㈠ 請問在計算機網路中檢錯碼和糾錯碼的區別
檢錯碼就是 檢驗出錯誤 但是不校正 常見有 奇偶檢驗碼 跟 循環冗餘編碼
糾錯碼 不僅僅能檢驗出錯誤 並且能校正 常見有 海明碼
循環冗餘編碼 是數據鏈路層最常見的編碼 使用最廣泛
㈡ 計算機網路中差錯控制方法
一、總的方法折疊:
1、前向糾錯。實時性好,單工通信採用。
2、自動重發請求(ARQ)。強調檢錯能力,不要求有糾錯能力,雙向通道採用。
3、混合糾錯。上述兩種方式的綜合,但傳輸設備相對復雜。
二、分類方法折疊:
1、差錯檢測是差錯控制的基礎。能糾錯的碼首先應具有差錯檢測能力,而只有在能夠判定接收到的信號是否出錯才談得上是否要求對方重發出錯消息。具有差錯檢測能力的碼不一定具有差錯糾正能力。由於差錯檢測並不能提高信道利用率,所以主要應用於傳輸條件較好的信道上做為誤碼統計和質量控制的手段。
2、自動請示重發ARQ和前向糾錯FEC是進行差錯控制的兩種方法。
一在ARQ方式中,接收端檢測出有差錯時,就設法通知發送端重發,直到正確的碼字收到為止。ARQ方式使用檢錯碼,但必須有雙向信道才可能將差錯信息反饋到發送端。同時,發送方要設置數據緩沖區,用以存放已發出的數據以便於重發出錯的數據。
二在FEC方式中,接收端不但能發現差錯,而且能確定二進制碼元發生錯誤的位置,從而加以糾正。FEC方式使用糾錯碼,不需要反向信道來傳遞請示重發的信息,發送端也不需要存放以務重發的數據緩沖區。但編碼效率低,糾錯設備也比較復雜。
3、差錯控制編碼又可分為檢錯碼和糾錯碼。
檢錯碼只能檢查出傳輸中出現的差錯,發送方只有重傳數據才能糾正差錯;而糾錯碼不僅能檢查出差錯而且能自動糾正差錯,避免了重傳。
4、演播的檢錯碼有:奇偶校驗碼、循環冗餘碼。
在實際通信網中,往往在不同的應用場合採用不同的差錯控制技術。前向糾錯主要用於信道質量較差、對傳輸時延要求較嚴格的有線和無線傳輸當中;差錯檢測往往用於傳輸質量較高或進行了前向糾錯後的通路的監測管理之中>自動請求重發則多用於象計算機通信等對時延要求不高但對數據可靠性要求非常高的文件傳輸之中。
㈢ 數據鏈路層--概述,檢錯和糾錯
處理傳輸錯誤:差錯檢測和控制
流量控制:基於速率和基於反饋
將比特變為幀,叫成幀
字元計數法
帶位元組/字元填充的標志位元組法
比特填充的比特標志法
物理層編碼違例法
如字元計數法
任何信道,即使是光纖,也會出錯。
單個錯誤:分散在各塊中
突發錯誤:集中在某個塊中
注:突發錯誤比單個錯誤更加難於處理,通常利用處理單個處理的方法來應對突發錯誤。
糾錯碼:發現錯誤,從錯誤中恢復出正確的來。因其需要太多的冗餘位,糾錯開銷太大,在有線網路中極少使用,主要用於無線網路中。
檢錯碼:只能發現錯誤,不能從錯誤中恢復,但可採用重傳
兩種不同的處理方法適用於不同的環境
1 碼字:包含數據位和校驗位的n位單元。
2 海明距離:兩個碼字的海明距離 : 兩個碼字之間不同位的數目。如:10001001 和10110001 的海明距離為3。通過異或(相同為0,不同為1)結果中1個個數。
3 全部碼字的海明距離:全部碼字中任意兩個碼字之間海明距離的最小值。
