網路通信協議
目前,區域網中常用的通信協議主要有:NetBEUI協議、IPX/SPX兼容協議和TCP/IP協議。
1.1 NetBEUI協議 ①NetBEUI是一種體積小、效率高、速度快的通信協議。在微軟如今的主流產品,在Windows和Windows NT中,NetBEUI已成為其固有的預設協議。NetBEUI是專門為幾台到百餘台PC所組成的單網段部門級小型區域網而設計的。②NetBEUI中包含一個網路介面標准NetBIOS。NetBIOS是IBM用於實現PC間相互通信的標准,是一種在小型區域網上使用的通信規范。該網路由PC組成,最大用戶數不超過30個。
1.2 IPX/SPX及其兼容協議 ①IPX/SPX是Novell公司的通信協議集。與NetBEUI的明顯區別是,IPX/SPX顯得比較龐大,在復雜環境下具有很強的適應性。因為,IPX/SPX在設計一開始就考慮了多網段的問題,具有強大的路由功能,適合於大型網路使用。②IPX/SPX及其兼容協議不需要任何配置,它可通過「網路地址」來識別自己的身份。Novell網路中的網路地址由兩部分組成:標明物理網段的「網路ID」和標明特殊設備的「節點ID」。其中網路ID集中在NetWare伺服器或路由器中,節點ID即為每個網卡的ID號。所有的網路ID和節點ID都是一個獨一無二的「內部IPX地址」。正是由於網路地址的唯一性,才使IPX/SPX具有較強的路由功能。在IPX/SPX協議中,IPX是NetWare最底層的協議,它只負責數據在網路中的移動,並不保證數據是否傳輸成功,也不提供糾錯服務。IPX在負責數據傳送時,如果接收節點在同一網段內,就直接按該節點的ID將數據傳給它;如果接收節點是遠程的,數據將交給NetWare伺服器或路由器中的網路ID,繼續數據的下一步傳輸。SPX在整個協議中負責對所傳輸的數據進行無差錯處理,IPX/SPX也叫做「Novell的協議集」。③NWLink通信協議。Windows NT中提供了兩個IPX/SPX的兼容協議:「NWLink SPX/SPX兼容協議」和「NWLink NetBIOS」,兩者統稱為「NWLink通信協議」。NWLink協議是Novell公司IPX/SPX協議在微軟網路中的實現,它在繼承IPX/SPX協議優點的同時,更適應了微軟的操作系統和網路環境。Windows NT網路和Windows的用戶,可以利用NWLink協議獲得NetWare伺服器的服務。從Novell環境轉向微軟平台,或兩種平台共存時,NWLink通信協議是最好的選擇。
1.3 TCP/IP協議 TCP/IP是目前最常用到的一種通信協議,它是計算機世界裡的一個通用協議。在區域網中,TCP/IP最早出現在Unix系統中,現在幾乎所有的廠商和操作系統都開始支持它。同時,TCP/IP也是Internet的基礎協議。①TCP/IP具有很高的靈活性,支持任意規模的網路,幾乎可連接所有的伺服器和工作站。但其靈活性也為它的使用帶來了許多不便,在使用NetBEUI和IPX/SPX及其兼容協議時都不需要進行配置,而TCP/IP協議在使用時首先要進行復雜的設置。每個節點至少需要一個「IP地址」、一個「子網掩碼」、一個「默認網關」和一個「主機名」。在Windows NT中提供了一個稱為動態主機配置協議(DHCP)的工具,它可自動為客戶機分配連入網路時所需的信息,減輕了聯網工作上的負擔,並避免了出錯。同IPX/SPX及其兼容協議一樣,TCP/IP也是一種可路由的協議。TCP/IP的地址是分級的,這使得它很容易確定並找到網上的用戶,同時也提高了網路帶寬的利用率。當需要時,運行TCP/IP協議的伺服器(如Windows NT伺服器)還可以被配置成TCP/IP路由器。與TCP/IP不同的是,IPX/SPX協議中的IPX使用的是一種廣播協議,它經常出現廣播包堵塞,所以無法獲得最佳的網路帶寬。②Windows中的TCP/IP協議。Windows的用戶不但可以使用TCP/IP組建對等網,而且可以方便地接入其它的伺服器。如果Windows工作站只安裝了TCP/IP協議,它是不能直接加入Windows NT域的。雖然該工作站可通過運行在Windows NT伺服器上的代理伺服器(如Proxy Server)來訪問Internet,但卻不能通過它登錄Windows NT伺服器的域。要讓只安裝TCP/IP協議的Windows用戶加入到Windows NT域,還必須在Windows上安裝NetBEUI協議。③TCP/IP協議在區域網中的配置。只要掌握了一些有關TCP/IP方面的知識,使用起來也非常方便。④IP地址。TCP/IP協議也是靠自己的IP地址來識別在網上的位置和身份的,IP地址同樣由「網路ID」和「節點ID」(或稱HOST ID,主機地址)兩部分組成。一個完整的IP地址用32位(bit)二進制數組成,每8位(1個位元組)為一個段(Segment),共4段(Segment1~Segment4),段與段之間用「,」號隔開。為了便於應用,IP地址在實際使用時並不直接用二進制,而是用大家熟悉的十進制數表示,如192.168.0.1等。在選用IP地址時,總的原則是:網路中每個設備的IP地址必須唯一,在不同的設備上不允許出現相同的IP地址。⑤子網掩碼。子網掩碼是用於對子網的管理,主要是在多網段環境中對IP地址中的「網路ID」進行擴展。例如某個節點的IP地址為192.168.0.1,它是一個C類網。其中前面三段共24位用來表示「網路ID」;而最後一段共8位可以作為「節點ID」自由分配。⑥網關。網關(Gateway)是用來連接異種網路的設置。它充當了一個翻譯的身份,負責對不同的通信協議進行翻譯,使運行不同協議的兩種網路之間可以實現相互通信。如運行TCP/IP協議的Windows NT用戶要訪問運行IPX/SPX協議的Novell網路資源時,則必須由網關作為中介。如果兩個運行TCP/IP協議的網路之間進行互聯,則可以使用Windows NT所提供的「默認網關」(Default Gateway)來完成。⑦主機名。網路中唯一能夠代表用戶或設備身份的只有IP地址。但一般情況下,眾多的IP地址不容易記憶,操作起來也不方便。為了改善這種狀況,我們可給予每個用戶或設備一個有意義的名稱,如「HAOYUN」。
2. 網路協議分別是哪七層協議
根據建議X.200,OSI將計算機網路體系結構劃分為以下七層,標有1~7,第1層在底部。 現「OSI/RM」是英文「Open Systems Interconnection Reference Model」的縮寫。
第7層 應用層
應用層(Application Layer)提供為應用軟體而設的界面,以設置與另一應用軟體之間的通信。例如: HTTP,HTTPS,FTP,TELNET,SSH,SMTP,POP3等。
