1. 端到端的數據傳送
點到點是物理拓撲,如光纖,就必須是點到點連接,DDN專線也是,即兩頭各一個機器中間不能有機器。
點到點是網路層的,你傳輸層只認為我的數據是從a直接到e的,但實際不是這樣的,打個比方,傳輸層好象領導,他發布命令:要干什麼什麼事,但真正乾的不是他,真正乾的是員工,也許領導認為很簡單一句話就可以干好的事,在員工眼裡卻是難於登天,手續極其煩瑣,所以傳輸層是發布命令的領導,他說的是命令,也就是最終的目的,所以他只看到最初的地址和最終的地址,既一個任務的兩個端點,網路層就相當於員工,領導的任務我要一步一步的作完,先從a到b,在從b到c...,所以他看到的只是整個任務的一個階段,a到b,b到c...這就是點到點。
端到端是網路連接。網路要通信,必須建立連接,不管有多遠,中間有多少機器,都必須在兩頭(源和目的)間建立連接,一旦連接建立起來,就說已經是端到端連接了,即端到端是邏輯鏈路,這條路可能經過了很復雜的物理路線,但兩端主機不管,只認為是有兩端的連接,而且一旦通信完成,這個連接就釋放了,物理線路可能又被別的應用用來建立連接了。TCP就是用來建立這種端到端連接的一個具體協議,SPX也是。
端到端是傳輸層的,你比如你要將數據從A傳送到E,中間可能經過A->B->C->D->E,對於傳輸層來說他並不知道b,c,d的存在,他只認為我的報文數據是從a直接到e的,這就叫做端到端。
總之,一句話概括就是端到端是由無數的點到點實現和組成的。
TCP/IP的五層???怎麼又五層出來了,
tcp/ip這個協議遵守一個四層的模型概念:應用層、傳輸層、互聯層和網路介面層。
網路介面層
模型的基層是網路介面層。負責數據幀的發送和接收,幀是獨立的網路信息傳輸單元。網路介面層將幀放在網上,或從網上把幀取下來。
互聯層
互聯協議將數據包封裝成internet數據報,並運行必要的路由演算法。
這里有四個互聯協議:
網際協議ip:負責在主機和網路之間定址和路由數據包。
地址解析協議arp:獲得同一物理網路中的硬體主機地址。
網際控制消息協議icmp:發送消息,並報告有關數據包的傳送錯誤。
互聯組管理協議igmp:被ip主機拿來向本地多路廣播路由器報告主機組成員。
傳輸層
傳輸協議在計算機之間提供通信會話。傳輸協議的選擇根據數據傳輸方式而定。
兩個傳輸協議:
傳輸控制協議tcp:為應用程序提供可靠的通信連接。適合於一次傳輸大批數據的情況。並適用於要求得到響應的應用程序。
用戶數據報協議udp:提供了無連接通信,且不對傳送包進行可靠的保證。適合於一次傳輸小量數據,可靠性則由應用層來負責。
應用層
應用程序通過這一層訪問網路。
網路介面技術
2. 什麼是tcpip協議中的端到端通信
TCP是面向連接的通信協議,通過三次握手建立連接,通訊完成時要拆除連接,由於TCP是面向連接的所以只能用於端到端的通訊。
TCP提供的是一種可靠的數據流服務,採用「帶重傳的肯定確認」技術來實現傳輸的可靠性。TCP還採用一種稱為「滑動窗口」的方式進行流量控制,所謂窗口實際表示接收能力,用以限制發送方的發送速度。
3. 能夠提供可靠的端到端的傳輸的是osi
設立傳輸層的目的是在使用通信子網提供服務的基礎上,使用傳輸層協議和增加的功能,使得通信子網對於端--端用戶是透明的。高層用戶不需要知道它們的物理層採用何種物理線路。對高層用戶來說,兩個傳輸層實體之間存在著一條端--端可靠的通信連接。這是整個OSI參考模型的最低層,其任務是提供網路的物理連接,利用物理傳輸介質為數據鏈路層提供位流傳輸。該層的主要任務是在通信線路上傳輸數據比特的電信號。物理層協議主要規定了計算機或終端和通信設備之間的介面標准,包含介面的機械、電氣、功能和規程四個方面的特性。主要包括電纜、物理埠和附屬設備,如雙絞線、同軸電纜、接線設備(如網卡等)、串口和並口等在網路中都是工作在這個層次的。