4 海明距離的意義在於:如果海明距離為d,則一個碼字需要發生d個1位錯誤才能變成另外一個碼字
5 海明距離與檢錯的關系
海明距離為d+1的編碼能檢測出d位差錯。因為在距離為d+1的檢驗碼中,只改變d位
的值,不可能產生另一個合法碼。如奇偶校驗碼,海明距離為2,能查出單個錯。
6 海明距離與檢錯的關系
海明距離為2d+1的編碼,能糾正d位差錯。因為此時,如果一個碼字有d位發生差
錯,它仍然距離原來的碼字距離最近,可以直接恢復為該碼。
注:
1 海明距離越大,檢錯和糾錯能力越強。但合法碼字就減少了,即傳輸效率降低。
每一個碼字從左到右編號,最左邊為第1位
校驗位和數據位
凡編號為2的乘冪的位是校驗位,如1、2、4、8、16等
其餘是數據位,如3、5、6、7、9等
糾錯需要較多的冗餘位,信道利用率不高。
奇偶校驗碼(海明距離為2,檢1位錯)
互聯網校驗和
循環冗餘校驗碼
一個校驗位(Parity Bit)追加到數據後。
校驗位的值取「0」還是「1」,取決於整個碼字的總的「1」的個數。(奇數還是偶數)。等同於異或運算的結果1個個數。(異或:相同得0,不同得1)
接收方檢查是否存在單個比特的錯誤
㈣ 計算機查錯與計算機糾錯的區別
應該是差錯和糾錯,主要區別是一個用來發現錯碼,但不能糾正錯碼,另一個可以發現並自動糾正。
差錯控制編碼包括檢錯碼和糾錯碼兩種,其中檢錯碼是為傳輸的數據信號增加冗餘碼,以便發現數據信號中的錯碼,但不能糾正錯碼;糾錯碼是為傳輸的數據信號增加冗餘碼,以便發現數據信號中的錯碼,並自動糾正這些錯碼。
㈤ 通信中常使用哪些差錯控制方式它們各有何特點
通常應付傳輸差錯的辦法如下:
1、肯定應答。接收器對收到的幀校驗無誤後送回肯定應答信號ack,發送器收到肯定應答信號後可繼續發送後續幀。
2、否定應答重發。接收器收到一個幀後經較驗發現錯誤,則送回一個否定應答信號nak。發送器必須重新發送出錯幀。
3、超時重發。發送器發送一個幀時就開始計時。在一定時間間隔內沒有收到關於該幀的應答信號,則認為該幀丟失並重新發送。
自動請示重發arq和前向糾錯fec是進行差錯控制的兩種方法。
在arq方式中,接收端檢測出有差錯時,就設法通知發送端重發,直到正確的碼字收到為止。arq方式使用檢錯碼,但必須有雙向信道才可能將差錯信息反饋到發送端。同時,發送方要設置數據緩沖區,用以存放已發出的數據以務重發出錯的數據。
在fec方式中,接收端不但能發現差錯,而且能確定二進制碼元發生錯誤的位置,從而加以糾正。fec方式使用糾錯碼,不需要反向信道來傳遞請示重發的信息,發送端也不需要存放以務重發的數據緩沖區。但編碼效率低,糾錯設備也比較復雜。
差錯控制編碼又可分為檢錯碼和糾錯碼。
檢錯碼只能檢查出傳輸中出現的差錯,發送方只有重傳數據才能糾正差錯;而糾錯碼不僅能檢查出差錯而且能自動糾正差錯,避免了重傳。
演播的檢錯碼有:奇偶校驗碼、循環冗餘碼。
網路上收的,希望對你有幫助。
㈥ 檢錯碼與糾錯碼的主要區別是什麼 循環冗餘編碼CRC屬於檢錯碼,還是糾錯碼
檢錯碼只是用來檢測的不能改正錯誤,糾錯碼可以。crc是檢錯碼
㈦ 糾錯碼的基本原理和性能參數