第6層 表示層
表示層(Presentation Layer)把數據轉換為能與接收者的系統格式兼容並適合傳輸的格式。
第5層 會話層
會話層(Session Layer)負責在數據傳輸中設置和維護電腦網路中兩台電腦之間的通信連接。
第4層 傳輸層
傳輸層(Transport Layer)把傳輸表頭(TH)加至數據以形成數據包。傳輸表頭包含了所使用的協議等發送信息。例如:傳輸控制協議(TCP)等。
第3層 網路層
網路層(Network Layer)決定數據的路徑選擇和轉寄,將網路表頭(NH)加至數據包,以形成分組。網路表頭包含了網路數據。例如:互聯網協議(IP)等。
第2層 數據鏈路層
數據鏈路層(Data Link Layer)負責網路定址、錯誤偵測和改錯。當表頭和表尾被加至數據包時,會形成幀。數據鏈表頭(DLH)是包含了物理地址和錯誤偵測及改錯的方法。數據鏈表尾(DLT)是一串指示數據包末端的字元串。例如乙太網、無線區域網(Wi-Fi)和通用分組無線服務(GPRS)等。分為兩個子層:邏輯鏈路控制(logic link control,LLC)子層和介質訪問控制(media access control,MAC)子層。
第1層 物理層
物理層(Physical Layer)在局部區域網上傳送數據框(frame),它負責管理電腦通信設備和網路媒體之間的互通。包括了針腳、電壓、線纜規范、集線器、中繼器、網卡、主機適配器等。

其中高層(即7、6、5、4層)定義了應用程序的功能,下面3層(即3、2、1層)主要面向通過網路的端到端的數據流。
3. 計算機網路(三)數據鏈路層
結點:主機、路由器
鏈路:網路中兩個結點之間的物理通道,鏈路的傳輸介質主要有雙絞線、光纖和微波。分為有線鏈路、無線鏈路。
數據鏈路:網路中兩個結點之間的邏輯通道,把實現控制數據傳輸協議的硬體和軟體加到鏈路上就構成數據鏈路。
幀:鏈路層的協議數據單元,封裝網路層數據報。
數據鏈路層負責通過一條鏈路從一個結點向另一個物理鏈路直接相連的相鄰結點傳送數據報。
數據鏈路層在物理層提供服務的基礎上向網路層提供服務,其最基本的服務是將源自網路層來的數據可靠地傳輸到相鄰節點的目標機網路層。其主要作用是加強物理層傳輸原始比特流的功能,將物理層提供的可能出錯的物理連接改造成為 邏輯上無差錯的數據鏈路 ,使之對網路層表現為一條無差錯的鏈路。
封裝成幀就是在一段數據的前後部分添加首部和尾部,這樣就構成了一個幀。接收端在收到物理層上交的比特流後,就能根據首部和尾部的標記,從收到的比特流中識別幀的開始和結束。首部和尾部包含許多的控制信息,他們的一個重要作用:幀定界(確定幀的界限)。
幀同步:接收方應當能從接收到的二進制比特流中區分出幀的起始和終止。
組幀的四種方法:
透明傳輸是指不管所傳數據是什麼樣的比特組合,都應當能夠在鏈路上傳送。因此,鏈路層就「看不見」有什麼妨礙數據傳輸的東西。
當所傳數據中的比特組合恰巧與某一個控制信息完全一樣時,就必須採取適當的措施,使收方不會將這樣的數據誤認為是某種控制信息。這樣才能保證數據鏈路層的傳輸是透明的。
概括來說,傳輸中的差錯都是由於雜訊引起的。
數據鏈路層編碼和物理層的數據編碼與調制不同。物理層編碼針對的是單個比特,解決傳輸過程中比特的同步等問題,如曼徹斯特編碼。而數據鏈路層的編碼針對的是一組比特,它通過冗餘碼的技術實現一組二進制比特串在傳輸過程是否出現了差錯。
較高的發送速度和較低的接收能力的不匹配,會造成傳輸出錯,因此流量控制也是數據鏈路層的一項重要工作。數據鏈路層的流量控制是點對點的,而傳輸層的流量控制是端到端的。
滑動窗口有以下重要特性:
若採用n個比特對幀編號,那麼發送窗口的尺寸W T 應滿足: 。因為發送窗口尺寸過大,就會使得接收方無法區別新幀和舊幀。
每發送完一個幀就停止發送,等待對方的確認,在收到確認後再發送下一個幀。
除了比特出差錯,底層信道還會出現丟包 [1] 問題
「停止-等待」就是每發送完一個分組就停止發送,等待對方確認,在收到確認後再發送下一個分組。其操作簡單,但信道利用率較低
信道利用率是指發送方在一個發送周期內,有效地發送數據所需要的時間占整個發送周期的比率。即
GBN發送方:
GBN接收方:
因連續發送數據幀而提高了信道利用率,重傳時必須把原來已經正確傳送的數據幀重傳,是傳送效率降低。
設置單個確認,同時加大接收窗口,設置接收緩存,緩存亂序到達的幀。
SR發送方:
SR接收方:
發送窗口最好等於接收窗口。(大了會溢出,小了沒意義),即
傳輸數據使用的兩種鏈路
信道劃分介質訪問控制將使用介質的每個設備與來自同一通信信道上的其他設備的通信隔離開來,把時域和頻域資源合理地分配給網路上的設備。
當傳輸介質的帶寬超過傳輸單個信號所需的帶寬時,人們就通過在一條介質上同時攜帶多個傳輸信號的方法來提高傳輸系統的利用率,這就是所謂的多路復用,也是實現信道劃分介質訪問控制的途徑。多路復用技術把多個信號組合在一條物理信道上進行傳輸,使多個計算機或終端設備共享信道資源,提高了信道的利用率。信道劃分的實質就是通過分時、分頻、分碼等方法把原來的一條廣播信道,邏輯上分為幾條用於兩個結點之間通信的互不幹擾的子信道,實際上就是把廣播信道轉變為點對點信道。
頻分多路復用是一種將多路基帶信號調制到不同頻率載波上,再疊加形成一個復合信號的多路復用技術。在物理信道的可用帶寬超過單個原始信號所需帶寬的情況下,可將該物理信道的總帶寬分割成若千與傳輸單個信號帶寬相同(或略寬)的子信道,每個子信道傳輸一種信號,這就是頻分多路復用。
每個子信道分配的帶寬可不相同,但它們的總和必須不超過信道的總帶寬。在實際應用中,為了防止子信道之間的千擾,相鄰信道之間需要加入「保護頻帶」。頻分多路復用的優點在於充分利用了傳輸介質的帶寬,系統效率較高;由於技術比較成熟,實現也較容易。
時分多路復用是將一條物理信道按時間分成若干時間片,輪流地分配給多個信號使用。每個時間片由復用的一個信號佔用,而不像FDM那樣,同一時間同時發送多路信號。這樣,利用每個信號在時間上的交叉,就可以在一條物理信道上傳輸多個信號。
就某個時刻來看,時分多路復用信道上傳送的僅是某一對設備之間的信號:就某段時間而言,傳送的是按時間分割的多路復用信號。但由於計算機數據的突發性,一個用戶對已經分配到的子信道的利用率一般不高。統計時分多路復用(STDM,又稱非同步時分多路復用)是TDM 的一種改進,它採用STDM幀,STDM幀並不固定分配時隙,面按需動態地分配時隙,當終端有數據要傳送時,才會分配到時間片,因此可以提高線路的利用率。例如,線路傳輸速率為8000b/s,4個用戶的平均速率都為2000b/s,當採用TDM方式時,每個用戶的最高速率為2000b/s.而在STDM方式下,每個用戶的最高速率可達8000b/s.