物理層傳送的基本單位是比特。典型的物理層協議如RS-232系列等。數據鏈路層的功能是實現無差錯的傳輸服務。
物理層僅提供了傳輸能力,但信號不可避免地會出現畸變和受到干擾,造成傳輸錯誤。數據鏈路層的主要功能有建立和拆除數據鏈路;將信息按一定格式組裝成幀,以便無差錯地傳送。此外還具有處理應答、差錯控制、順序和流量控制等功能。
數據鏈路層傳送的基本單位是幀。其常見的協議有兩類:一類是面向字元的傳輸控制協議,如BSC(二進制同步通信協議);另一類是面向比特的傳輸控制協議,如HDLC(高級數據鏈路控制協議)。
4. 計算機網路之五層協議
一:概述
計算機網路 (網路)把許多 計算機 連接在一起,而 互聯網 則把許多網路連接在一起,是 網路的網路 。網際網路是世界上最大的互聯網。
以小寫字母i開始的internet( 互聯網或互連網 )是 通用 名詞,它泛指由多個計算機網路互連而成的網路。在這些網路之間的通信協議(通信規則)可以是 任意 的。
以大寫字母I開始的Interent( 網際網路 )是 專有 名詞,它指當前全球最大的、開放的、由眾多網路相互連接而成的特定計算機網路,它採用的是 TCP/IP 協議族 作為通信規則,且其前身是美國的 ARPANET 。
網際網路現在採用 存儲轉發 的 分組交換 技術,以及三層網際網路服務提供者(ISP)結構。
網際網路按 工作方式 可以劃分為 邊緣 部分和 核心 部分,主機在網路的邊緣部分,作用是進行信息處理。 路由器 是在網路的核心部分,作用是:按存儲轉發方式進行 分組交換 。
計算機通信是計算機的 進程 (運行著的程序)之間的通信,計算機網路採用 通信方式 :客戶–伺服器方式和對等連接方式(P2P方式)
按作用 范圍 不同,計算機網路分為:廣域網WAN,城域網MAN,區域網LAN和個人區域網PAN。
五層協議 的體系結構由:應用層,運輸層,網路層,數據鏈路層和物理層。
<1>:應用層 : 是體系結構中的最高層,應用層的任務是 通過應用進程間的交互來完成特定網路應用 。應用層協議定義的是 應用進程間通信和交互的規則 。
<2>:運輸層 :任務是負責向 兩個主機中的進程之間的通信提供可靠的端到端服務 ,應用層利用該服務傳送應用層報文。
TCP :提供面向連接的,可靠的數據傳輸服務,其數據傳輸的單位是報文段。
UDP :提供無連接的,盡最大努力的數據傳輸服務,不保證數據傳輸的可靠性。
<3>網路層: 網路層的任務就是要選擇合適的路由,在發送數據時, 網路層把運輸層產生的報文段或者用戶數據報 封裝 成分組或包進行交付給目的站的運輸層。
<4>數據鏈路層: 數據鏈路層的任務是在兩個相鄰結點間的線路上無差錯地傳送以幀(frame)為單位的數據。每一幀包括數據和必要的控制信息。
<5>:物理層: 物理層的任務就是 透明 地傳送比特流,物理層還要確定連接電纜插頭的 定義 及 連接法 。
運輸層最重要的協議是:傳輸控制協議 TCP 和用戶數據報協議 UDP ,而網路層最重要的協議是網路協議 IP 。
分組交換的優點:高效、靈活、迅速、可靠。
網路協議主要由三個要素組成: (1)語法:即數據和控制信息的結構或者格式; (2)語義:即需要發出何種控制信息,完成何種動作以及做出何種響應。 (3)同步:即事件實現順序的詳細說明。
