當前位置:首頁 » 網路連接 » 復雜網路有向連接
擴展閱讀
查看hp電腦的開機密碼 2025-09-18 06:27:51

復雜網路有向連接

發布時間: 2023-01-13 21:13:08

㈠ 規則網路,復雜網路和隨機網路的區別和聯系

無標度網路和小世界網路 的最大區別是他們的度分布的差別 無標度網路的度分布是冪函數,小世界是鍾行的, 實際上小世界和 random network 的度分布相似,點與點之間的連接是隨機的,所以都是鍾形正態分布,但是小世界的點點之間路徑最短。 無標度網路有巨集團和剩餘度的涌現,也就是說巨集團基本代表網路的連接密度,少數的點有大量的連線,大多數點有少量或沒有連線。無標度的度分布也引發了相關的對自組織臨界和熵厥的討論,是當今研究主要課題。

㈡ 復雜網路 如何將兩個單網路連接起來形成耦合網路

這個簡單,在一個大樓的話,中間結合部要有個路由器
不在一起的話,可以用虛擬隧道……

㈢ 人工神經網路綜述

文章主要分為:
一、人工神經網路的概念;
二、人工神經網路的發展歷史;
三、人工神經網路的特點;
四、人工神經網路的結構。
。。

人工神經網路(Artificial Neural Network,ANN)簡稱神經網路(NN),是基於生物學中神經網路的基本原理,在理解和抽象了人腦結構和外界刺激響應機制後,以網路拓撲知識為理論基礎,模擬人腦的神經系統對復雜信息的處理機制的一種數學模型。該模型以並行分布的處理能力、高容錯性、智能化和自學習等能力為特徵,將信息的加工和存儲結合在一起,以其獨特的知識表示方式和智能化的自適應學習能力,引起各學科領域的關注。它實際上是一個有大量簡單元件相互連接而成的復雜網路,具有高度的非線性,能夠進行復雜的邏輯操作和非線性關系實現的系統。

神經網路是一種運算模型,由大量的節點(或稱神經元)之間相互聯接構成。每個節點代表一種特定的輸出函數,稱為激活函數(activation function)。每兩個節點間的連接都代表一個對於通過該連接信號的加權值,稱之為權重(weight),神經網路就是通過這種方式來模擬人類的記憶。網路的輸出則取決於網路的結構、網路的連接方式、權重和激活函數。而網路自身通常都是對自然界某種演算法或者函數的逼近,也可能是對一種邏輯策略的表達。神經網路的構築理念是受到生物的神經網路運作啟發而產生的。人工神經網路則是把對生物神經網路的認識與數學統計模型相結合,藉助數學統計工具來實現。另一方面在人工智慧學的人工感知領域,我們通過數學統計學的方法,使神經網路能夠具備類似於人的決定能力和簡單的判斷能力,這種方法是對傳統邏輯學演算的進一步延伸。

人工神經網路中,神經元處理單元可表示不同的對象,例如特徵、字母、概念,或者一些有意義的抽象模式。網路中處理單元的類型分為三類:輸入單元、輸出單元和隱單元。輸入單元接受外部世界的信號與數據;輸出單元實現系統處理結果的輸出;隱單元是處在輸入和輸出單元之間,不能由系統外部觀察的單元。神經元間的連接權值反映了單元間的連接強度,信息的表示和處理體現在網路處理單元的連接關系中。人工神經網路是一種非程序化、適應性、大腦風格的信息處理,其本質是通過網路的變換和動力學行為得到一種並行分布式的信息處理功能,並在不同程度和層次上模仿人腦神經系統的信息處理功能。

神經網路,是一種應用類似於大腦神經突觸連接結構進行信息處理的數學模型,它是在人類對自身大腦組織結合和思維機制的認識理解基礎之上模擬出來的,它是根植於神經科學、數學、思維科學、人工智慧、統計學、物理學、計算機科學以及工程科學的一門技術。

在介紹神經網路的發展歷史之前,首先介紹一下神經網路的概念。神經網路主要是指一種仿造人腦設計的簡化的計算模型,這種模型中包含了大量的用於計算的神經元,這些神經元之間會通過一些帶有權重的連邊以一種層次化的方式組織在一起。每一層的神經元之間可以進行大規模的並行計算,層與層之間進行消息的傳遞。

下圖展示了整個神經網路的發展歷程:

神經網路的發展有悠久的歷史。其發展過程大致可以概括為如下4個階段。

(1)、M-P神經網路模型:20世紀40年代,人們就開始了對神經網路的研究。1943 年,美國心理學家麥克洛奇(Mcculloch)和數學家皮茲(Pitts)提出了M-P模型,此模型比較簡單,但是意義重大。在模型中,通過把神經元看作個功能邏輯器件來實現演算法,從此開創了神經網路模型的理論研究。
(2)、Hebb規則:1949 年,心理學家赫布(Hebb)出版了《The Organization of Behavior》(行為組織學),他在書中提出了突觸連接強度可變的假設。這個假設認為學習過程最終發生在神經元之間的突觸部位,突觸的連接強度隨之突觸前後神經元的活動而變化。這一假設發展成為後來神經網路中非常著名的Hebb規則。這一法則告訴人們,神經元之間突觸的聯系強度是可變的,這種可變性是學習和記憶的基礎。Hebb法則為構造有學習功能的神經網路模型奠定了基礎。
(3)、感知器模型:1957 年,羅森勃拉特(Rosenblatt)以M-P 模型為基礎,提出了感知器(Perceptron)模型。感知器模型具有現代神經網路的基本原則,並且它的結構非常符合神經生理學。這是一個具有連續可調權值矢量的MP神經網路模型,經過訓練可以達到對一定的輸入矢量模式進行分類和識別的目的,它雖然比較簡單,卻是第一個真正意義上的神經網路。Rosenblatt 證明了兩層感知器能夠對輸入進行分類,他還提出了帶隱層處理元件的三層感知器這一重要的研究方向。Rosenblatt 的神經網路模型包含了一些現代神經計算機的基本原理,從而形成神經網路方法和技術的重大突破。
(4)、ADALINE網路模型: 1959年,美國著名工程師威德羅(B.Widrow)和霍夫(M.Hoff)等人提出了自適應線性元件(Adaptive linear element,簡稱Adaline)和Widrow-Hoff學習規則(又稱最小均方差演算法或稱δ規則)的神經網路訓練方法,並將其應用於實際工程,成為第一個用於解決實際問題的人工神經網路,促進了神經網路的研究應用和發展。ADALINE網路模型是一種連續取值的自適應線性神經元網路模型,可以用於自適應系統。

人工智慧的創始人之一Minsky和Papert對以感知器為代表的網路系統的功能及局限性從數學上做了深入研究,於1969年發表了轟動一時《Perceptrons》一書,指出簡單的線性感知器的功能是有限的,它無法解決線性不可分的兩類樣本的分類問題,如簡單的線性感知器不可能實現「異或」的邏輯關系等。這一論斷給當時人工神經元網路的研究帶來沉重的打擊。開始了神經網路發展史上長達10年的低潮期。
(1)、自組織神經網路SOM模型:1972年,芬蘭的KohonenT.教授,提出了自組織神經網路SOM(Self-Organizing feature map)。後來的神經網路主要是根據KohonenT.的工作來實現的。SOM網路是一類無導師學習網路,主要用於模式識別﹑語音識別及分類問題。它採用一種「勝者為王」的競爭學習演算法,與先前提出的感知器有很大的不同,同時它的學習訓練方式是無指導訓練,是一種自組織網路。這種學習訓練方式往往是在不知道有哪些分類類型存在時,用作提取分類信息的一種訓練。
(2)、自適應共振理論ART:1976年,美國Grossberg教授提出了著名的自適應共振理論ART(Adaptive Resonance Theory),其學習過程具有自組織和自穩定的特徵。