波分多路復用即光的頻分多路復用,它在一根光纖中傳輸多種不同波長(頻率)的光信號,由於波長(頻率)不同,各路光信號互不幹擾,最後再用波長分解復用器將各路波長分解出來。由於光波處於頻譜的高頻段,有很高的帶寬,因而可以實現多路的波分復用
碼分多路復用是採用不同的編碼來區分各路原始信號的一種復用方式。與FDM和 TDM不同,它既共享信道的頻率,又共享時間。下面舉一個直觀的例子來理解碼分復用。
實際上,更常用的名詞是碼分多址(Code Division Multiple Access.CDMA),1個比特分為多個碼片/晶元( chip),每一個站點被指定一個唯一的m位的晶元序列,發送1時發送晶元序列(通常把o寫成-1) 。發送1時站點發送晶元序列,發送o時發送晶元序列反碼。
純ALOHA協議思想:不監聽信道,不按時間槽發送,隨機重發。想發就發
如果發生沖突,接收方在就會檢測出差錯,然後不予確認,發送方在一定時間內收不到就判斷發生沖突。超時後等一隨機時間再重傳。
時隙ALOHA協議的思想:把時間分成若干個相同的時間片,所有用戶在時間片開始時刻同步接入網路信道,若發生沖突,則必須等到下一個時間片開始時刻再發送。
載波監聽多路訪問協議CSMA(carrier sense multiple access)協議思想:發送幀之前,監聽信道。
堅持指的是對於監聽信道忙之後的堅持。
1-堅持CSMA思想:如果一個主機要發送消息,那麼它先監聽信道。
優點:只要媒體空閑,站點就馬上發送,避免了媒體利用率的損失。
缺點:假如有兩個或兩個以上的站點有數據要發送,沖突就不可避免。
非堅持指的是對於監聽信道忙之後就不繼續監聽。
非堅持CSMA思想:如果一個主機要發送消息,那麼它先監聽信道。
優點:採用隨機的重發延遲時間可以減少沖突發生的可能性。
缺點:可能存在大家都在延遲等待過程中,使得媒體仍可能處於空閑狀態,媒體使用率降低。
p-堅持指的是對於監聽信道空閑的處理。
p-堅持CSMA思想:如果一個主機要發送消息,那麼它先監聽信道。
優點:既能像非堅持演算法那樣減少沖突,又能像1-堅持演算法那樣減少媒體空閑時間的這種方案。
缺點:發生沖突後還是要堅持把數據幀發送完,造成了浪費。
載波監聽多點接入/碰撞檢測CSMA/CD(carrier sense multiple access with collision detection)
CSMA/CD的工作流程:
由圖可知,至多在發送幀後經過時間 就能知道所發送的幀有沒有發生碰撞。因此把乙太網端到端往返時間為 稱為爭周期(也稱沖突窗口或碰撞窗口)。
截斷二進制指數規避演算法:
最小幀長問題:幀的傳輸時延至少要兩倍於信號在匯流排中的傳播時延。
載波監聽多點接入/碰撞避免CSMA/CA(carrier sense multiple access with collision avoidance)其工作原理如下
CSMA/CD與CSMA/CA的異同點:
相同點:CSMA/CD與CSMA/CA機制都從屬於CSMA的思路,其核心是先聽再說。換言之,兩個在接入信道之前都須要進行監聽。當發現信道空閑後,才能進行接入。
不同點:
輪詢協議:主結點輪流「邀請」從屬結點發送數據。
令牌:一個特殊格式的MAC控制幀,不含任何信息。控制信道的使用,確保同一時刻只有一個結點獨占信道。每個結點都可以在一定的時間內(令牌持有時間)獲得發送數據的權利,並不是無限制地持有令牌。應用於令牌環網(物理星型拓撲,邏輯環形拓撲)。採用令牌傳送方式的網路常用於負載較重、通信量較大的網路中。
輪詢訪問MAC協議/輪流協議/輪轉訪問MAC協議:基於多路復用技術劃分資源。
隨機訪問MAC協議: 用戶根據意願隨機發送信息,發送信息時可獨占信道帶寬。 會發生沖突
信道劃分介質訪問控制(MAC Multiple Access Control )協議:既要不產生沖突,又要發送時佔全部帶寬。
區域網(Local Area Network):簡稱LAN,是指在某一區域內由多台計算機互聯成的計算機組,使用廣播信道。其特點有
決定區域網的主要要素為:網路拓撲,傳輸介質與介質訪問控制方法。
區域網的分類
IEEE 802標准所描述的區域網參考模型只對應OSI參考模型的數據鏈路層與物理層,它將數據鏈路層劃分為邏輯鏈路層LLC子層和介質訪問控制MAC子層。
乙太網(Ethernet)指的是由Xerox公司創建並由Xerox、Intel和DEC公司聯合開發的基帶匯流排區域網規范,是當今現有區域網採用的最通用的通信協議標准。乙太網絡使用CSMA/CD(載波監聽多路訪問及沖突檢測)技術。 乙太網只實現無差錯接收,不實現可靠傳輸。
乙太網兩個標准:
乙太網提供無連接、不可靠的服務
10BASE-T是傳送基帶信號的雙絞線乙太網,T表示採用雙絞線,現10BASE-T 採用的是無屏蔽雙絞線(UTP),傳輸速率是10Mb/s。
計算機與外界有區域網的連接是通過通信適配器的。
在區域網中,硬體地址又稱為物理地址,或MAC地址。MAC地址:每個適配器有一個全球唯一的48位二進制地址,前24位代表廠家(由IEEE規定),後24位廠家自己指定。常用6個十六進制數表示,如02-60-8c-e4-b1-21。
最常用的MAC幀是乙太網V2的格式。
IEEE 802.11是無線區域網通用的標准,它是由IEEE所定義的無線網路通信的標准。
廣域網(WAN,Wide Area Network),通常跨接很大的物理范圍,所覆蓋的范圍從幾十公里到幾千公里,它能連接多個城市或國家,或橫跨幾個洲並能提供遠距離通信,形成國際性的遠程網路。
廣域網的通信子網主要使用分組交換技術。廣域網的通信子網可以利用公用分組交換網、衛星通信網和無線分組交換網,它將分布在不同地區的區域網或計算機系統互連起來,達到資源共享的目的。如網際網路(Internet)是世界范圍內最大的廣域網。
點對點協議PPP(Point-to-Point Protocol)是目前使用最廣泛的數據鏈路層協議,用戶使用撥號電話接入網際網路時一般都使用PPP協議。 只支持全雙工鏈路。