糾錯碼能夠檢錯或糾錯,主要是靠碼字之間有較大的差別。這可用碼字之間的漢明距離d(x,y)來衡量。它的定義為碼字x與y之間的對應位取不同值的碼元個數。一種糾錯碼的最小距離d定義為該種碼中任兩個碼字之間的距離的最小值。一種碼要能發現e個錯誤,它的最小距離d應不小於e+1。若要能糾正t個錯誤,則d應不小於2t+1。一個碼字中非零碼元的個數,稱為此碼字的漢明重量。一種碼中非零碼字的重量的最小值,稱為該碼的最小重量。對線性碼來說,一種碼的最小重量與其最小距離在數值上是相等的。
在構造線性碼時,數字上是從n維空間中選一k維子空間,且使此子空間內各非零碼字的重量盡可能大。當構造循環碼時,可進一步將每一碼字看成一多項式,將整個碼看成是多項式環中的理想,這一理想是主理想,故可由生成多項式決定;而多項式完全可由它的根規定。這樣,就容易對碼進行構造和分析。這是BCH碼等循環碼構造的出發點。一般地說,構造一種碼時,均設法將它與某種代數結構相聯系,以便對它進行描述,進而推導它的性質,估計它的性能和給出它的解碼方法。若一種碼的碼長為n,碼字數為M,或信息位為h,以及最小距離為d,則可把此碼記作【n,M,d】碼。若此碼為線性碼,常簡記作(n,k)或(n,k,d)碼。人們還常用R=log2M/n表示碼的信息率或簡稱碼率,單位為比特/碼元。R越大,則每個碼元所攜帶的信息量越大,編碼效率越高。 糾錯碼實現中最復雜的部分是解碼。它是糾錯碼能否應用的關鍵。根據式(1),採用的碼長n越大,則誤碼率越小。但n越大,編解碼設備也越復雜,且延遲也越大。人們希望找到的解碼方法是:誤碼率隨碼長n的增加按指數規律下降;解碼的復雜程度隨碼長n的增加接近線性地增加;解碼的計算量則與碼長n基本無關。可惜,已經找到的碼能滿足這樣要求的很少。不過由於大規模集成電路的發展,即使應用比較復雜的但性能良好的碼,成本也並不太高。因此,糾錯碼的應用越來越廣泛。
糾錯碼傳輸的都是數字信號。這既可用硬體實現,也可用軟體實現。前者主要用各種數字電路,主要是採用大規模集成電路。軟體實現特別適合計算機通信網等場合。因為這時可以直接利用網中的計算機進行編碼和解碼,不需要另加專用設備。硬體實現的速度較高,比軟體可快幾個數量級。
在傳信率一定的情況下,如果採用糾錯碼提高可靠性,要求信道的傳輸率增加,帶寬加大。因此,糾錯碼主要用於功率受限制而帶寬較大的信道,如衛星、散射等系統中。糾錯碼還用在一些可靠性要求較高,但設備或器件的可靠性較差,而餘量較大的場合,如磁帶、磁碟和半導體存儲器等。
在分組碼的研究中,譜分析的方法受到人們的重視。糾同步錯誤碼、算術碼、不對稱碼、不等錯誤糾正碼等,也得到較多的研究。 分組碼是對信源待發的信息序列進行分組(每組K位)編碼,它的校驗位僅同本組的信息位有關。自20世紀50年代分組碼的理論獲得發展以來,分組碼在數字通信和數據存儲系統中已被廣泛應用。
分組碼的碼長n和碼字個數M是一個碼的主要構造參數。碼長為n的碼中所有碼字的位數均為n;若要用一個碼傳送k比特信息,則碼字的個數M必須滿足。典型的分組碼是由k位信息位和r位監督位組成的,這樣構成的碼一般稱為系統碼。