(1)、Hopfield模型:1982年,美國物理學家霍普菲爾德(Hopfield)提出了一種離散神經網路,即離散Hopfield網路,從而有力地推動了神經網路的研究。在網路中,它首次將李雅普諾夫(Lyapunov)函數引入其中,後來的研究學者也將Lyapunov函數稱為能量函數。證明了網路的穩定性。1984年,Hopfield 又提出了一種連續神經網路,將網路中神經元的激活函數由離散型改為連續型。1985 年,Hopfield和Tank利用Hopfield神經網路解決了著名的旅行推銷商問題(Travelling Salesman Problem)。Hopfield神經網路是一組非線性微分方程。Hopfield的模型不僅對人工神經網路信息存儲和提取功能進行了非線性數學概括,提出了動力方程和學習方程,還對網路演算法提供了重要公式和參數,使人工神經網路的構造和學習有了理論指導,在Hopfield模型的影響下,大量學者又激發起研究神經網路的熱情,積極投身於這一學術領域中。因為Hopfield 神經網路在眾多方面具有巨大潛力,所以人們對神經網路的研究十分地重視,更多的人開始了研究神經網路,極大地推動了神經網路的發展。
(2)、Boltzmann機模型:1983年,Kirkpatrick等人認識到模擬退火演算法可用於NP完全組合優化問題的求解,這種模擬高溫物體退火過程來找尋全局最優解的方法最早由Metropli等人1953年提出的。1984年,Hinton與年輕學者Sejnowski等合作提出了大規模並行網路學習機,並明確提出隱單元的概念,這種學習機後來被稱為Boltzmann機。
Hinton和Sejnowsky利用統計物理學的感念和方法,首次提出的多層網路的學習演算法,稱為Boltzmann 機模型。
(3)、BP神經網路模型:1986年,儒默哈特(D.E.Ru melhart)等人在多層神經網路模型的基礎上,提出了多層神經網路權值修正的反向傳播學習演算法----BP演算法(Error Back-Propagation),解決了多層前向神經網路的學習問題,證明了多層神經網路具有很強的學習能力,它可以完成許多學習任務,解決許多實際問題。
(4)、並行分布處理理論:1986年,由Rumelhart和McCkekkand主編的《Parallel Distributed Processing:Exploration in the Microstructures of Cognition》,該書中,他們建立了並行分布處理理論,主要致力於認知的微觀研究,同時對具有非線性連續轉移函數的多層前饋網路的誤差反向傳播演算法即BP演算法進行了詳盡的分析,解決了長期以來沒有權值調整有效演算法的難題。可以求解感知機所不能解決的問題,回答了《Perceptrons》一書中關於神經網路局限性的問題,從實踐上證實了人工神經網路有很強的運算能力。
(5)、細胞神經網路模型:1988年,Chua和Yang提出了細胞神經網路(CNN)模型,它是一個細胞自動機特性的大規模非線性計算機模擬系統。Kosko建立了雙向聯想存儲模型(BAM),它具有非監督學習能力。
(6)、Darwinism模型:Edelman提出的Darwinism模型在90年代初產生了很大的影響,他建立了一種神經網路系統理論。
(7)、1988年,Linsker對感知機網路提出了新的自組織理論,並在Shanon資訊理論的基礎上形成了最大互信息理論,從而點燃了基於NN的信息應用理論的光芒。
(8)、1988年,Broomhead和Lowe用徑向基函數(Radialbasis function, RBF)提出分層網路的設計方法,從而將NN的設計與數值分析和線性適應濾波相掛鉤。
(9)、1991年,Haken把協同引入神經網路,在他的理論框架中,他認為,認知過程是自發的,並斷言模式識別過程即是模式形成過程。
(10)、1994年,廖曉昕關於細胞神經網路的數學理論與基礎的提出,帶來了這個領域新的進展。通過拓廣神經網路的激活函數類,給出了更一般的時滯細胞神經網路(DCNN)、Hopfield神經網路(HNN)、雙向聯想記憶網路(BAM)模型。
(11)、90年代初,Vapnik等提出了支持向量機(Supportvector machines, SVM)和VC(Vapnik-Chervonenkis)維數的概念。
經過多年的發展,已有上百種的神經網路模型被提出。

深度學習(Deep Learning,DL)由Hinton等人於2006年提出,是機器學習的一個新領域。深度學習本質上是構建含有多隱層的機器學習架構模型,通過大規模數據進行訓練,得到大量更具代表性的特徵信息。深度學習演算法打破了傳統神經網路對層數的限制,可根據設計者需要選擇網路層數。

突觸是神經元之間相互連接的介面部分,即一個神經元的神經末梢與另一個神經元的樹突相接觸的交界面,位於神經元的神經末梢尾端。突觸是軸突的終端。
大腦可視作為1000多億神經元組成的神經網路。神經元的信息傳遞和處理是一種電化學活動.樹突由於電化學作用接受外界的刺激,通過胞體內的活動體現為軸突電位,當軸突電位達到一定的值則形成神經脈沖或動作電位;再通過軸突末梢傳遞給其它的神經元.從控制論的觀點來看;這一過程可以看作一個多輸入單輸出非線性系統的動態過程。
神經元的功能特性:(1)時空整合功能;(2)神經元的動態極化性;(3)興奮與抑制狀態;(4)結構的可塑性;(5)脈沖與電位信號的轉換;(6)突觸延期和不應期;(7)學習、遺忘和疲勞。

神經網路從兩個方面模擬大腦:
(1)、神經網路獲取的知識是從外界環境中學習得來的。
(2)、內部神經元的連接強度,即突觸權值,用於儲存獲取的知識。
神經網路系統由能夠處理人類大腦不同部分之間信息傳遞的由大量神經元連接形成的拓撲結構組成,依賴於這些龐大的神經元數目和它們之間的聯系,人類的大腦能夠收到輸入的信息的刺激由分布式並行處理的神經元相互連接進行非線性映射處理,從而實現復雜的信息處理和推理任務。
對於某個處理單元(神經元)來說,假設來自其他處理單元(神經元)i的信息為Xi,它們與本處理單元的互相作用強度即連接權值為Wi, i=0,1,…,n-1,處理單元的內部閾值為θ。那麼本處理單元(神經元)的輸入為:

,而處理單元的輸出為:

式中,xi為第i個元素的輸入,wi為第i個處理單元與本處理單元的互聯權重即神經元連接權值。f稱為激活函數或作用函數,它決定節點(神經元)的輸出。θ表示隱含層神經節點的閾值。

神經網路的主要工作是建立模型和確定權值,一般有前向型和反饋型兩種網路結構。通常神經網路的學習和訓練需要一組輸入數據和輸出數據對,選擇網路模型和傳遞、訓練函數後,神經網路計算得到輸出結果,根據實際輸出和期望輸出之間的誤差進行權值的修正,在網路進行判斷的時候就只有輸入數據而沒有預期的輸出結果。神經網路一個相當重要的能力是其網路能通過它的神經元權值和閾值的不斷調整從環境中進行學習,直到網路的輸出誤差達到預期的結果,就認為網路訓練結束。

對於這樣一種多輸入、單輸出的基本單元可以進一步從生物化學、電生物學、數學等方面給出描述其功能的模型。利用大量神經元相互連接組成的人工神經網路,將顯示出人腦的若干特徵,人工神經網路也具有初步的自適應與自組織能力。在學習或訓練過程中改變突觸權重wij值,以適應周圍環境的要求。同一網路因學習方式及內容不同可具有不同的功能。人工神經網路是一個具有學習能力的系統,可以發展知識,以至超過設計者原有的知識水平。通常,它的學習(或訓練)方式可分為兩種,一種是有監督(supervised)或稱有導師的學習,這時利用給定的樣本標准進行分類或模仿;另一種是無監督(unsupervised)學習或稱無導師學習,這時,只規定學習方式或某些規則,而具體的學習內容隨系統所處環境(即輸入信號情況)而異,系統可以自動發現環境特徵和規律性,具有更近似於人腦的功能。
在人工神經網路設計及應用研究中,通常需要考慮三個方面的內容,即神經元激活函數、神經元之間的連接形式和網路的學習(訓練)。

㈣ 復雜網路介紹(Network Analysis)

網路,數學上稱為圖,最早研究始於1736年歐拉的哥尼斯堡七橋問題,但是之後關於圖的研究發展緩慢,直到1936年,才有了第一本關於圖論研究的著作。

1960年,數學家Erdos和Renyi建立了隨機圖理論,為構造網路提供了一種新的方法。在這種方法中,兩個節點之間是否有邊連接不再是確定的事情,而是根據一個概率決定,這樣生成的網路稱作隨機網路。隨機圖的思想主宰復雜網路研究長達四十年之久,然而,直到近幾年,科學家們對大量的現實網路的實際數據進行計算研究後得到的許多結果,絕大多數的實際網路並不是完全隨機的,既不是規則網路,也不是隨機網路,而是具有與前兩者皆不同的統計特徵的網路。這樣的一•些網路稱為復雜網路,對於復雜網路的研究標志著網路研究的第三階段的到來。

1998年,Watts及其導師Strogatz在Nature上的文章《Collective Dynamics of Small-world Networks》,刻畫了現實世界中的網路所具有的大的凝聚系數和短的平均路徑長度的小世界特性。隨後,1999年,Barabasi及其博士生Albert在Science上的文章《Emergence of Scaling in Random Networks》提出無尺度網路模型(度分布為冪律分布),,刻畫了實際網路中普遍存在的「富者更富」的現象,從此開啟了復雜網路研究的新紀元。

隨著研究的深入,越來越多關於復雜網路的性質被發掘出來,其中很重要的一項研究是2002年Girvan和Newman在PNAS上的一篇文章《Community structure in social and biological networks》,指出復雜網路中普遍存在著聚類特性,每一個類稱之為一個社團(community),並提出了一個發現這些社團的演算法。從此,熱門對復雜網路中的社團發現問題進行了大量研究,產生了大量的演算法。

許多復雜系統都可以建模成一種復雜網路進行分析,比如常見的電力網路、航空網路、交通網路、計算機網路以及社交網路等等。復雜網路不僅是一種數據的表現形式,它同樣也是一種科學研究的手段。
復雜網路的定義
錢學森對於復雜網路給出了一種嚴格的定義:

復雜網路具有網路平均路徑長度較小、聚類系數較大、節點度分度服從冪律分布等相同特性

言外之意,復雜網路就是指一種呈現高度復雜性的網路,其特點主要具體體現在如下幾個方面:

小世界特性(Small world theory)又被稱之為是六度空間理論或者是六度分割理論(Six degrees of separation)。小世界特性指出:社交網路中的任何一個成員和任何一個陌生人之間所間隔的人不會超過六個。

在考慮網路特徵的時候,通常使用兩個特徵來衡量網路:

對於規則網路,任意兩個點(個體)之間的特徵路徑長度長(通過多少個體聯系在一起),但聚合系數高(你是朋友的朋友的朋友的幾率高)。對於隨機網路,任意兩個點之間的特徵路徑長度短,但聚合系數低。而小世界網路,點之間特徵路徑長度小,接近隨機網路,而聚合系數依舊相當高,接近規則網路。

復雜網路的小世界特性跟網路中的信息傳播有著密切的聯系。實際的社會、生態、等網路都是小世界網路,在這樣的系統里,信息傳遞速度快,並且少量改變幾個連接,就可以劇烈地改變網路的性能,如對已存在的網路進行調整,如蜂窩電話網,改動很少幾條線路,就可以顯著提高性能。

現實世界的網路大部分都不是隨機網路,少數的節點往往擁有大量的連接,而大部分節點卻很少,節點的度數分布符合冪率分布,而這就被稱為是網路的無標度特性(Scale-free)。將度分布符合冪律分布的復雜網路稱為無標度網路。

例如,知乎中用戶的fellow數的分布情況:

無標度特性反映了復雜網路具有嚴重的異質性,其各節點之間的連接狀況(度數)具有嚴重的不均勻分布性:網路中少數稱之為Hub點的節點擁有極其多的連接,而大多數節點只有很少量的連接。少數Hub點對無標度網路的運行起著主導的作用。從廣義上說,無標度網路的無標度性是描述大量復雜系統整體上嚴重不均勻分布的一種內在性質。

其實復雜網路的無標度特性與網路的魯棒性分析具有密切的關系。無標度網路中冪律分布特性的存在極大地提高了高度數節點存在的可能性,因此,無標度網路同時顯現出針對隨機故障的魯棒性和針對蓄意攻擊的脆弱性。這種魯棒且脆弱性對網路容錯和抗攻擊能力有很大影響。

研究表明,無標度網路具有很強的容錯性,但是對基於節點度值的選擇性攻擊而言,其抗攻擊能力相當差,高度數節點的存在極大地削弱了網路的魯棒性,一個惡意攻擊者只需選擇攻擊網路很少的一部分高度數節點,就能使網路迅速癱瘓。

人以類聚,物以群分。復雜網路中的節點往往也呈現出集群特性。例如,社會網路中總是存在熟人圈或朋友圈,其中每個成員都認識其他成員。集群程度的意義是網路集團化的程度;這是一種網路的內聚傾向。連通集團概念反映的是一個大網路中各集聚的小網路分布和相互聯系的狀況。例如,它可以反映這個朋友圈與另一個朋友圈的相互關系。

下圖為網路聚集現象的一種描述:

真實網路所表現出來的小世界特性、無尺度冪律分布或高聚集度等現象促使人們從理論上構造出多樣的網路模型,以解釋這些統計特性,探索形成這些網路的演化機制。本節介紹了幾個經典網路模型的原理和構造方法,包括ER隨機網路模型、BA無尺度網路模型和小世界模型。

ErdOs-Renyi隨機網路模型(簡稱ER隨機網路模型)是匈牙利數學家Erdos和Renyi提出的一種網路模型。1959年,為了描述通信和生命科學中的網路,Erdos和Renyi提出,通過在網路節點間隨機地布置連接,就可以有效地模擬出這類系統。這種方法及相關定理的簡明扼要,導致了圖論研究的復興,數學界也因此出現了研究隨機網路的新領域。ER隨機網路模型在計算機科學、統計物理、生命科學、通信工程等領域都得到了廣泛應用。

ER隨機網路模型是個機會均等的網路模型。在該網路模型中,給定一定數目的個體(節點),它和其他任意一個個體(節點)之間有相互關系(連接)的概率相同,記為戶。因為一個節點連接k個其他節點的概率,會隨著k值的增大而呈指數遞減。這樣,如果定義是為每個個體所連接的其他個體的數目,可以知道連接概率p(k)服從鍾形的泊松(Poisson)分布,有時隨機網路也稱作指數網路。

隨機網路理論有一項重要預測:盡管連接是隨機安置的,但由此形成的網路卻是高度民主的,也就是說,絕大部分節點的連接數目會大致相同。實際上,隨機網路中連接數目比平均數高許多或低許多的節點,都十分罕見。

在過去40多年裡,科學家習慣於將所有復雜網路都看作是隨機網路。在1998年研究描繪萬維網(以網頁為節點、以超級鏈接為邊)的項目時,學者們原以為會發現一個隨機網路:人們會根據自己的興趣,來決定將網路文件鏈接到哪些網站,而個人興趣是多種多樣的,可選擇的網頁數量也極其龐大,因而最終的鏈接模式將呈現出相當隨機的結果。