PPP協議應滿足的要求
PPP協議的三個組成部分
乙太網交換機
沖突域:在同一個沖突域中的每一個節點都能收到所有被發送的幀。簡單的說就是同一時間內只能有一台設備發送信息的范圍。
廣播域:網路中能接收任一設備發出的廣播幀的所有設備的集合。簡單的說如果站點發出一個廣播信號,所有能接收收到這個信號的設備范圍稱為一個廣播域。
乙太網交換機的兩種交換方式:
直通式交換機:查完目的地址(6B)就立刻轉發。延遲小,可靠性低,無法支持具有不同速率的埠的交換。
存儲轉發式交換機:將幀放入高速緩存,並檢查否正確,正確則轉發,錯誤則丟棄。延遲大,可靠性高,可以支持具有不同速率的埠的交換。
4. 常見的網路協議有哪幾種,分別是如何定義的
常見的網路協議有TCP/IP協議、NetBEUI、IPX/SPX協議。
1、TCP/IP協議,是這三大協議中最重要的一個,是互聯網的基礎協議,任何和互聯網有關的操作都離不開TCP/IP協議。但TCP/IP協議在區域網中的通信效率不高,使用它在瀏覽「網上鄰居」中的計算機時,會出現不能正常瀏覽的現象。
2、NetBEUI,即NetBios增強用戶介面。它是NetBIOS協議的增強版本,曾被許多操作系統採用。NETBEUI協議在許多情形下很有用,是WINDOWS98之前的操作系統的預設協議。NetBEUI協議是一種短小精悍、通信效率高的廣播型協議。
3,、IPX/SPX協議,是Novell開發的專用於NetWare網路中的協議,但大部分可以聯機的游戲都支持IPX/SPX協議。雖然這些游戲通過TCP/IP協議也能聯機,但顯然還是通過IPX/SPX協議更省事,因為根本不需要任何設置。

(4)計算機網路sr協議在哪擴展閱讀:
由於網路節點之間聯系的復雜性,在制定協議時,通常把復雜成分分解成一些簡單成分,然後再將它們復合起來。網路協議的層次結構如下:
1、結構中的每一層都規定有明確的服務及介面標准。
2、把用戶的應用程序作為最高層
3、除了最高層外,中間的每一層都向上一層提供服務,同時又是下一層的用戶。
5. IP城域網中的AC、BRAS、SW、SR、CR是什麼意思
釋義:AC全稱為Access Controller,意思是接入控制器。BRAS全稱為Broadband Remote Access Server,意思是寬頻遠程接入伺服器。SW全稱為switch,意思是交換機。SR全稱為Service Router,意思是全業務路由器 。CR全稱為Core Router,意思是核心路由器。
AC作用:一個加強允許或者拒絕用戶訪問網路資源的控制方法,通常基於用戶的帳戶或者用戶所屬的某個組。
BRAS作用:在數字用戶線接入復用設備(DSLAM)在一個互聯網服務提供商(ISP)的網路中。
SW作用:是一個擴大網路的器材,能為子網路中提供更多的連接 埠,以便連接更多的計算機。
SR作用:業務路由器是可擴展升級的Internet路由器,可以提供盡力而為的Internet業務,使傳統的數據業務的遷移成為可能。
CR作用:核心路由器又稱「骨幹路由器」,是位於網路中心的路由器。位於網路邊緣的路由器叫接入路由器。
6. 網路協議分別是哪七層協議
網路協議使網路中的各種設備能夠相互交換信息,常見的網路協議有TCP/IP協議、IPX/SPX協議和NetBEUI協議等。
OSI參考模型將計算機網路分為7層:1物理層
2數據鏈路層
3網路層
4傳輸層
5會話層
6表示層
7應用層
7. 計算機網路名詞解釋知識點簡答題整理
基帶傳輸:比特流直接向電纜發送,無需調制到不同頻段;
基帶信號:信源發出的沒有經過調制的原始電信號;
URL :統一資源定位符,標識萬維網上的各種文檔,全網范圍唯一;
傳輸時延:將分組的所有比特推向鏈路所需要的時間;
協議:協議是通信設備通信前約定好的必須遵守的規則與約定,包括語法、語義、定時等。
網路協議:對等層中對等實體間制定的規則和約定的集合;
MODEM :數據機;
起始(原始)伺服器:對象最初存放並始終保持其拷貝的伺服器;
計算機網路:是用通信設備和線路將分散在不同地點的有獨立功能的多個計算機系統互相連接起來,並通過網路協議進行數據通信,實現資源共享的計算機集合;
解調:將模擬信號轉換成數字信號;
多路復用:在一條傳輸鏈路上同時建立多條連接,分別傳輸數據;
默認路由器:與主機直接相連的一台路由器;
LAN :區域網,是一個地理范圍小的計算機網路;
DNS :域名系統,完成主機名與 IP 地址的轉換;
ATM :非同步傳輸模式,是建立在電路交換和分組交換基礎上的一種面向連接的快速分組交換技術;
Torrent :洪流,參與一個特定文件分發的所有對等方的集合;
Cookie :為了辨別用戶、用於 session 跟蹤等而儲存在用戶本地終端的數據;
SAP :服務訪問點;
n PDU : PDU 為協議數據單元,指對等層之間的數據傳輸單位;第 n 層的協議數據單元;
PPP :點對點傳輸協議;
Web caching :網頁緩存技術;
Web 緩存:代替起始伺服器來滿足 HTTP 請求的網路實體。
Proxy server :代理伺服器;
Go-back-n :回退 n 流水線協議;允許發送方連續發送分組,無需等待確認,若出錯,從出錯的分組開始重發;接收方接收數據分組,若正確,發 ACK ,若出錯,丟棄出錯分組及其後面的分組,不發任何應答;
Packet switching :分組交換技術;
CDMA :碼分多路復用技術;各站點使用不同的編碼,然後可以混合發送,接收方可正確提取所需信息;
TDM :時分多路復用,將鏈路的傳輸時間劃分為若干時隙,每個連接輪流使用不同時隙進行傳輸;
FDM :頻分多路復用,將鏈路傳輸頻段分成多個小的頻段,分別用於不同連接信息的傳送;
OSI :開放系統互連模型,是計算機廣域網體系結構的國際標准,把網路分為 7 層;
