當前位置:首頁 » 網路連接 » 計算機網路分層結構
擴展閱讀
飛機上的網路在哪裡設置 2024-03-29 22:10:24
同程旅遊網站在南京哪裡 2024-03-29 22:05:05
台灣手機軟體哪個好 2024-03-29 21:26:27

計算機網路分層結構

發布時間: 2022-01-22 19:22:17

❶ 舉例闡述計算機網路分層結構

恩。。。很復雜,俺學幾年才弄明白,不知道要跟你怎麼說。。。乙太網共7層,物理,數據鏈路,網路,傳輸,會話,表示和應用層。

❷ 6什麼是計算機網路的體系結構為什麼要採用分層次的結構

計算機網路體系結構是指計算機網路層次結構模型,它是各層的協議以及層次之間的埠的集合。

目前廣泛採用的是國際標准化組織(ISO)1997年提出的開放系統互聯(Open
System Interconnection,OSI)參考模型,習慣上稱為ISO/OSI參考模型。

在OSI七層參考模型的體系結構中,由低層至高層分別稱為物理層、數據鏈路層、網路層、運輸層、會話層、表示層和應用層

原因:為把在一個網路結構下開發的系統與在另一個網路結構下開發的系統互聯起來,以實現更高一級的應用,使異種機之間的通信成為可能,便於網路結構標准化;

並且由於全球經濟的發展使得處在不同網路體系結構的用戶迫切要求能夠互相交換信息;

為此,國際標准化組織ISO成立了專門的機構研究該問題,並於1977年提出了一個試圖使各種計算機在世界范圍內互聯成網的標准框架,即著名的開放系統互連基本參考模型OSI/RM (Open System Interconnection Reference Model)。

(2)計算機網路分層結構擴展閱讀:

OSI模型體系結構:

物理層(Physical,PH)物理層的任務就是為上層提供一個物理的連接,以及該物理連接表現出來的機械、電氣、功能和過程特性,實現透明的比特流傳輸。

數據鏈路層(Data-link,D)實現的主要功能有:幀的同步、差錯控制、流量控制、定址、幀內定界、透明比特組合傳輸等。

網路層(Network,N)網路層的主要任務是為要傳輸的分組選擇一條合適的路徑,使發送分組能夠正確無誤地按照給定的目的地址找到目的主機,交付給目的主機的傳輸層。

傳輸層(Transport,T)傳輸層向上一層提供一個可靠的端到端的服務,使會話層不知道傳輸層以下的數據通信的細節

會話層(Session,S)提供包括訪問驗證和會話管理在內的建立以及維護應用之間的通信機制。如伺服器驗證用戶登錄便是由會話層完成的。

表示層(Presentation,P)數據的壓縮和解壓縮、加密和解密等工作都由表示層負責。

應用層(Application,A)應用層確定進程之間通信的性質以滿足用戶的需求,以及提供網路與用戶軟體之間的介面服務。

❸ 計算機網路系統分層結構的優點是什麼

1、分層結構將應用系統正交地劃分為若干層,每一層只解決問題的一部分,通過各層的協作提供整體解決方案。大的問題被分解為一系列相對獨立的子問題,局部化在每一層中,這樣就有效的降低了單個問題的規模和復雜度,實現了復雜系統的第一步也是最為關鍵的一步分解。

2、分層結構具有良好的可擴展性,為應用系統的演化增長提供了一個靈活的框架,具有良好的可擴展性。增加新的功能時,無須對現有的代碼做修改,業務邏輯可以得到最大限度的重用。同時,層與層之間可以方便地插入新的層來擴展應用。

3、分層架構易於維護。在對系統進行分解後,不同的功能被封裝在不同的層中,層與層之間的耦合顯著降低。因此在修改某個層的代碼時,只要不涉及層與層之間的介面,就不會對其他層造成嚴重影響。

(3)計算機網路分層結構擴展閱讀:

體系結構:

計算機網路是一個復雜的具有綜合性技術的系統,為了允許不同系統實體互連和互操作,不同系統的實體在通信時都必須遵從相互均能接受的規則,這些規則的集合稱為協議(Protocol)。

