A. 計算機網路未來的發展
計算機的關鍵技術繼續發展
未來的計算機技術將向超高速、超小型、平行處理、智能化的方向發展。盡管受到物理極限的約束,採用硅晶元的計算機的核心部件cpu的性能還會持續增長。作為moore定律驅動下成功企業的典範inter預計2001年推出1億個晶體管的微處理器,並預計在2010年推出集成10億個晶體管的微處理器,其性能為10萬mips(1000億條指令/秒)。而每秒100萬億次的超級計算機將出現在本世紀初出現。超高速計算機將採用平行處理技術,使計算機系統同時執行多條指令或同時對多個數據進行處理,這是改進計算機結構、提高計算機運行速度的關鍵技術。
同時計算機將具備更多的智能成分,它將具有多種感知能力、一定的思考與判斷能力及一定的自然語言能力。除了提供自然的輸入手段(如語音輸入、手寫輸入)外,讓人能產生身臨其境感覺的各種交互設備已經出現,虛擬現實技術是這一領域發展的集中體現。
傳統的磁存儲、光碟存儲容量繼續攀升,新的海量存儲技術趨於成熟,新型的存儲器每立方厘米存儲容量可達10tb(以一本書30萬字計,它可存儲約1500萬本書)。信息的永久存儲也將成為現實,千年存儲器正在研製中,這樣的存儲器可以抗干擾、抗高溫、防震、防水、防腐蝕。如是,今日的大量文獻可以原汁原味保存、並流芳百世。
B. 計算機網路的起源也發展
網際網路起源於20世紀60年代中期由美國國防部高級研究計劃局(Advanced Research Project Agency, ARPA)資助的ARPAnet。該計劃局是1957年成立,主要針對前蘇聯的Sputnik(第一個人造地球衛星)的發射做出的反應,其任務是打造美國國防及軍事應用科技在世界上的領先地位。ARPA主持研究了用於軍事研究的計算機實驗網路ARPAnet。該網路的設計思想是:要求網路能夠在遭受嚴重破壞的條件丅(如某些節點不能工作或某些線路中斷),仍然能夠保持運行。因此,ARPAnet被設計成可在計算機間提供許多線路(即「路由」)的網路,使計算機能夠通過其中任一線路而不是只通過其中某一固定線路來發送信息。「包交換」的含義就是把數據分解成不同部分,每部分經由不同路徑發送,最後再重新組合成完整的數據。 在1969年底,建立起一個由4台計算機(節點)互連的分組交換試驗網路ARPA網。這四個節點分別是斯坦福研究院(SRI)、加州大學巴巴拉分校(UCSB)、加州大學洛杉機分校(UCLA)和猶他大學。1976年,ARPA網發展到57個節點,連接了100多台不同類型的計算機,網路用戶發展到2000多個。 1982年,ARPA網被分成兩部分,一部分作為軍用,稱為MILnet;另一部分作為民用,即早期的Internet。為了將不同的計算機區域網和廣域網實現互連,即解決網路之間相互通信的問題,ARPA提供基金支持工業界和學術界從事新的研究項目,最後ARPA網決定採用網路互連協議IP(Internet Protocol)來取代網路控制協議NCP(Network Control Protocol)。如果把Internet的發展劃分階段的話,1968~1984年的這個時期可以看作是Internet的提出、研究和試驗階段,這時的Internet以ARPA網為主幹網。由於ARPA網採用離散結構,不設中央網路控制設備,實現了網路渠道的多樣性,從而減少了系統徹底崩潰的可能性,網路的生存能力得到保證,實現了ARPA的最初構想。