CRC :循環冗餘檢測法,事先雙方約定好生成多項式,發送節點在發送數據後附上冗餘碼,使得整個數據可以整除生成多項式,接收節點收到後,若能整除,則認為數據正確,否則,認為數據錯誤;
RIP :路由信息協議;
Socket (套接字):同一台主機內應用層和運輸層的介面;
轉發表:交換設備內,從入埠到出埠建立起來的對應表,主要用來轉發數據幀或 IP 分組;
路由表:路由設備內,從源地址到目的地址建立起來的最佳路徑表,主要用來轉發 IP 分組;
存儲轉發:分組先接收存儲後,再轉發出去;
虛電路網路:能支持實現虛電路通信的網路;
數據報網路:能支持實現數據報通信的網路;
虛電路:源和目的主機之間建立的一條邏輯連接,創建這條邏輯連接時,將指派一個虛電路標識符 VC.ID ,相關設備為它運行中的連接維護狀態信息;
毒性逆轉技術: DV 演算法中,解決計數到無窮的技術,即告知從相鄰路由器獲得最短路徑信息的相鄰路由器到目的網路的距離為無窮大;
加權公平排隊 WFQ :排隊策略為根據權值大小不同,將超出隊列的數據包丟棄;
服務原語:服務的實現形式,在相鄰層通過服務原語建立交互關系,完服務與被服務的過程;
透明傳輸:在無需用戶干涉的情況下,可以傳輸任何數據的技術;
自治系統 AS :由一組通常在相同管理者控制下的路由器組成,在相同的 AS 中,路由器可全部選用同樣的選路演算法,且擁有相互之間的信息;
分組丟失:分組在傳輸過程中因為種種原因未能到達接收方的現象;
隧道技術:在鏈路層或網路層通過對等協議建立起來的邏輯通信信道;
移動接入:也稱無線接入,是指那些常常是移動的端系統與網路的連接;
面向連接服務:客戶機程序和伺服器程序發送實際數據的分組前,要彼此發送控制分組建立連接;
無連接服務:客戶機程序和伺服器程序發送實際數據的分組前,無需彼此發送控制分組建立連接;
MAC 地址:網卡或網路設備埠的物理地址;
擁塞控制:當網路發生擁塞時,用響應的演算法使網路恢復到正常工作的狀態;
流量控制:控制發送方發送數據的速率,使收發雙方協調一致;
Ad Hoc 網路:自主網路,無基站;
往返時延:發送方發送數據分組到收到接收方應答所需要的時間;
電路交換:通信節點之間採用面向連接方式,使用專用電路進行傳輸;
ADSL :非同步數字用戶專線,採用不對稱的上行與下行傳輸速率,常用於用戶寬頻接入。
多播:組播,一對多通信;
路由器的組成包括:輸入埠、輸出埠、交換結構、選路處理器;
網路應用程序體系結構:客戶機 / 伺服器結構、對等共享、混合;
集線器是物理層設備,交換機是數據鏈路層設備,網卡是數據鏈路層設備,路由器是網路層設備;
雙絞線連接設備的兩種方法:直連線和交叉線,同種設備相連和計算機與路由器相連都使用交叉線;不同設備相連用直連線;
MAC 地址 6 位元組, IPv4 地址 4 位元組, IPv6 地址 16 位元組;
有多種方法對載波波形進行調制,調頻,調幅,調相;
IEEE802.3 乙太網採用的多路訪問協議是 CSMA/CD ;
自治系統 AS 內部的選路協議是 RIP 、 OSPF ;自治系統間的選路協議是 BGP ;
多路訪問協議:分三大類:信道劃分協議、隨機訪問協議、輪流協議;
信道劃分協議包括:頻分 FDM 、時分 TDM 、碼分 CDMA ;
隨機訪問協議包括: ALOHA 、 CSMA 、 CSMA/CD(802.3) 、 CSMA/CA(802.11) ;
輪流協議包括:輪詢協議、令牌傳遞協議
ISO 和 OSI 分別是什麼單詞的縮寫,中文意思是什麼?用自己的理解寫出 OSI 分成哪七層?每層要解決的問題和主要功能是什麼?
答:ISO:international standard organization 國際標准化組織;OSI:open system interconnection reference model 開放系統互連模型;
OSI分為 應用層、表示層、會話層、傳輸層、網路層、數據鏈路層、物理層;
層名稱解決的問題主要功能
應用層實現特定應用選擇特定協議;針對特定應用規定協議、時序、表示等,進行封裝。在端系統中用軟體來實現,如HTTP;
表示層壓縮、加密等表示問題;規定數據的格式化表示,數據格式的轉換等;
會話層會話關系建立,會話時序控制等問題;規定通信的時序;數據交換的定界、同步、建立檢查點等;
傳輸層源埠到目的埠的傳輸問題;所有傳輸遺留問題:復用、流量、可靠;
網路層路由、擁塞控制等網路問題;IP定址,擁塞控制;
數據鏈路層相鄰節點無差錯傳輸問題;實現檢錯與糾錯,多路訪問,定址;
物理層物理上可達;定義機械特性,電氣特性,功能特性等;
網際網路協議棧分層模型及每層的功能。
分層的優點:使復雜系統簡化,易於維護和更新;
分層的缺點:有些功能可能在不同層重復出現;
假設一個用戶 ( 郵箱為: [email protected]) 使用 outlook 軟體發送郵件到另一個用戶 ( 郵箱為: [email protected]) ,且接收用戶使用 IMAP 協議收取郵件,請給出此郵件的三個傳輸階段,並給出每個階段可能使用的應用層協議。
用戶 [email protected] 使用outlook軟體發送郵件到 163 郵件伺服器
163郵件伺服器將郵件發送給用戶 [email protected] 的yahoo郵件伺服器
用戶 [email protected] 使用IMAP協議從yahoo郵件伺服器上拉取郵件
第1、2階段可以使用SMTP協議或者擴展的SMTP協議:MIME協議,第3階段可以使用IMAP、POP3、HTTP協議
三次握手的目的是什麼?為什麼要三次(二次為什麼不行)?
為了實現可靠數據傳輸,TCP協議的通信雙方,都必須維護一個序列號,以標識發送出去的數據包中,哪些是已經被對方收到的。三次握手的過程即是通信雙方相互告知序列號起始值,並確認對方已經收到了序列號起始值的必經步驟。
如果只是兩次握手,至多隻有連接發起方的起始序列號能被確認,另一方選擇的序列號則得不到確認。
選擇性重傳 (SR) 協議中發送方窗口和接收方窗口何時移動?分別如何移動?