系統指計算機、終端和各種設備。實體指各種應用程序,文件傳輸軟體,資料庫管理系統,電子郵件系統等。互連指不同計算機能夠通過通信子網互相連接起來進行數據通信。

互操作指不同的用戶能夠在通過通信子網連接的計算機上,使用相同的命令或操作,使用其它計算機中的資源與信息,就如同使用本地資源與信息一樣。計算機網路體系結構為不同的計算機之間互連和互操作提供相應的規范和標准。

❹ 為什麼要對計算機網路分層以及分層的一般原則。

各層之間是獨立的。某一層並不需要知道它的下一層是如何實現的,而僅僅需要知道該層通過層間的介面(即界面)所提供的服務。由於每一層只實現一種相對獨立的功能,因而可將一個難以處理的復雜問題分解為若干個較容易處理的更小一些的問題。這樣,整個問題的復雜程度就下降了。
靈活性好。當任何一層發生變化時(例如由於技術的變化),只要層間介面關系保持不變,則在這層以上或以下各層均不受影響。此外,對某一層提供的服務還可進行修改。
當某層提供的服務不再需要時,甚至可以將這層取消。
結構上可分割開。各層都可以採用最合適的技術來實現。
易於實現和維護。這種結構使得實現和調試一個龐大而又復雜的系統變得易於處理,因為整個的系統已被分解為若干個相對獨立的子系統。
能促進標准化工作。因為每一層的功能及其所提供的服務都已有了精確的說明。

❺ 計算機網路分層體系結構包含哪兩方面的含義

在OSI出現之前,計算機網路中存在眾多的體系結構,其中以IBM公司的SNA(系統網路體系結構)和DEC公司的DNA(Digital Network Architecture)數字網路體系結構最為著名。為了解決不同體系結構的網路的互聯問題,國際標准化組織ISO(注意不要與OSI搞混))於1981年制定了開放系統互連參考模型(Open System Interconnection Reference Model,OSI/RM)。這個模型把網路通信的工作分為7層,它們由低到高分別是物理層(Physical Layer),數據鏈路層(Data Link Layer),網路層(Network Layer),傳輸層(Transport Layer),會話層(Session Layer),表示層(Presen tation Layer)和應用層(Application Layer)。第一層到第三層屬於OSI參考模型的低三層,負責創建網路通信連接的鏈路;第四層到第七層為OSI參考模型的高四層,具體負責端到端的數據通信。每層完成一定的功能,每層都直接為其上層提供服務,並且所有層次都互相支持,而網路通信則可以自上而下(在發送端)或者自下而上(在接收端)雙向進行。當然並不是每一通信都需要經過OSI的全部七層,有的甚至只需要雙方對應的某一層即可。物理介面之間的轉接,以及中繼器與中繼器之間的連接就只需在物理層中進行即可;而路由器與路由器之間的連接則只需經過網路層以下的三層即可。總的來說,雙方的通信是在對等層次上進行的,不能在不對稱層次上進行通信。OSI 標准制定過程中採用的方法是將整個龐大而復雜的問題劃分為若干個容易處理的小問題,這就是分層的體系結構辦法。在OSI中,採用了三級抽象,既體系結構,服務定義,協議規格說明。ISO將整個通信功能劃分為七個層次,劃分層次的原則是:1、網中各節點都有相同的層次。2、不同節點的同等層次具有相同的功能。3、同一節點能相鄰層之間通過介面通信。4、每一層使用下層提供的服務,並向其上層提供服務。5、不同節點的同等層按照協議實現對等層之間的通信。第一層:物理層(PhysicalLayer),規定通信設備的機械的、電氣的、功能的和過程的特性,用以建立、維護和拆除物理鏈路連接。具體地講,機械特性規定了網路連接時所需接插件的規格尺寸、引腳數量和排列情況等;電氣特性規定了在物理連接上傳輸bit流時線路上信號電平的大小、阻抗匹配、傳輸速率距離限制等;功能特性是指對各個信號先分配確切的信號含義,即定義了DTE和DCE之間各個線路的功能;規程特性定義了利用信號線進行bit流傳輸的一組操作規程,是指在物理連接的建立、維護、交換信息是,DTE和DCE雙放在各電路上的動作系列。在這一層,數據的單位稱為比特(bit)。屬於物理層定義的典型規范代表包括:EIA/TIA RS-232、EIA/TIA RS-449、V.35、RJ-45等。第二層:數據鏈路層(DataLinkLayer):在物理層提供比特流服務的基礎上,建立相鄰結點之間的數據鏈路,通過差錯控制提供數據幀(Frame)在信道上無差錯的傳輸,並進行各電路上的動作系列。 數據鏈路層在不可靠的物理介質上提供可靠的傳輸。該層的作用包括:物理地址定址、數據的成幀、流量控制、數據的檢錯、重發等。在這一層,數據的單位稱為幀(frame)。數據鏈路層協議的代表包括:SDLC、HDLC、PPP、STP、幀中繼等。 第三層是網路層(Network layer)在計算機網路中進行通信的兩個計算機之間可能會經過很多個數據鏈路,也可能還要經過很多通信子網。網路層的任務就是選擇合適的網間路由和交換結點, 確保數據及時傳送。網路層將數據鏈路層提供的幀組成數據包,包中封裝有網路層包頭,其中含有邏輯地址信息- -源站點和目的站點地址的網路地址。 如果你在談論一個IP地址,那麼你是在處理第3層的問題,這是「數據包」問題,而不是第2層的「幀」。IP是第3層問題的一部分,此外還有一些路由協議和地址解析協議(ARP)。有關路由的一切事情都在第3層處理。地址解析和路由是3層的重要目的。網路層還可以實現擁塞控制、網際互連等功能。在這一層,數據