分組碼中應用最廣的線性分組碼。線性分組碼中的M個碼字之間具有一定線性約束關系,即這些碼字總體構成了n維線性空間的一個k維子空間。稱此k維子空間為(n,k)線性分組碼。線性系統碼的特點是每個碼字的前k位均由這個碼字所對應的信息位組成,並通過對這k位信息位的線性運算得到後面n—k是位監督位。
線性分組碼中應用最廣的是循環碼,循環碼的主要特徵是任何碼字在循環移位後個碼字。循環碼的優點在於其編碼和解碼手續比一般線性碼簡單,因而易於在設備上實現。在循環碼中,碼字可表示為多項式。循環碼的碼字多項式都可表示成為循環碼的生成多項式與這個碼字所代表的信息多項式的乘積,即,因此一個循環碼可以通過給出其生成多項式來規定。常用的循環碼有BCH碼和RS碼。
網格碼有多種描述方法,網格圖是常用方法之一,它能表示出編碼過程。一個碼率為1/2、包含四種狀態的網格碼的網格圖如圖所示。圖1中00,01,10,11表示編碼器所具有的四種狀態,以「·」示出,從每一狀態出發都存在兩條支路,位於上面的一條支路對應於編碼器輸入為「0」的情況,位於下面的一條支路對應於編碼器輸入為「1」的情況,而每一支路上所列出的兩個二進位碼則表示相應的編碼輸出。因而可知,編碼輸出不僅決定於編碼器的當前輸入,還決定於編碼器的狀態,例如在圖中從「00」狀態出發;,若輸入的二進制數據序列為1011,則編碼器的狀態轉移過程為00→01→10→01→11,而相應的編碼輸出序列為11010010。在網格圖中任意兩條從同一狀態出發;,經不同的狀態轉移過程後又歸於另一相同狀態(該狀態也可與初始狀態相同)的路徑間的距離的最小值稱為碼的自由距離。如該圖中的為5。對於卷積碼來說,的計算可簡化為始於且終於零狀態的非全零路徑與全零路徑間距離的最小值。是表徵網格碼糾錯能力的重要參數。維特比演算法是廣泛採用的網格碼的解碼方法。由於網格碼的狀態越多,解碼越復雜,所以狀態個數是度量網格碼解碼復雜性的重要參數。一般說來可以通過增大解碼復雜性來增加,從而提高碼的糾錯能力。
BCH碼、網格碼已被廣泛地應用於移動通信、衛星通信和頻帶數據傳輸中。RS碼也被廣泛應用於光碟的存儲中。
大多數糾錯碼是設計來糾隨機誤碼的,可以通過交織的方法使它適用於對突發誤碼的糾錯。交織是一種使得集中出現的突發誤碼在解碼時進行分散化的措施,從而使其不超出糾錯碼的糾錯能力范圍。 卷積碼不對信息序列進行分組編碼,它的校驗元不僅與當前的信息元有關,而且同以前有限時間段上的信息元有關。卷積碼在編碼方法上尚未找到像分組碼那樣有效的數學工具和系統的理論。但在解碼方面,不論在理論上還是實用上都超過了分組碼,因而在差錯控制和數據壓縮系統中得到廣泛應用。
㈧ 什麼是糾刪碼
按照誤碼控制的不同功能,可分為檢錯碼、糾錯碼和糾刪碼等。檢錯碼僅具備識別錯碼功能 而無糾正錯碼功能;糾錯碼不僅具備識別錯碼功能,同時具備糾正錯碼功能;糾刪碼則不僅具備識別錯碼和糾正錯碼的功能,而且當錯碼超過糾正范圍時可把無法糾錯的信息刪除。
㈨ 計算機網路中檢錯碼與糾錯碼的主要區別是什麼
檢錯碼:只檢錯不糾正
糾錯碼:發現錯誤並給以糾正
常見的有奇偶校驗碼、海明校驗碼和循環冗餘校驗碼(CRC)