發送方:當收到ACK確認分組後,若該分組的序號等於發送基序號時窗口發生移動;向前移動到未確認的最小序號的分組處;
接收方:當收到分組的序號等於接收基序號時窗口移動;窗口按交付的分組數量向前移動;
簡述可靠傳輸協議 rdt1.0, rdt2.0, rdt2.1, rdt2.2 和 rdt3.0 在功能上的區別。
rdt1.0:經可靠信道上的可靠數據傳輸,數據傳送不出錯不丟失,不需要反饋。
rdt2.0(停等協議):比特差錯信道上的可靠數據傳輸,認為信道傳輸的數據可能有比特差錯,但不會丟包。接收方能進行差錯檢驗,若數據出錯,發送方接收到NAK之後進行重傳。
rdt2.1:在rdt2.0的基礎上增加了處理重復分組的功能,收到重復分組後,再次發送ACK;
rdt2.2:實現無NAK的可靠數據傳輸,接收方回發帶確認號的ACK0/1,
收到出錯分組時,不發NAK,發送接收到的上一個分組的ACK;
rdt3.0:實現了超時重發功能,由發送方檢測丟包和恢復;
電路交換和虛電路交換的區別?哪些網路使用電路交換、報文交換、虛電路交換和數據報交換?請各舉一個例子。
電路交換時整個物理線路由通訊雙方獨占;
虛電路交換是在電路交換的基礎上增加了分組機制,在一條物理線路上虛擬出多條通訊線路。
電路交換:電話通信網
報文交換:公用電報網
虛電路交換:ATM
數據報交換:Internet
電路交換:面向連接,線路由通信雙方獨占;
虛電路交換:面向連接,分組交換,各分組走統一路徑,非獨占鏈路;
數據報交換:無連接,分組交換,各分組走不同路徑;
交換機逆向擴散式路徑學習法的基本原理:
交換表初始為空;
當收到一個幀的目的地址不在交換表中時,將該幀發送到所有其他介面(除接收介面),並在表中記錄下發送節點的信息,包括源MAC地址、發送到的介面,當前時間;
如果每個節點都發送了一幀,每個節點的地址都會記錄在表中;
收到一個目的地址在表中的幀,將該幀發送到對應的介面;
表自動更新:一段時間後,沒有收到以表中某個地址為源地址的幀,從表中刪除該地址;
非持久 HTTP 連接和持久 HTTP 連接的不同:
非持久HTTP連接:每個TCP連接只傳輸一個web對象,只傳送一個請求/響應對,HTTP1.0使用;
持久HTTP連接:每個TCP連接可以傳送多個web對象,傳送多個請求/響應對,HTTP1.1使用;
Web 緩存的作用是什麼?簡述其工作過程:
作用:代理原始伺服器滿足HTTP請求的網路實體;
工作過程:
瀏覽器:與web緩存建立一個TCP連接,向緩存發送一個該對象的HTTP請求;
Web緩存:檢查本地是否有該對象的拷貝;
若有,就用HTTP響應報文向瀏覽器轉發該對象;
若沒有,緩存與原始伺服器建立TCP連接,向原始伺服器發送一個該對象的HTTP請求,原始伺服器收到請求後,用HTTP響應報文向web緩存發送該對象,web緩存收到響應,在本地存儲一份,並通過HTTP響應報文向瀏覽器發送該對象;
簡要說明無線網路為什麼要用 CSMA/CA 而不用 CSMA/CD ?
無線網路用無線信號實施傳輸,現在的技術還無法檢測沖突,因此無法使用帶沖突檢測的載波偵聽多路訪問協議CSMA/CD,而使用沖突避免的載波偵聽多路訪問協議CSMA/CA;
簡述各種交換結構優缺點,並解釋線頭 HOL 阻塞現象。
內存交換結構:以內存為交換中心;
優點:實現簡單,成本低;
缺點:不能並行,速度慢;
匯流排交換結構:以共享匯流排為交換中心;
優點:實現相對簡單,成本低;
缺點:不能並行,速度慢,不過比memory快;
縱橫制:以交叉陣列為交換中心;
優點:能並行,速度快,比memory和匯流排都快;
缺點:實現復雜,成本高;
線頭HOL阻塞:輸入隊列中後面的分組被位於線頭的一個分組阻塞(即使輸出埠是空閑的),等待交換結構發送;
CSMA/CD 協議的中文全稱,簡述其工作原理。
帶沖突檢測的載波偵聽多路訪問協議;
在共享信道網路中,發送節點發送數據之前,先偵聽鏈路是否空閑,若空閑,立即發送,否則隨機推遲一段時間再偵聽,在傳輸過程中,邊傳輸邊偵聽,若發生沖突,以最快速度結束發送,並隨機推遲一段時間再偵聽;
奇偶校驗、二維奇偶校驗、 CRC 校驗三者比較:
奇偶校驗能檢測出奇數個差錯;
二維奇偶校驗能夠檢測出兩個比特的錯誤,能夠糾正一個比特的差錯;
CRC校驗能檢測小於等於r位的差錯和任何奇數個差錯;
GBN 方法和 SR 方法的差異:
GBN:一個定時器,超時,重發所有已發送未確認接收的分組,發送窗口不超過2的k次方-1,接收窗口大小為1,採用累計確認,接收方返回最後一個正確接受的分組的ACK;
SR:多個定時器,超時,只重發超時定時器對應的分組,發送窗口和接收窗口大小都不超過2的k-1次方,非累計確認,接收方收到當前窗口或前一窗口內正確分組時返回對應的ACK;
8. 計算機網路中五層協議它們分別的主要功能是什麼它們具體分別是在哪裡(從硬體層面上談)實現的
1,物理層;其主要功能是:主要負責在物理線路上傳輸原始的二進制數據。
2、數據鏈路層;其主要功能是:主要負責在通信的實體間建立數據鏈路連接。
3、網路層;其主要功能是:要負責創建邏輯鏈路,以及實現數據包的分片和重組,實現擁塞控制、網路互連等功能。
4、傳輸層;其主要功能是:負責向用戶提供端到端的通信服務,實現流量控制以及差錯控制。
5、應用層;其主要功能是:為應用程序提供了網路服務。
物理層和數據鏈路層是由計算機硬體(如網卡)實現的,網路層和傳輸層由操作系統軟體實現,而應用層由應用程序或用戶創建實現。

(8)計算機網路sr協議在哪擴展閱讀:
應用層是體系結構中的最高層。應用層確定進程之間通信的性質以滿足用戶的需要。這里的進程就是指正在運行的程序。
應用層不僅要提供應用進程所需要的信息交換
和遠地操作,而且還要作為互相作用的應用進程的用戶代理,來完成一些為進行語義上有意義的信息交換所必須的功能。應用層直接為用戶的應用進程提供服務。