❻ 在計算機網路體系結構中,各分層結構的特點是什麼

物理層:物理介面規范,傳輸比特流,網卡是工作在物理層的。
數據層:成幀,保證幀的無誤傳輸,MAC地址,形成EHTHERNET幀
網路層:路由選擇,流量控制,IP地址,形成IP包
傳輸層:埠地址,如HTTP對應80埠。TCP和UDP工作於該層,還有
差錯校驗和流量控制。
會話層:組織兩個會話進程之間的通信,並管理數據的交換使用ETBIOS
和WINSOCK協議。QQ等軟體進行通訊因該是工作在會話層的。
表示層:使得不同操作系統之間通信成為可能。
應用層:對應於各個應用軟體

❼ 什麼是計算機網路的體系結構為什麼要採用分層次的結構

它的目的是為網路硬體、軟體、協議、 存取控制和拓撲提供標准。現在廣泛採用的是開放系統互連OSI(
Open System Interconnection)的參考模型,它是用物理層、
數據鏈路層、網路層、傳送層、對話層、
表示層和應用層七個層次描述網路的結構。你應該注意的 是,網路體系結構的優劣將直接影響匯流排、介面和網路的性能。
而網路體系結構的關鍵要素恰恰就是協議和拓撲。
目前最常見的網路體系結構有FDDI、乙太網、 令牌環網和快速乙太網等。
採用分層次的結構原因:各層功能相對獨立,
各層因技術進步而做的改動不會影響到其他層,從而保持體 系結構的穩定性

❽ 計算機網路為什麼要採用分層的體系結構

層次清晰,可擴展性能,增強穩定性等。在對網路分層以後可以將問題細化,使得問題更加容易分析。把一個大的系統分拆成小的體系後,便於在各個層次上制定標准,從而實現層與層之間的標准介面,從而實現各類網路硬體和軟體的通信。分層以後,某一層的改動不會影響到其他的層,便於開發。
獨立性強——上層只需了解下層通過層間介面提供什麼服務-黑箱方法;
適應性好——只要服務和介面不變,層內實現方法可任意改變;
使設計人員能專心設計和開發所關心的功能模塊,功能易於優化、實現;
結構清晰,易於管理和維護;
良好的標准化;