二:物理層
物理層的主要任務:描述為確定與 傳輸媒體 的 介面 有關的一些特性。
機械特性 :介面所用接線器的形狀和尺寸,引腳數目和排列,固定和鎖定裝置等,平時常見的各種規格的插件都有嚴格的 標准化的規定 。
電氣特性 :介面電纜上的各條線上出現的電壓 范圍 。
功能特性 :某條線上出現的某一電平的點電壓表示何種 意義 ;
過程特性 :指明對不同功能的各種可能事件的出現 順序 。
通信的目的 是: 傳送消息 , 數據 是運送消息的 實體 。 信號 是數據的電氣或電磁的表現。
根據信號中代表 參數 的取值方式不同。 信號分為 : 模擬信號 (連續無限)+ 數字信號 (離散有限)。代表數字信號不同的離散數值的基本波形稱為 碼元 。
通信 的雙方信息交互的方式來看,有三中 基本方式 :
單向 通信(廣播)
雙向交替 通信(**半雙工**_對講機)
雙向同時 通信( 全雙工 _電話)
調制 :來自信源的信號常稱為基帶信號。其包含較多低頻成分,較多信道不能傳輸低頻分量或直流分量,需要對其進行調制。
調制分為 兩大類 : 基帶調制 (僅對波形轉換,又稱 編碼 ,D2D)+ 帶通調制 (基帶信號頻率范圍搬移到較高頻段, 載波 調制,D2M)。
編碼方式 :
不歸零制 (正電平1/負0)
歸零制度 (正脈沖1/負0)
曼徹斯特編碼 (位周期中心的向上跳變為0/下1)
差分曼徹斯特編碼 (每一位中心處有跳變,開始辯解有跳變為0,無跳變1)
帶通調制方法 : 調 幅 ( AM ):(0, f1) 。調 頻 ( FM ):(f1, f2) 。調 相 ( PM ):(0 , 180度) 。
正交振幅調制(QAM)物理層 下面 的 傳輸媒體 (介質): 不屬於任何一層 。包括有: 引導性傳輸媒體 :雙絞、同軸電纜、光纜 、 非引導性傳輸媒體 :短波、微波、紅外線。
信道復用技術 : 頻分復用 :(一樣的時間佔有不不同資源) ; 時分復用 :(不同時間使用同樣資源) ;統計時分復用、波分復用(WDM)、碼分復用(CDM)。
寬頻接入技術 : 非對稱數字用戶線 ADSL (Asymmetric Digital Subcriber Line)(用數字技術對現有的模擬電話用戶線進行改造)
三:數據鏈路層
數據鏈路層使用的 信道 有 兩種類型: * 點對點(PPP) 信道+ 廣播*信道
點對點信道的數據鏈路層的協議數據單元- -幀
數據鏈路層協議有許多, 三個基本問題 是共同的
封裝成楨
透明傳輸
差錯檢測
區域網的數據鏈路層拆成兩個子層,即 邏輯鏈路層(LLC) 子層+ 媒體接入控制(MAC) 子層;
適配器的作用:
計算機與外界區域網的連接是通過通信適配器,適配器本來是主機箱內插入的一塊網路介面板,又稱網路介面卡,簡稱( 網卡 )。
乙太網採用 無連接 的工作方式,對發送的數據幀 不進行編號 ,也不要求對方發回確認,目的站收到差錯幀就丟掉。
乙太網採用的協議是:具有 沖突檢測 的 載波監聽多點接入 ( CSMA/CD )。協議的要點是: 發送前先監聽,邊發送邊監聽,一旦發現匯流排出現了碰撞,就立即停止發送。
乙太網的硬體地址 , MAC 地址實際上就是適配器地址或者適配器標識符。 48位長 , 乙太網最短幀長:64位元組。爭用期51.2微秒。
乙太網適配器有 過濾 功能:只接收 單播幀,廣播幀,多播幀 。