後來,Internet的發展超出了人們的想像。從1984年到1992年可以看作是Internet的實用發展階段。為了使全美國的科學家和工程師能夠共享那些過去只有軍事領域和少數人才能使用的超級計算機設施,美國國家科學基金會NSF(National Science Foundation)於1985年提供巨資建設了全美6個超級計算中心(分別是匹滋堡超級計算機中心、康奈爾超級計算機中心、約翰�6�1馮諾依曼超級計算機中心、國家超級計算機中心、聖地亞哥超級計算機中心、國家大氣研究中心),同時建設了將這些超級計算中心和各科研機構互連的高速信息網路NSFnet。1986年NSFnet成功地成為Internet的第二個骨幹網(並取代ARPAnet,1990年ARPA網停止運行)。NSFnet對Internet的推廣起到了巨大的推動作用,它使得Internet不再是僅有科學家、工程師、政府部門使用的網路,而是進入了以資源共享為中心的實用服務階段。
到1991年底,由於Internet發展太快,NSFnet主幹網已無法滿足需要,且美國政府也負擔不起整個Internet。於是基金會要求私營公司承擔某些責任,IBM、MCI和Merit組建了高級網路服務公司ANS。ANS建立一個新的廣域網,取代NSFnet,成為目前T3級Internet主幹網——ANSnet。1992年以後Internet開始進入它的商業化發展階段,開始向全世界擴展。在Internet商業化的過程中,萬維網(WWW)的出現,使Internet的使用更加簡單、方便,開創了Internet發展的新時期。
C. 計算機網路的發展歷史
在當今社會,計算機網路技術的應用無處不在,各行各業都能夠看到計算機網路技術的影子,這充分說明了計算機網路技術對於推動社會發展的重要作用和積極意義。下面是我跟大家分享的是計算機網路的發展歷史,歡迎大家來閱讀學習。 計算機網路的發展歷史
計算機網路的發展歷史
計算機網路的發展
計算機網路的發展過程大致可分為以下四個階段:
第一階段:以單個計算機為中心的遠程聯機系統,構成面向終端的計算機通信網(20世紀50年代)
第二階段:多個自主功能的主機通過通信線路互聯,形成資源共享的計算機網路(20世紀60年代末)
第三階段:形成具有統一的網路體系結構、遵循國際標准化協議的計算機網路(20世紀70年代末)
第四階段:向互連、高速、智能化方向發展的計算機網路(始於20世紀80年代末)
1. 面向終端的計算機通信網
1946年世界上第一台電子計算機ENIAC在美國誕生時,計算機技術與通信技術並沒有直接的聯系。20世紀50年代初,美國為了自身的安全,在美國本土北部和加拿大境內,建立了一個半自動地面防空系統SAGE(譯成中文為賽其系統),進行了計算機技術與通信技術相結合的嘗試。
人們把這種以單個計算機為中心的聯機系統稱做面向終端的遠程聯機系統。該系統是計算機技術與通信技術相結合而形成的計算機網路的雛形,因此也稱為面向終端的計算機通信網。60年代初美國航空訂票系統SABRE-1就是這種計算機通信網路的典型應用,該系統由一台中心計算機和分布在全美范圍內的2000多個終端組成,各終端通過電話線連接到中心計算機。
具有通信功能的單機系統的典型結構是計算機通過多重線路控制器與遠程終端相連,如圖1-1-2所示。

圖1-1-4 計算機互聯網路的邏輯結構
資源子網由網路中的所有主機、終端、終端控制器、外設(如網路列印機、磁碟陣列等)和各種軟體資源組成,負責全網的數據處理和向網路用戶(工作站或終端)提供網路資源和服務。
通信子網由各種通信設備和線路組成,承擔資源子網的數據傳輸、轉接和變換等通信處理工作。
網路用戶對網路的訪問可分為兩類:
☆本地訪問:對本地主機訪問,不經過通信子網,只在資源子網內部進行。
☆網路訪問:通過通信子網訪問遠地主機上的資源。
3. 遵循國際標准化協議的計算機網路