傳輸層的任務就是負責主機中兩個進程之間的通信。網際網路的傳輸層可使用兩種不同協議:即面向連接的傳輸控制協議TCP,和無連接的用戶數據報協議UDP。
面向連接的服務能夠提供可靠的交付,但無連接服務則不保證提供可靠的交付,它只是「盡最大努力交付」。這兩種服務方式都很有用,備有其優缺點。在分組交換網內的各個交換結點機都沒有傳輸層。
網路層負責為分組交換網上的不同主機提供通信。在發送數據時,網路層將運輸層產生的報文段或用戶數據報封裝成分組或包進行傳送。
在TCP/IP體系中,分組也叫作IP數據報,或簡稱為數據報。網路層的另一個任務就是要選擇合適的路由,使源主
機運輸層所傳下來的分組能夠交付到目的主機。
9. 計算機網路第三章(數據鏈路層)
3.1、數據鏈路層概述
概述
鏈路 是從一個結點到相鄰結點的一段物理線路, 數據鏈路 則是在鏈路的基礎上增加了一些必要的硬體(如網路適配器)和軟體(如協議的實現)
網路中的主機、路由器等都必須實現數據鏈路層
區域網中的主機、交換機等都必須實現數據鏈路層
從層次上來看數據的流動
僅從數據鏈路層觀察幀的流動
主機H1 到主機H2 所經過的網路可以是多種不同類型的
注意:不同的鏈路層可能採用不同的數據鏈路層協議
數據鏈路層使用的信道
數據鏈路層屬於計算機網路的低層。 數據鏈路層使用的信道主要有以下兩種類型:
點對點信道
廣播信道
區域網屬於數據鏈路層
區域網雖然是個網路。但我們並不把區域網放在網路層中討論。這是因為在網路層要討論的是多個網路互連的問題,是討論分組怎麼從一個網路,通過路由器,轉發到另一個網路。
而在同一個區域網中,分組怎麼從一台主機傳送到另一台主機,但並不經過路由器轉發。從整個互聯網來看, 區域網仍屬於數據鏈路層 的范圍
三個重要問題
數據鏈路層傳送的協議數據單元是 幀
封裝成幀
封裝成幀 (framing) 就是在一段數據的前後分別添加首部和尾部,然後就構成了一個幀。
首部和尾部的一個重要作用就是進行 幀定界 。
差錯控制
在傳輸過程中可能會產生 比特差錯 :1 可能會變成 0, 而 0 也可能變成 1。
可靠傳輸
接收方主機收到有誤碼的幀後,是不會接受該幀的,會將它丟棄
如果數據鏈路層向其上層提供的是不可靠服務,那麼丟棄就丟棄了,不會再有更多措施
如果數據鏈路層向其上層提供的是可靠服務,那就還需要其他措施,來確保接收方主機還可以重新收到被丟棄的這個幀的正確副本
以上三個問題都是使用 點對點信道的數據鏈路層 來舉例的
如果使用廣播信道的數據鏈路層除了包含上面三個問題外,還有一些問題要解決
如圖所示,主機A,B,C,D,E通過一根匯流排進行互連,主機A要給主機C發送數據,代表幀的信號會通過匯流排傳輸到匯流排上的其他各主機,那麼主機B,D,E如何知道所收到的幀不是發送給她們的,主機C如何知道發送的幀是發送給自己的
可以用編址(地址)的來解決
將幀的目的地址添加在幀中一起傳輸
還有數據碰撞問題
隨著技術的發展,交換技術的成熟,
在 有線(區域網)領域 使用 點對點鏈路 和 鏈路層交換機 的 交換式區域網 取代了 共享式區域網
在無線區域網中仍然使用的是共享信道技術
3.2、封裝成幀
介紹
封裝成幀是指數據鏈路層給上層交付的協議數據單元添加幀頭和幀尾使之成為幀
幀頭和幀尾中包含有重要的控制信息
發送方的數據鏈路層將上層交付下來的協議數據單元封裝成幀後,還要通過物理層,將構成幀的各比特,轉換成電信號交給傳輸媒體,那麼接收方的數據鏈路層如何從物理層交付的比特流中提取出一個個的幀?
答:需要幀頭和幀尾來做 幀定界
但比不是每一種數據鏈路層協議的幀都包含有幀定界標志,例如下面例子
前導碼
前同步碼:作用是使接收方的時鍾同步
幀開始定界符:表明其後面緊跟著的就是MAC幀
另外乙太網還規定了幀間間隔為96比特時間,因此,MAC幀不需要幀結束定界符
透明傳輸
透明
指某一個實際存在的事物看起來卻好像不存在一樣。
透明傳輸是指 數據鏈路層對上層交付的傳輸數據沒有任何限制 ,好像數據鏈路層不存在一樣
幀界定標志也就是個特定數據值,如果在上層交付的協議數據單元中, 恰好也包含這個特定數值,接收方就不能正確接收
所以數據鏈路層應該對上層交付的數據有限制,其內容不能包含幀定界符的值
解決透明傳輸問題
解決方法 :面向位元組的物理鏈路使用 位元組填充 (byte stuffing) 或 字元填充 (character stuffing),面向比特的物理鏈路使用比特填充的方法實現透明傳輸
發送端的數據鏈路層在數據中出現控制字元「SOH」或「EOT」的前面 插入一個轉義字元「ESC」 (其十六進制編碼是1B)。
接收端的數據鏈路層在將數據送往網路層之前刪除插入的轉義字元。
如果轉義字元也出現在數據當中,那麼應在轉義字元前面插入一個轉義字元 ESC。當接收端收到連續的兩個轉義字元時,就刪除其中前面的一個。
幀的數據部分長度
總結
3.3、差錯檢測
介紹
奇偶校驗
循環冗餘校驗CRC(Cyclic Rendancy Check)
例題
總結
循環冗餘校驗 CRC 是一種檢錯方法,而幀校驗序列 FCS 是添加在數據後面的冗餘碼
3.4、可靠傳輸
基本概念
下面是比特差錯
其他傳輸差錯
分組丟失
路由器輸入隊列快滿了,主動丟棄收到的分組
分組失序
數據並未按照發送順序依次到達接收端
分組重復
由於某些原因,有些分組在網路中滯留了,沒有及時到達接收端,這可能會造成發送端對該分組的重發,重發的分組到達接收端,但一段時間後,滯留在網路的分組也到達了接收端,這就造成 分組重復 的傳輸差錯
三種可靠協議
停止-等待協議SW
回退N幀協議GBN
選擇重傳協議SR
這三種可靠傳輸實現機制的基本原理並不僅限於數據鏈路層,可以應用到計算機網路體系結構的各層協議中
停止-等待協議
停止-等待協議可能遇到的四個問題
確認與否認
超時重傳
確認丟失
既然數據分組需要編號,確認分組是否需要編號?