使用 集線器 可以在 物理層 擴展乙太網(半雙工),使用 網橋 可以在 數據鏈路層 擴展乙太網(半雙工),網橋轉發幀時, 不改變幀 的源地址。網橋 優點 :對幀進行轉發過濾,增大 吞吐量 。擴大網路物理范圍,提高 可靠 性,可 互連 不同物理層,不同MAC子層和不同速率的乙太網。 網橋 缺點 :增加時延,可能產生廣播風暴。
透明網橋 : 自學習 辦法處理接收到的幀。
四:網路層
TCP/IP 體系中的網路層向上只提供簡單靈活的、無連接,盡最大努力交付的數據報服務。網路層不提供服務質量的承諾,不保證分組交付的時限, 進程 之間的通信的 可靠性 由 運輸層 負責。
一個IP地址在整個網際網路范圍內是唯一的,分類的 IP地址 包括A類( 1~126 )、B類( 128~191 )、C類( 192~223 單播地址)、D類( 多播 地址)。
分類的IP地址由 網路號欄位 和 主機號欄位 組成。
物理地址(硬體地址)是數據鏈路層和物理層使用的地址,而 IP 地址是網路層和以上各層使用的地址,是一種 邏輯地址 ,數據鏈路層看不見數據報的IP地址。
IP首部中的 生存時間 段給出了IP數據報在網際網路中經過的 最大路由器數 ,可防止IP數據報在互聯網中無限制的 兜圈 子。
地址解析協議 ARP(Address Resolution Protocol) 把IP地址解析為 硬體地址 ,它解決 同一個區域網的主機或路由器的IP地址和硬體地址的映射問題 ,是一種解決地址問題的協議。以目標IP地址為線索,用來定位一個下一個應該接收數據分包的網路設備對應的MAC地址。如果目標主機不再同一鏈路上時,可以通過ARP查找下一跳路由器的MAC地址,不過ARP只適用於IPV4,不能用於IPV6,IPV6中可以用ICMPV6替代ARP發送鄰居搜索消息。
路由選擇協議有兩大類: 內部網關 協議(RIP和OSPE)和 外部網關 協議(BGP-4)。
網際控制報文協議 ICMP (Internet Control Message Protocol )控制報文協議。是IP層協議,ICMP報文作為IP數據報的數據,加上首部後組成IP數據報發送出去,使用ICMP並不是實現了可靠傳輸。ICMP允許主機或者路由器 報告差錯 情況和 提供有關異常 的情況報告。
ICMP是一個重要應用是分組網間探測 PING
與單播相比,在一對多的通信中,IP多播可大大節約網路資源, IP多播使用D類地址,IP多播需要使用 網際組管理協議IGMP 和多播路由選擇協議。
五: 運輸層
網路層為主機之間提供邏輯通信,運輸層為應用進程之間提供端到端的邏輯通信。
運輸層有兩個協議 TCP和UDP
運輸層用一個 16位 埠號來標志一個埠。
UDP特點 :無連接、盡最大努力交付、面向報文、無擁塞控制、支持一對一,多對一,一對多,多對多的交互通信。首部開銷小。
TCP特點: 面向連接,每一條TCP連接只能是點對點、提供可靠的交付服務,提供全雙工通信、面向位元組流。
TCP用主機的IP地址加上主機上的埠號作為TCP連接的端點,這樣的端點就叫 套接字 。
流量控制 是一個 端到端 的問題,是接收端抑制發送端發送數據的速率,以方便接收端來得及接收。 擁塞控制 是一個全局性過程,涉及到所有的主機,所有的路由器,以及與降低網路傳輸性能有關的所有因素。
TCP擁塞控制採用四種演算法: 慢開始、擁塞避免、快重傳、快恢復 。
傳輸有 三個連接 :連接建立、數據傳送、連接釋放。
TCP連接建立採用三次握手機制,連接釋放採用四次握手機制。
六:應用層