計算機網路發展的第三階段是加速體系結構與協議國際標准化的研究與應用。20世紀70年代末,國際標准化組織ISO(International Organization for Standardization)的計算機與信息處理標准化技術委員會成立了一個專門機構,研究和制定網路通信標准,以實現網路體系結構的國際標准化。1984年ISO正式頒布了一個稱為“開放系統互連基本參考模型”的國際標准ISO 7498,簡稱OSI RM(Open System Interconnection Basic Reference Model),即著名的OSI七層模型。OSI RM及標准協議的制定和完善大大加速了計算機網路的發展。很多大的計算機廠商相繼宣布支持OSI標准,並積極研究和開發符合OSI標準的產品。
遵循國際標准化協議的計算機網路具有統一的網路體系結構,廠商需按照共同認可的國際標准開發自己的網路產品,從而可保證不同廠商的產品可以在同一個網路中進行通信。這就是“開放”的含義。
目前存在著兩種佔主導地位的網路體系結構:一種是國際標准化組織ISO提出的OSI RM(開放式系統互連參考模型);另一種是Internet所使用的事實上的工業標准TCP/IP RM(TCP/IP參考模型)。
4. 互聯網路與高速網路
從20世紀80年代末開始,計算機網路技術進入新的發展階段,其特點是:互聯、高速和智能化。表現在:
(1) 發展了以Internet為代表的互聯網
(2) 發展高速網路
1993年美國政府公布了“國家信息基礎設施”行動計劃(NII-National Information Infrastructure),即信息高速公路計劃。這里的“信息高速公路”是指數字化大容量光纖通信網路,用以把政府機構、企業、大學、科研機構和家庭的計算機聯網。美國政府又分別於1996年和1997年開始研究發展更加快速可靠的互聯網2(Internet 2)和下一代互聯網(Next Generation Internet)。可以說,網路互聯和高速計算機網路正成為最新一代計算機網路的發展方向。
(3) 研究智能網路
隨著網路規模的增大與網路服務功能的增多,各國正在開展智能網路IN(Intelligent Network)的研究,以提高通信網路開發業務的能力,並更加合理地進行網路各種業務的管理,真正以分布和開放的形式向用戶提供服務。
智能網的概念是美國於1984年提出的,智能網的定義中並沒有人們通常理解的“智能”含義,它僅僅是一種“業務網”,目的是提高通信網路開發業務的能力。它的出現引起了世界各國電信部門的關注,國際電聯(ITU)在1988年開始將其列為研究課題。1992年ITU-T正式定義了智能網,制訂了一個能快速、方便、靈活、經濟、有效地生成和實現各種新業務的體系。該體系的目標是應用於所有的通信網路;即不僅可應用於現有的電話網、N-ISDN網和分組網,同樣適用於移動通信網和B-ISDN網。隨著時間的推移,智能網路的應用將向更高層次發展。
1. 建立公用分組交換網CHINAPAC 1989年11月我國第一個公用分組交換網CNPAC建成運行,由3個分組結點交換機、8個集中器和一個雙機組成的網路管理中心組成;在此基礎上,新的公用分組交換網1993年9月建成,並改稱CHINAPAC,由國家主幹網和各省(自治區、直轄市)的省內網組成。
2. “三金”工程
1993年3月12日,時任副的朱鎔基主持國務院會議,提出了建設“三金”工程,即金橋、金關、金卡工程。計算機網路正是“三金工程”中的一個非常重要的組成部分。
“金橋工程”是以建設我國重要的信息化基礎設施為目的的跨世紀重大工程,它與原郵電部的通信干線及各部門已有的專用通信網互連互通,成為國家公用經濟信息通信的主幹網,即建立國家公用經濟信息通信網。