要。如下圖所示
確認遲到
注意,圖中最下面那個數據分組與之前序號為0的那個數據分組不是同一個數據分組
注意事項
停止-等待協議的信道利用率
假設收發雙方之間是一條直通的信道
TD :是發送方發送數據分組所耗費的發送時延
RTT :是收發雙方之間的往返時間
TA :是接收方發送確認分組所耗費的發送時延
TA一般都遠小於TD,可以忽略,當RTT遠大於TD時,信道利用率會非常低
像停止-等待協議這樣通過確認和重傳機制實現的可靠傳輸協議,常稱為自動請求重傳協議ARQ( A utomatic R epeat re Q uest),意思是重傳的請求是自動進行,因為不需要接收方顯式地請求,發送方重傳某個發送的分組
回退N幀協議GBN
為什麼用回退N幀協議
在相同的時間內,使用停止-等待協議的發送方只能發送一個數據分組,而採用流水線傳輸的發送方,可以發送多個數據分組
回退N幀協議在流水線傳輸的基礎上,利用發送窗口來限制發送方可連續發送數據分組的個數
無差錯情況流程
發送方將序號落在發送窗口內的0~4號數據分組,依次連續發送出去
他們經過互聯網傳輸正確到達接收方,就是沒有亂序和誤碼,接收方按序接收它們,每接收一個,接收窗口就向前滑動一個位置,並給發送方發送針對所接收分組的確認分組,在通過互聯網的傳輸正確到達了發送方
發送方每接收一個、發送窗口就向前滑動一個位置,這樣就有新的序號落入發送窗口,發送方可以將收到確認的數據分組從緩存中刪除了,而接收方可以擇機將已接收的數據分組交付上層處理
累計確認
累計確認
優點:
即使確認分組丟失,發送方也可能不必重傳
減小接收方的開銷
減小對網路資源的佔用
缺點:
不能向發送方及時反映出接收方已經正確接收的數據分組信息
有差錯情況
例如
在傳輸數據分組時,5號數據分組出現誤碼,接收方通過數據分組中的檢錯碼發現了錯誤
於是丟棄該分組,而後續到達的這剩下四個分組與接收窗口的序號不匹配
接收同樣也不能接收它們,講它們丟棄,並對之前按序接收的最後一個數據分組進行確認,發送ACK4, 每丟棄一個數據分組,就發送一個ACK4
當收到重復的ACK4時,就知道之前所發送的數據分組出現了差錯,於是可以不等超時計時器超時就立刻開始重傳,具體收到幾個重復確認就立刻重傳,根據具體實現決定
如果收到這4個重復的確認並不會觸發發送立刻重傳,一段時間後。超時計時器超時,也會將發送窗口內以發送過的這些數據分組全部重傳
若WT超過取值范圍,例如WT=8,會出現什麼情況?
習題
總結
回退N幀協議在流水線傳輸的基礎上利用發送窗口來限制發送方連續發送數據分組的數量,是一種連續ARQ協議
在協議的工作過程中發送窗口和接收窗口不斷向前滑動,因此這類協議又稱為滑動窗口協議
由於回退N幀協議的特性,當通信線路質量不好時,其信道利用率並不比停止-等待協議高
選擇重傳協議SR
具體流程請看視頻
習題
總結
3.5、點對點協議PPP
點對點協議PPP(Point-to-Point Protocol)是目前使用最廣泛的點對點數據鏈路層協議
PPP協議是網際網路工程任務組IEIF在1992年制定的。經過1993年和1994年的修訂,現在的PPP協議已成為網際網路的正式標准[RFC1661,RFC1662]
數據鏈路層使用的一種協議,它的特點是:簡單;只檢測差錯,而不是糾正差錯;不使用序號,也不進行流量控制;可同時支持多種網路層協議
PPPoE 是為寬頻上網的主機使用的鏈路層協議
幀格式
必須規定特殊的字元作為幀定界符
透明傳輸
必須保證數據傳輸的透明性
實現透明傳輸的方法
面向位元組的非同步鏈路:位元組填充法(插入「轉義字元」)
面向比特的同步鏈路:比特填充法(插入「比特0」)
差錯檢測
能夠對接收端收到的幀進行檢測,並立即丟棄有差錯的幀。
工作狀態
當用戶撥號接入 ISP 時,路由器的數據機對撥號做出確認,並建立一條物理連接。
PC 機向路由器發送一系列的 LCP 分組(封裝成多個 PPP 幀)。
這些分組及其響應選擇一些 PPP 參數,並進行網路層配置,NCP 給新接入的 PC 機
分配一個臨時的 IP 地址,使 PC 機成為網際網路上的一個主機。
通信完畢時,NCP 釋放網路層連接,收回原來分配出去的 IP 地址。接著,LCP 釋放數據鏈路層連接。最後釋放的是物理層的連接。
可見,PPP 協議已不是純粹的數據鏈路層的協議,它還包含了物理層和網路層的內容。
3.6、媒體接入控制(介質訪問控制)——廣播信道
媒體接入控制(介質訪問控制)使用一對多的廣播通信方式
Medium Access Control 翻譯成媒體接入控制,有些翻譯成介質訪問控制
區域網的數據鏈路層
區域網最主要的 特點 是:
網路為一個單位所擁有;
地理范圍和站點數目均有限。
區域網具有如下 主要優點 :
具有廣播功能,從一個站點可很方便地訪問全網。區域網上的主機可共享連接在區域網上的各種硬體和軟體資源。
便於系統的擴展和逐漸地演變,各設備的位置可靈活調整和改變。
提高了系統的可靠性、可用性和殘存性。
數據鏈路層的兩個子層
為了使數據鏈路層能更好地適應多種區域網標准,IEEE 802 委員會就將區域網的數據鏈路層拆成 兩個子層 :
邏輯鏈路控制 LLC (Logical Link Control)子層;
媒體接入控制 MAC (Medium Access Control)子層。
與接入到傳輸媒體有關的內容都放在 MAC子層,而 LLC 子層則與傳輸媒體無關。 不管採用何種協議的區域網,對 LLC 子層來說都是透明的。
基本概念
為什麼要媒體接入控制(介質訪問控制)?
共享信道帶來的問題
若多個設備在共享信道上同時發送數據,則會造成彼此干擾,導致發送失敗。
隨著技術的發展,交換技術的成熟和成本的降低,具有更高性能的使用點對點鏈路和鏈路層交換機的交換式區域網在有線領域已完全取代了共享式區域網,但由於無線信道的廣播天性,無線區域網仍然使用的是共享媒體技術
靜態劃分信道
信道復用
頻分復用FDM (Frequency Division Multiplexing)
將整個帶寬分為多份,用戶在分配到一定的頻帶後,在通信過程中自始至終都佔用這個頻帶。
頻分復用 的所有用戶在同樣的時間 佔用不同的帶寬資源 (請注意,這里的「帶寬」是頻率帶寬而不是數據的發送速率)。