然而,事實並非如此。因為在萬維網上,並非所有的節點都是平等的。在選擇將網頁鏈接到何處時,人們可以從數十億個網站中進行選擇。然而,我們中的大部分人只熟悉整個萬維網的一小部分,這一小部分中往往包含那些擁有較多鏈接的站點,因為這樣的站點更容易為人所知。只要鏈接到這些站點,就等於造就或加強了對它們的偏好。這種「擇優連接(Preferential Attachment)」的過程,也發生在其他網路中。在Internet上,那些具有較多連接的路由器通常也擁有更大的帶寬,因而新用戶就更傾向於連接到這些路由器上。在美國的生物技術產業內,某些知名公司更容易吸引到同盟者,而這又進一步加強了它在未來合作中的吸引力。類似地,在論文引用網路(論文為節點,引用關系為邊)中,被引用次數較多的科學文獻,會吸引更多的研究者去閱讀並引用它。針對這些網路的「擇優連接」的新特性,學者提出了BA無尺度網路模型。

無尺度網路的發現,使人類對於復雜網路的認識進入了一個新的天地。無尺度網路的最主要特徵是節點的度分布服從冪次定律。BA模型是無尺度網路(Scale-free Network)的第一個抽象模型。由於考慮了系統的成長性(Growth)和擇優連接性,BA模型給我們帶來了很多啟發,並且可以應用於多種實際網路。但是BA模型的兩個基本假定,對於解釋許多現實中的現象來說過於簡單,與現實的網路還有較大的距離。

有學者試圖對BA模型進行擴展,即根據現實中的網路,增添某些假定,以便進一步探索復雜網路系統的規律。對BA模型的擴充可以考慮三個因素:擇優選擇的成本、邊的重新連接、網路的初始狀態。擴充的BA模型可以更好地模擬現實世界中的網路現象。

1999年,丸Barabasi和兄Albert在對互聯網的研究中發現了無尺度網路,使人類對於復雜網路系統有了全新的認識。過去,人們習慣於將所有復雜網路看作是隨機網路,但Barabasi和Albert發現互聯網實際上是由少數高連接性的頁面組織起來的,80%以上頁面的鏈接數不到4個。只佔節點總數不到萬分之一的極少數節點,卻有1000個以上的鏈接。這種網頁的鏈接分布遵循所謂的「冪次定律」:任何一個節點擁有是條連接的概率,與1/k成正比。它不像鍾形曲線那樣具有一個集中度很高的峰值,而是一條連續遞減的曲線。如果取雙對數坐標系來描述冪次定律,得到的是一條直線。

Scale-free網路指的是節點的度分布符合冪律分布的網路,由於其缺乏一個描述問題的特徵尺度而被稱為無尺度網路。其後的幾年中,研究者們在許多不同的領域中都發現了無尺度網路。從生態系統到人際關系,從食物鏈到代謝系統,處處可以看到無尺度網路。

什麼隨機模型與實際不相符合呢?Barabasi和Albert在深入分析了ER模型之後,發現問題在於ER模型討論的網路是一個既定規模的,不會繼續擴展的網路。正是由於現實當中的網路往往具有不斷成長的特性,早進入的節點(老節點)獲得連接的概率就更大。當網路擴張到一定規模以後,這些老節點很容易成為擁有大量連接的集散節點。這就是網路的「成長性」。

其次,ER模型中每個節點與其他節點連接時,建立連接的概率是相同的。也就是說,網路當中所有的節點都是平等的。這一情況與實際也不相符。例如,新成立的網站選擇與其他網站鏈接時,自然是在人們所熟知的網站中選擇一個進行鏈接,新的個人主頁上的超文本鏈接更有可能指向新浪、雅虎等著名的站點。由此,那些熟知的網站將獲得更多的鏈接,這種特性稱為「擇優連接」。這種現象也稱為「馬太效應(Matthew Effect)」或「富者更富(Rich Get Richer)」。

「成長性」和「擇優連接」這兩種機制解釋了網路當中集散節點的存在。

BA無尺度模型的關鍵在於,它把實際復雜網路的無尺度特性歸結為增長和優先連接這兩個非常簡單的機制。當然,這也不可避免地使得BA無尺度網路模型和真實網路相比存在一些明顯的限制。比如,一些實際網路的局域特性對網路演化結果的影響、外界對網路節點及其連接邊刪除的影響等。

一般自然的或者人造的現實網路與外界之間有節點交換,節點間連接也在不斷變化,網路自身具有一定的自組織能力,會對自身或者外界的變化作出相應的反應。因此,在BA模型基礎上,可以把模型的動力學過程進行推廣,包括對網路中已有節點或者連接的隨機刪除及其相應的連接補償機制。
對每一個時間步長,考慮如下三種假設:

復雜網路研究中一個重要的發現是絕大多數大規模真實網路的平均路徑長度比想像的小得多,稱之為「小世界現象」,或稱「六度分離(Six Degrees of Separation)」。

所謂小世界現象,是來自社會網路(Social Networks)中的基本現象,即每個人只需要很少的中間人(平均6個)就可以和全世界的人建立起聯系。在這一理論中,每個人可看作是網路的一個節點,並有大量路徑連接著他們,相連接的節點表示互相認識的人。

1998年,Watts和Strogatz引入了一個介於規則網路和完全隨機網路之間的單參數小世界網路模型,稱為WS小世界模型,該模型較好地體現了社會網路的小平均路徑長度和大聚類系數兩種現象。
WS小世界模型的構造方法如下:

在WS小世界模型中,p=0對應於規則網路,p=l則對應於完全隨機網路,通過調節聲的值就可以控制從規則網路到完全隨機圖的過渡。因此,WS小世界網路是介於規則網路和隨機網路之間的一種網路。

WS小世界模型構造演算法中的隨機化過程有可能破壞網路的連通性。因此,Newman和Watts稍後提出了NW小世界模型。NW小世界模型的構造方法如下:

NW模型只是將WS小世界模型構造中的「隨機化重連」改為「隨機化加邊」。

NW模型不同於WS模型之處在於它不切斷規則網路中的原始邊,而是以概率p重新連接一對節點。這樣構造出來的網路同時具有大的聚類數和小的平均距離。NW模型的優點在於其簡化了理論分析,因為WS模型可能存在孤立節點,但NW模型不會。當戶足夠小和N足夠大時,NW小世界模型本質上就等同於WS小世界模型。

小世界網路模型反映了實際網路所具有的一些特性,例如朋友關系網,大部分人的朋友都是和他們住在同一個地方,其地理位置不是很遠,或只在同一單位工作或學習的同事和同學。另一方面,也有些人住得較遠的,甚至是遠在異國他鄉的朋友,這種情形好比WS小世界模型中通過重新連線或在NW小世界模型中通過加入連線產生的遠程連接。

小世界網路模型的主要特徵之一是節點之間的平均距離隨遠程連接的個數而指數下降。對於規則網路,平均距離L可估計為L正比於N;而對於小世界網路模型,L正比於ln(N)/1n(K)。例如,對於一個千萬人口的城市,人與人的平均接觸距離是6左右,這使得生活人群之間的距離大大縮短。該模型由一個規則的環組成,通常是一個一維的幾乎具有周期性邊界條件的環(即環中每個節點幾乎都連接到一固定數目的鄰近節點)和少量的隨機選取節點連接成的「捷徑」 (重新連接現存的邊)。小世界網路同時具有「高網路聚集度」和「低平均路徑」的特性。

從小世界網路模型中可以看到,只要改變很少的幾個連接,就可以劇烈的改變網路的性能。這樣的性質也可以應用其他網路,尤其是對已有網路的調整方面。例如,蜂窩電話網,改動很少幾條線路(低成本、低工作量)的連接,就可以顯著提高性能。也可以應用到互聯網的主幹路由器上,以改變流量和提高傳輸速度。同樣的思路也可以應用到電子郵件的快速傳遞、特定Web站點的定位等。

如果學習復雜網路,目前認為最好的視頻教程:
【社交計算與社會網路分析】Network Analysis

1) 復雜網路中聚類演算法總結
2) Network Analysis復雜網路分析總結
3) 復雜網路和社會網路

㈤ 復雜網路的定義

復雜網路簡而言之即呈現高度復雜性的網路。其復雜性主要表現在以下幾個方面:
1)結構復雜,表現在節點數目巨大,網路結構呈現多種不同特徵。
2)網路進化:表現在節點或連接的產生與消失。例如world-wide network,網頁或鏈接隨時可能出現或斷開,導致網路結構不斷發生變化。
3)連接多樣性:節點之間的連接權重存在差異,且有可能存在方向性。
4)動力學復雜性:節點集可能屬於非線性動力學系統,例如節點狀態隨時間發生復雜變化。
5)節點多樣性:復雜網路中的節點可以代表任何事物,例如,人際關系構成的復雜網路節點代表單獨個體,萬維網組成的復雜網路節點可以表示不同網頁。
6)多重復雜性融合:即以上多重復雜性相互影響,導致更為難以預料的結果。例如,設計一個電力供應網路需要考慮此網路的進化過程,其進化過程決定網路的拓撲結構。當兩個節點之間頻繁進行能量傳輸時,他們之間的連接權重會隨之增加,通過不斷的學習與記憶逐步改善網路性能。 復雜網路一般具有以下特性:
第一,小世界。它以簡單的措辭描述了大多數網路盡管規模很大但是任意兩個節(頂)點間卻有一條相當短的路徑的事實。以日常語言看,它反映的是相互關系的數目可以很小但卻能夠連接世界的事實,例如,在社會網路中,人與人相互認識的關系很少,但是卻可以找到很遠的無關系的其他人。正如麥克盧漢所說,地球變得越來越小,變成一個地球村,也就是說,變成一個小世界。
第二,集群即集聚程度(clustering coefficient)的概念。例如,社會網路中總是存在熟人圈或朋友圈,其中每個成員都認識其他成員。集聚程度的意義是網路集團化的程度;這是一種網路的內聚傾向。連通集團概念反映的是一個大網路中各集聚的小網路分布和相互聯系的狀況。例如,它可以反映這個朋友圈與另一個朋友圈的相互關系。
第三,冪律(power law)的度分布概念。度指的是網路中某個頂(節)點(相當於一個個體)與其它頂點關系(用網路中的邊表達)的數量;度的相關性指頂點之間關系的聯系緊密性;介數是一個重要的全局幾何量。頂點u的介數含義為網路中所有的最短路徑之中,經過u的數量。它反映了頂點u(即網路中有關聯的個體)的影響力。無標度網路(Scale-free network)的特徵主要集中反映了集聚的集中性。