金關工程是為了加快我國外貿業務信息化和自動化管理的一項重要工程,其目的是要推動海關報關業務的電子化,取代傳統的報關方式以節省單據傳送的時間和成本,為推廣電子數據交換EDI業務和實現無紙貿易創造條件。
金卡工程建設的總體目標是要建立起一個現代化的、實用的、比較完整的電子貨幣系統,形成和完善符合我國國情、又能與國際接軌的金融卡業務管理體制。
3. 基於Internet技術的公用計算機網路
我國在1996年底建成四個基於Internet技術並可以和Internet互聯的全國性公用計算機網路,即:中國公用計算機互聯網CHINANET、中國金橋信息網CHINAGBN、中國教育和科研計算機網CERNET和中國科學技術網CSTNET。
根據2004年1月中國互聯網路信息中心CNNIC(http://www.cnnic.net.cn/)發布的第十三次《中國互聯網路發展狀況統計報告》,目前已經建成和正在建設中的基於Internet技術的公用計算機網路有:
☆ 中國科技網(CSTNET)
☆ 中國公用計算機互聯網(CHINANET)
☆ 中國教育和科研計算機網(CERNET)
☆ 中國聯通互聯網(UNINET)
☆ 中國網通公用互聯網(CNCNET)(網通控股)
☆ 寬頻中國CHINA169網(網通集團)
☆ 中國國際經濟貿易互聯網(CIETNET)
☆ 中國移動互聯網(CMNET)
☆ 中國長城互聯網(CGWNET)(建設中)
☆ 中國衛星集團互聯網(CSNET)(建設中)
D. 計算機網路的產生和發展經過了哪幾個階段
計算機網路從產生到發展,總體來說可以分成4個階段。 第1階段:20世紀60年代末到20世紀70年代初為計算機網路發展的萌芽階段。其主要特徵是:為了增加系統的計算能力和資源共享,把小型計算機連成實驗性的網路。第一個遠程分組交換網叫ARPANET,是由美國國防部於1969年建成的,第一次實現了由通信網路和資源網路復合構成計算機網路系統。標志計算機網路的真正產生,ARPANET是這一階段的典型代表。 第2階段:20世紀70年代中後期是區域網絡(LAN)發展的重要階段,其主要特徵為:區域網絡作為一種新型的計算機體系結構開始進入產業部門。區域網技術是從遠程分組交換通信網路和I/O匯流排結構計算機系統派生出來的。1976年,美國Xerox公司的Palo Alto研究中心推出乙太網(Ethernet),它成功地採用了夏威夷大學ALOHA無線電網路系統的基本原理,使之發展成為第一個匯流排競爭式區域網絡。1974年,英國劍橋大學計算機研究所開發了著名的劍橋環區域網(Cambridge Ring)。這些網路的成功實現,一方面標志著區域網絡的產生,另一方面,它們形成的乙太網及環網對以後區域網絡的發展起到導航的作用。 第3階段:整個20世紀80年代是計算機區域網絡的發展時期。其主要特徵是:區域網絡完全從硬體上實現了ISO的開放系統互連通信模式協議的能力。計算機區域網及其互連產品的集成,使得區域網與局域互連、區域網與各類主機互連,以及區域網與廣域網互連的技術越來越成熟。綜合業務數據通信網路(ISDN)和智能化網路(IN)的發展,標志著區域網絡的飛速發展。1980年2月,IEEE (美國電氣和電子工程師學會)下屬的802區域網絡標准委員會宣告成立,並相繼提出IEEE801.5~802.6等區域網絡標准草案,其中的絕大部分內容已被國際標准化組織(ISO)正式認可。作為區域網絡的國際標准,它標志著區域網協議及其標准化的確定,為區域網的進一步發展奠定了基礎。 第4階段:20世紀90年代初至現在是計算機網路飛速發展的階段,其主要特徵是:計算機網路化,協同計算能力發展以及全球互連網路(Internet)的盛行。計算機的發展已經完全與網路融為一體,體現了「網路就是計算機」的口號。目前,計算機網路已經真正進入社會各行各業,為社會各行各業所採用。另外,虛擬網路FDDI及ATM技術的應用,使網路技術蓬勃發展並迅速走向市場,走進平民百姓的生活。
