目的站點。由此可見,選擇最佳路徑的策略即路由演算法是路由器的關鍵所在。為了完成這項工作,在路由器中保存著各種傳輸路徑的相關數據——路徑表(Routing Table),供路由選擇;時使用。路徑表中保存著子網的標志信息、網上路由器的個數和下一個路由器的名字等內容。路徑表可以是由系統管理員固定設置好的,也可以由系統動態修改,可以由路由器自動調整,也可以由主機控制。
1.靜態路徑表
由系統管理員事先設置好固定的路徑表稱之為靜態(static)路徑表,一般是在系統安裝時就根據網路的配置情況預先設定的,它不會隨未來網路結構的改變而改變。
2.動態路徑表
動態(Dynamic)路徑表是路由器根據網路系統的運行情況而自動調整的路徑表。路由器根據路由選擇協議(Routing Protocol)提供的功能,自動學習和記憶網路運行情況,在需要時自動計算數據傳輸的最佳路徑。
二、路由器的優缺點

1.優點
適用於大規模的網路;
復雜的網路拓撲結構,負載共享和最優路徑;
能更好地處理多媒體;
安全性高;
隔離不需要的通信量;
節省區域網的頻寬;
減少主機負擔。

2.缺點
它不支持非路由協議;
安裝復雜;
價格高。

三、路由器的功能
(1)在網路間截獲發送到遠地網段的報文,起轉發的作用。
(2)選擇最合理的路由,引導通信。為了實現這一功能,路由器要按照某種路由通信協議,查找路由表,路由表中列出整個互聯網路中包含的各個節點,以及節點間的路徑情況和與它們相聯系的傳輸費用。如果到特定的節點有一條以上路徑,則基於預先確定的准則選擇最優(最經濟)的路徑。由於各種網路段和其相互連接情況可能發生變化,因此路由情況的信息需要及時更新,這是由所使用的路由信息協議規定的定時更新或者按變化情況更新來完成。網路中的每個路由器按照這一規則動態地更新它所保持的路由表,以便保持有效的路由信息。
(3)路由器在轉發報文的過程中,為了便於在網路間傳送報文,按照預定的規則把大的數據包分解成適當大小的數據包,到達目的地後再把分解的數據包包裝成原有形式。
(4)多協議的路由器可以連接使用不同通信協議的網路段,作為不同通信協議網路段通信連接的平台。
(5)路由器的主要任務是把通信引導到目的地網路,然後到達特定的節點站地址。後一個功能是通過網路地址分解完成的。例如,把網路地址部分的分配指定成網路、子網和區域的一組節點,其餘的用來指明子網中的特別站。分層定址允許路由器對有很多個節點站的網路存儲定址信息。
在廣域網范圍內的路由器按其轉發報文的性能可以分為兩種類型,即中間節點路由器和邊界路由器。盡管在不斷改進的各種路由協議中,對這兩類路由器所使用的名稱可能有很大的差別,但所發揮的作用卻是一樣的。
中間節點路由器在網路中傳輸時,提供報文的存儲和轉發。同時根據當前的路由表所保持的路由信息情況,選擇最好的路徑傳送報文。由多個互連的LAN組成的公司或企業網路一側和外界廣域網相連接的路由器,就是這個企業網路的邊界路由器。它從外部廣域網收集向本企業網路定址的信息,轉發到企業網路中有關的網路段;另一方面集中企業網路中各個LAN段向外部廣域網發送的報文,對相關的報文確定最好的傳輸路徑。
我們通過一個例子來說明路由器工作原理。
例:工作站A需要向工作站B傳送信息(並假定工作站B的IP地址為120.0.5),它們之間需要通過多個路由器的接力傳遞。

其工作原理如下:
(1)工作站A將工作站B的地址120.0.5連同數據信息以數據幀的形式發送給路由器1。
(2)路由器1收到工作站A的數據幀後,先從報頭中取出地址120.0.5,並根據路徑表計算出發往工作站B的最佳路徑:R1->R2->R5->B;並將數據幀發往路由器2。
(3)路由器2重復路由器1的工作,並將數據幀轉發給路由器5。
(4)路由器5同樣取出目的地址,發現120.0.5就在該路由器所連接的網段上,於是將該數據幀直接交給工作站B。
(5)工作站B收到工作站A的數據幀,一次通信過程宣告結束。

事實上,路由器除了上述的路由選擇這一主要功能外,還具有網路流量控制功能。有的路由器僅支持單一協議,但大部分路由器可以支持多種協議的傳輸,即多協議路由器。由於每一種協議都有自己的規則,要在一個路由器中完成多種協議的演算法,勢必會 降低路由器的性能。因此,我們以為,支持多協議的路由器性能相對較低。用戶購買路由器時,需要根據自己的實際情況,選擇自己需要的網路協議的路由器。
近年來出現了交換路由器產品,從本質上來說它不是什麼新技術,而是為了提高通信能力,把交換機的原理組合到路由器中,使數據傳輸能力更快、更好。