文件傳送協議FTP 使用 TCP 可靠傳輸服務。FTP使用客戶伺服器方式,一個FTP伺服器進程可同時為多個客戶進程提供服務。在進行文件傳輸時,FTP的客戶和伺服器之間要建立兩個並行的TCP連接,控制連接和數據連接,實際用於傳輸文件的是 數據連接 。
萬維網 WWW 是一個大規模,聯機式的信息儲藏所,可以方便從網際網路上一個站點鏈接到另一個站點。
萬維網使用 統一資源定位符URL 來標志萬維網上的各種文檔,並使每一個文檔在整個網際網路的范圍內具有唯一的標識符 URL 。
5. osi參考模型中負責為用戶提供可靠的節點到節點服務是哪一層
osi參考模型中負責為用戶提供可靠的節點到節點服務是傳輸層。
在OSI參考模型的各層中,傳輸層的主要任務是向用戶提供可靠的端到端服務,透明地傳送報文。它向高層屏蔽了下層數據通信的細節,因而是計算機通信體系結構中最關鍵的一層。
傳輸層在終端用戶之間提供透明的數據傳輸,向上層提供可靠的數據傳輸服務。傳輸層在給定的鏈路上通過流量控制、分段/重組和差錯控制來保證數據傳輸的可靠性。傳輸層的一些協議是面向鏈接的,這就意味著傳輸層能保持對分段的跟蹤,並且重傳那些失敗的分段。
(5)計算機網路端到端可靠通信擴展閱讀
傳輸層提供的服務類似於數據鏈路層的服務。數據鏈路層在單個網路內提供服務,而傳輸層通過由許多網路組成的互聯網路提供服務。數據鏈路層控制物理層,而傳輸層控制所有較低層。
傳輸層將整個消息傳輸到目的地。因此,它確保從源到目的地的整個消息的端到端傳遞。傳輸層通過重傳丟失和損壞的數據包來提供可靠性服務。可靠性的主要作用是錯誤控制。實際上,沒有傳輸將是100%無差錯交付。因此,傳輸層協議被設計為提供無差錯傳輸。
數據鏈路層還提供錯誤處理機制,但它確保只有節點到節點的無錯誤傳遞。但是,節點到節點的可靠性並不能確保端到端的可靠性。
數據鏈路層檢查每個網路之間的錯誤。如果在其中一個路由器中引入了錯誤,則數據鏈路層將不會捕獲此錯誤。它僅檢測在鏈接的開頭和結尾之間引入的那些錯誤。因此,傳輸層端到端地執行錯誤檢查,以確保數據包已正確到達。
6. 如何理解點到點通信和端到端通信
點到點通信時,在兩台計算機上必須要有相應的通信軟體。這種通信軟體除了與各自操作管理系統介面外,還應有兩個介面界面:一個向上,也就是向用戶應用的界面;一個向下,也就是向通信的界面。這樣通信軟體的設計就自然劃分為兩個相對獨立的模塊,形成用戶服務層US和通信服務層CS兩個基本層次體系。
端到端通信鏈路是把若干點到點的通信線路通過中間結點鏈接起來而形成的,因此,要實現端到端的通信,除了要依靠各自相鄰結點間點到點通信聯接的正確可靠外,還要解決兩個問題:第一,在中間結點上要具有路由轉接功能,即源結點的報文可通過中間結點的路由轉發,形成一條到達目標結點的端到端的鏈路;第二,在端結點上要具有啟動、建立和維護這條端到端鏈路的功能。啟動和建立鏈路是指發送端結點與接收端結點在正式通信前雙方進行的通信,以建立端到端鏈路的過程。維護鏈路是指在端到端鏈路通信過程中對差錯或流量控制等問題的處理。
因此在網路端到端通信的環境中,需要在通信服務層與應用服務層之間增加一個新的層次來專門處理網路端到端的正確可靠的通信問題,稱為網路服務層NS。
7. 論述在tcp/ip網路中採用了哪些措施來保障端到端的可靠傳輸
傳輸層用來提供端到端的服務,意思就是在這個層次,不需要關心報文的中間的轉發,看上去就像兩端直接在通信。
8. 在端到端之間提供可靠數據傳輸的是計算機網路體系結構中的()。
C
計算機網路體系結構中,傳輸層在端到端之間提供可靠的數據傳輸。