E. 簡述計算機網路的四個發展史
追溯計算機網路的發展歷史,它的演變可概括地分成四個階段:
(1)網路雛形階段。從20世紀50年代中期開始,以單個計算機為中心的遠程聯機系統,構成面向終端的計算機網路,稱為第一代計算機網路。
(2)網路初級階段。從20世紀60年代中期開始進行主機互聯,多個獨立的主計算機通過線路互聯構成計算機網路,無網路操作系統,只是通信網。60年代後期,ARPANET網出現,稱為第二代計算機網路。
(3)20世紀70年代至80年代中期,乙太網產生,ISO制定了網路互連標准OSI,世界上具有統一的網路體系結構,遵循國際標准化協議的計算機網路迅猛發展,這階段的計算機網路稱為第三代計算機網路。
(4)從20世紀90年代中期開始,計算機網路向綜合化高速化發展,同時出現了多媒體智能化網路,發展到現在,已經是第四代了。區域網技術發展成熟。第四代計算機網路就是以千兆位傳輸速率為主的多媒體智能化網路。
拓展資料:
計算機網路,是指將地理位置不同的具有獨立功能的多台計算機及其外部設備,通過通信線路連接起來,在網路操作系統,網路管理軟體及網路通信協議的管理和協調下,實現資源共享和信息傳遞的計算機系統。
計算機網路也稱計算機通信網。關於計算機網路的最簡單定義是:一些相互連接的、以共享資源為目的的、自治的計算機的集合。若按此定義,則早期的面向終端的網路都不能算是計算機網路,而只能稱為聯機系統(因為那時的許多終端不能算是自治的計算機)。但隨著硬體價格的下降,許多終端都具有一定的智能,因而「終端」和「自治的計算機」逐漸失去了嚴格的界限。若用微型計算機作為終端使用,按上述定義,則早期的那種面向終端的網路也可稱為計算機網路。
另外,從邏輯功能上看,計算機網路是以傳輸信息為基礎目的,用通信線路將多個計算機連接起來的計算機系統的集合,一個計算機網路組成包括傳輸介質和通信設備。
從用戶角度看,計算機網路是這樣定義的:存在著一個能為用戶自動管理的網路操作系統。由它調用完成用戶所調用的資源,而整個網路像一個大的計算機系統一樣,對用戶是透明的。
一個比較通用的定義是:利用通信線路將地理上分散的、具有獨立功能的計算機系統和通信設備按不同的形式連接起來,以功能完善的網路軟體及協議實現資源共享和信息傳遞的系統。
從整體上來說計算機網路就是把分布在不同地理區域的計算機與專門的外部設備用通信線路互聯成一個規模大、功能強的系統,從而使眾多的計算機可以方便地互相傳遞信息,共享硬體、軟體、數據信息等資源。簡單來說,計算機網路就是由通信線路互相連接的許多自主工作的計算機構成的集合體。
最簡單的計算機網路就只有兩台計算機和連接它們的一條鏈路,即兩個節點和一條鏈路。
F. 計算機網路的產生與發展
一、計算機網路的產生與發展
追溯計算機網路的發展歷史,它的演變可概括地分成三個階段:
(1)以單個計算機為中心的遠程聯機系統,構成面向終端的計算機網路。
(2)多個主計算機通過線路互聯的計算機網路。
(3)具有統一的網路體系結構、遵循國際標准化協議的計算機網路。
所謂聯機系統,就是一台中央主計算機連接大量的在地理上處於分散位置的終端。早在20世紀50年代初,美國建立的半自動地面防空系統就是將地面的雷達和其他測量控制設備的信息通過通信線路匯集到一台中心計算機進行處理,開創了把計算機技術和通信技術相結合的嘗試。這類簡單的「終端——通信線路——計算機」系統,成了計算機網路的雛形。嚴格地說,與以後發展成熟的計算機網路相比,存在著一個根本的區別。這樣的系統除了一台中心計算機外,其餘的終端設備都沒有自主處理的功能,還不能算計算機網路。