Ⅵ 常見的計算機網路的拓撲結構有哪幾種

計算機網路拓撲結構是指網路中各個站點相互連接的形式,在區域網中明確一點講就是文件伺服器、工作站和電纜等的連接形式。現在最主要的拓撲結構有匯流排型拓撲、星形拓撲、環形拓撲、樹形拓撲(由匯流排型演變而來)以及它們的混合型。

常見的網路拓撲結構有:

1、匯流排型拓撲。匯流排型拓撲是一種基於多點連接的拓撲結構,是將網路中的所有的設備通過相應的硬體介面直接連接在共同的傳輸介質上。

2、環型拓撲。

3、樹形拓撲結構。樹形拓撲從匯流排拓撲演變而來,形狀像一棵倒置的樹,頂端是樹根,樹根以下帶分支,每個分支還可再帶子分支。

4、星形拓撲結構。星形拓撲結構是一種以中央節點為中心,把若干外圍節點連接起來的輻射式互聯結構,各結點與中央結點通過點與點方式連接,中央結點執行集中式通信控制策略,因此中央結點相當復雜,負擔也重。

5、網狀拓撲。網狀拓撲又稱作無規則結構,結點之間的聯結是任意的,沒有規律。

(1)網狀網:在一個大的區域內,用無線電通信連路連接一個大型網路時,網狀網是最好的拓撲結構。通過路由器與路由器相連,可讓網路選擇一條最快的路徑傳送數據。

(2)主幹網:通過橋接器與路由器把不同的子網或LAN連接起來形成單個匯流排或環型拓撲結構,這種網通常採用光纖做主幹線。

(3)星狀相連網:利用一些叫做超級集線器的設備將網路連接起來,由於星型結構的特點,網路中任一處的故障都可容易查找並修復。

6、混合型拓撲結構。混合型拓撲結構就是兩種或兩種以上的拓撲結構同時使用。

7、蜂窩拓撲結構。蜂窩拓撲結構是無線區域網中常用的結構。

8、衛星通信拓撲結構。

Ⅶ 網路拓撲的五種結構分別適用於哪種具體網路

樹型拓撲結構
樹形結構是匯流排型結構的擴展,它是在匯流排網上加上分支形成的,其傳輸介質可有多條分支,但不形成閉合迴路,樹形網是一種分層網,其結構可以對稱,聯系固定,具有一定容錯能力,一般一個分支和結點的故障不影響另一分支結點的工作,任何一個結點送出的信息都可以傳遍整個傳輸介質,也是廣播式網路。一般樹形網上的鏈路相對具有一定的專用性,無須對原網做任何改動就可以擴充工作站。 網狀網:
在一個大的區域內,用無線電通信連路連接一個大型網路時,網狀網是最好的拓撲結構。通過路由器與路由器相連,可讓網路選擇一條最快的路徑傳送數據。
2、主幹網:
通過橋接器與路由器把不同的子網或LAN連接起來形成單個匯流排或環型拓撲結構,這種網通常採用光纖做主幹線。
3. 星狀相連網:
利用一些叫做超級集線器的設備將網路連接起來,由於星型結構的特點,網路中任一處的故障都可容易查找並修復。
應該指出,在實際組網中,為了符合不同的要求,拓撲結構不一定是單一的,往往都是幾種結構的混用。

Ⅷ 家中用的路由器是哪種拓撲結構

星型結構,
是用集線器或交換機作為網路的中央節點,網路中的每一台計算機都通過網卡連接到中央節點,計算機之間通過中央節點進行信息交換,各節點呈星狀分布而得名。星型結構是目前在區域網中應用得最為普遍的一種,在企業網路中幾乎都是採用這一方式。星型網路幾乎是Ethernet(乙太網)網路專用。這類網路目前用的最多的傳輸介質是雙絞線,如常見的五類線、超五類雙絞線等。

Ⅸ 計算機網路的拓撲結構分為哪些

計算機網路的最主要的拓撲結構有匯流排型拓撲、環形拓撲、樹形拓撲、星形拓撲、混合型拓撲以及網狀拓撲。除了匯流排型、環型、星型還有樹形、混合型和網狀拓撲結構。

環形拓撲、星形拓撲、匯流排型拓撲是三個最基本的拓撲結構。在區域網中,使用最多的是星形結構。

1、匯流排型拓撲:

匯流排型拓撲是一種基於多點連接的拓撲結構,是將網路中的所有的設備通過相應的硬體介面直接連接在共同的傳輸介質上。匯流排拓撲結構使用一條所有PC都可訪問的公共通道,每台PC只要連一條線纜即可。在匯流排型拓撲結構中,所有網上微機都通過相應的硬體介面直接連在匯流排上, 任何一個結點的信息都可以沿著匯流排向兩個方向傳輸擴散,並且能被匯流排中任何一個結點所接收。

7、蜂窩拓撲結構:

蜂窩拓撲結構是無線區域網中常用的結構。