但現在為了更明確地區別於後來發展的多個計算機互連的計算機網路,專稱為面向終端的計算機網路。隨著連接的終端數目的增多,為了使承擔數據處理的中心計算機減輕負載,在通信線路和中心計算機之間設置了一個前端處理機FEP(Front End Processor)或通信控制器CCU(Communication Control Unit),專門負責與終端之間的通信控制,出現了數據處理和通信控制分工,從而更好地發揮中心計算機的數據處理能力。另外,在終端較集中的地區,設置集中器和多路復用器,它首先通過低速線路將附近群集的終端連至集中器或復用器,然後通過高速通信線路、數據機與遠程中心計算機的前端機相連,構成如圖4-14所示的遠程聯機系統,提高了通信線路利用率,節約了遠程通信線路的投資。
G. 計算機網路的發展
計算機網路的發展
事實上計算機網路是二十世紀60年代起源於美國,原本用於軍事通訊,後逐漸進入民用,經過短短40年不斷的發展和完善,現已廣泛應用於各個領域,並正以高速向前邁進。20年前,在我國很少有人接觸過網路。現在,計算機通信網路以及Internet已成為我們社會結構的一個基本組成部分。網路被應用於工商業的各個方面,包括電子銀行、電子商務、現代化的企業管理、信息服務業等都以計算機網路系統為基礎。從學校遠程教育到政府日常辦公乃至現在的電子社區,很多方面都離不開網路技術。可以不誇張地說,網路在當今世界無處不在。
隨著計算機網路技術的蓬勃發展,計算機網路的發展大致可劃分為4個階段。
第一階段:誕生階段
20世紀60年代中期之前的第一代計算機網路是以單個計算機為中心的遠程聯機系統。典型應用是由一台計算機和全美范圍內2 000多個終端組成的飛機定票系統。終端是一台計算機的外部設備包括顯示器和鍵盤,無CPU和內存。隨著遠程終端的增多,在主
機前增加了前端機(FEP)。當時,人們把計算機網路定義為「以傳輸信息為目的而連接起來,實現遠程信息處理或進一步達到資源共享的系統」,但這樣的通信系統已具備了網路的雛形。
第二階段:形成階段
20世紀60年代中期至70年代的第二代計算機網路是以多個主機通過通信線路互聯起來,為用戶提供服務,興起於60年代後期,典型代表是美國國防部高級研究計劃局協助開發的ARPANET。主機之間不是直接用線路相連,而是由介面報文處理機(IMP)轉接後互聯的。IMP和它們之間互聯的通信線路一起負責
主機間的通信任務,構成了通信子網。通信子網互聯的主機負責運行程序,提供資源共享,組成了資源子網。這個時期,網路概念為「以能夠相互共享資源為目的互聯起來的具有獨立功能的計算機之集合體」,形成了計算機網路的基本概念。
第三階段:互聯互通階段
20世紀70年代末至90年代的第三代計算機網路是具有統一的網路體系結構並遵循國際標準的開放式和標准化的網路。ARPANET興起後,計算機網路發展迅猛,各大計算機公司相繼推出自己的網路體系結構及實現這些結構的軟硬體產品。由於沒有統一的標准,不同廠商的產品之間互聯很困難,人們迫切需要一種開放性的標准化實用網路環境,這樣應運而生了兩種國際通用的最重要的體系結構,即TCP/IP體系結構和國際標准化組織的OSI體系結構。
第四階段:高速網路技術階段
20世紀90年代末至今的第四代計算機網路,由於區域網技術發展成熟,出現光纖及高速網路技術,多媒體網路,智能網路,整個網路就像一個對用戶透明的大的計算機系統,發展為以Internet為代表的互聯網。
H. 計算機網路未來的發展
未來將是一個網路無處不在的世界,任何東西都可以進行網路互聯,我們可以在我們能夠達到的任何地方對我們想要了解的任何東西進行搜索和遠程式控制制。這是一個總體的宏偉設想。
未來網路通信的帶寬將會是我們現在想像不到的,未來上網應該是不受時間、帶寬等限制的。我們可以隨心所欲,但不能為所欲為,那時候的控制機制應該更合理,更強大。反正就是以我們現在的思維無法想像的到的。舉個簡單的例子:就像幾十年前計算機是一種很昂貴的東西,當時的IBM老總曾預言過未來的世界有幾台、十幾台計算機就不錯了,而發展到現在呢?好多人都有好幾台個人計算機,而性能遠遠超過了那些古董級的計算機。
我認為未來網路發展的主要方向應該是向著以下幾個方向發展:
1.網路無處不在,任何東西都要連入互聯網,那時估計也沒有太多的網路終端,只需要幾種集成的網路終端即可,將各種功能集成到同一台網路終端上面,我們可以隨時隨地的無縫的接入互聯網。
2.帶寬成本大大降低,上網將會是非常非常便宜的。但是網速就快的是我們無法想像的。
3.安全問題一直是網路的非常值得重視的問題,那時網路的安全性應該是可以做出保證的。
近期網路的發展應該還是以無線網路為重點,各種可移動終端將會在未來幾年,甚至十幾年內紅極一時。各種更方便,更可靠的服務也會應運而生。無線上網的帶寬會逐漸上去的,今年是第三代網路(3G)開始高速發展的第一年,以後還會有4G、5G...NG。如果未來的某一天IPV6技術成熟了,我們使用的任何接入互聯網的終端設備都可以分配到一個IP地址,訪問該會是多麼方便啊。
I. 計算機網路的發展經歷了哪幾個階段
第一階段
(以單計算機為中心的聯機終端系統)特點:
計算機網路主要是計算機技術和信息技術相結合的產物,它從20世紀50年代起步至今已經有50多年的發展歷程,在20世紀50年代以前,因為計算機主機相當昂貴,而通信線路和通信設備相對便宜,為了共享計算機主機資源和進行信息的綜合處理,形成了第一代的以單主機為中心的聯機終端系統.
在第一代計算機網路中,因為所有的終端共享主機資源,因此終端到主機都單獨佔一條線路,所以使得線路利用率低,而且因為主機既要負責通信又要負責數據處理,因此主機的效率低,而且這種網路組織形式是集中控制形式,所以可靠性較低,如果主機出問題,所有終端都被迫停止工作.面對這樣的情況,當時人們提出這樣的改進方法,就是在遠程終端聚集的地方設置一個終端集中器,把所有的終端聚集到終端集中器,而且終端到集中器之間是低速線路,而終端到主機是高速線路,這樣使得主機只要負責數據處理而不要負責通信工作,大大提高了主機的利用率.
第二階段(以通信子網為中心的主機互聯)特點:
隨著計算機網路技術的發展,到20世紀60年代中期,計算機網路不再極限於單計算機網路,許多單計算機網路相互連接形成了有多個單主機系統相連接的計算機網路,
這樣連接起來的計算機網路體系有兩個特點:
①多個終端聯機系統互聯,形成了多主機互聯網路
②網路結構體系由主機到終端變為主機到主機
後來這樣的計算機網路體系在慢慢演變,向兩種形式演變,第一種就是把主機的通信任務從主機中分離出來,由專門的CCP(通信控制處理機)來完成,CCP組成了一個單獨的網路體系,我們稱它為通信子網,而在通信子網連基礎上接起來的計算機主機和終端則形成了資源子網,導致兩層結構體現出現.第二種就是通信子網逐規模漸擴大成為社會公用的計算機網路,原來的CCP成為了公共數據通用網.
第三階段(計算機網路體系結構標准化)特點:
隨著計算機網路技術的飛速發展,計算機網路的逐漸普及,各種計算機網路怎麼連接起來就顯得相當的復雜,因此需要把計算機網路形成一個統一的標准,使之更好的連接,因為網路體系結構標准化就顯得相當重要,在這樣的背景下形成了體系結構標准化的計算機網路.
為什麼要使計算機結構標准化呢,有兩個原因,第一個就是因為為了使不同設備之間的兼容性和互操作性更加緊密.第二個就是因為體系結構標准化是為了更好的實現計算機網路的資源共享,所以計算機網路體系結構標准化具有相當重要的作用