㈥ 復雜網路 --- 社會網路分析

「社會網路」指的是社會成員及其相互關系的集合。社會網路中所說的「點」是各個社會成員,而社會網路中的「邊」指的是成員之間的各種社會關系。成員間的關系可以是有向的,也可以是無向的。同時,社會關系可以表現為多種形式,如人與人之間的朋友關系、上下級關系、科研合作關系等,組織成員之間的溝通關系,國家之間的貿易關系等。社會網路分析(Social Network Analysis)就是要對社會網路中行為者之間的關系進行量化研究,是社會網路理論中的一個具體工具。

因此,社會網路分析關注的焦點是關系和關系的模式,採用的方式和方法從概念上有別於傳統的統計分析和數據處理方法。

社會網路通常表達人類的個體通過各種關系連接起來,比如朋友、婚姻、商業等,這些連接宏觀上呈現出一定的模式。很早的時候,一些社會學家開始關注人們交往的模式。Ebel等進行了一個電子郵件版的小世界問題的實驗,完成了Kiel大學的5000個學生的112天電子郵件連接數據,節點為電子郵件地址,連接為消息的傳遞,得到帶指數截斷的冪律度分布,指數為r=1.18。同時證明,該網路是小世界的,平均分隔為4.94。

社會網路分析,可以解決或可以嘗試解決下列問題:

「中心性」是社會網路分析的重點之一,用於分析個人或組織在其社會網路中具有怎樣的權力,或者說居於怎樣的中心地位,這一思想是社會網路分析者最早探討的內容之一。

點度中心度表示與該點直接相連的點的個數,無向圖為(n-1),有向圖為(入度,出度)。

個體的中心度(Centrality)測量個體處於網路中心的程度,反映了該點在網路中的重要性程度。網路中每個個體都有一個中心度,刻畫了個體特性。除了計算網路中個體的中心度外,還可以計算整個網路的集中趨勢(可簡稱為中心勢,Centralization)。網路中心勢刻畫的是整個網路中各個點的差異性程度,一個網路只有一個中心勢。

根據計算方法的不同,中心度和中心勢都可以分為3種:點度中心度/點度中心勢、中間中心度/中間中心勢、接近中心度/接近中心勢。

在一個社會網路中,如果一個個體與其他個體之間存在大量的直接聯系,那麼該個體就居於中心地位,在該網路中擁有較大的「權力」。在這種思想的指導下,網路中一個點的點度中心性就可以用網路中與該點之間有聯系的點的數目來衡量,這就是點度中心度。

網路中心勢指的是網路中點的集中趨勢,其計算依據如下步驟:首先找到圖中的最大點度中心度的數值,然後計算該值與任何其他點的中心度的差值,再計算這些「差值」的總和,最後用這個總和除以各個「差值」總和的最大可能值。

在網路中,如果一個個體位於許多其他兩個個體之間的路徑上,可以認為該個體居於重要地位,因為他具有控制其他兩個個體之間的交往能力,這種特性用中間中心度描述,它測量的是個體對資源控制的程度。一個個體在網路中占據這樣的位置越多,代表它具有很高的中間中心性,就有越多的個體需要通過它才能發生聯系。

中間中心勢定義為網路中 中間中心性最高的節點的中間中心性與其他節點的中間中心性的差距,用於分析網路整體結構。中間中心勢越高,表示該網路中的節點可能分為多個小團體,而且過於依賴某一個節點傳遞關系,說明該節點在網路中處於極其重要的地位。

接近中心性用來描述網路中的個體不受他人「控制」的能力。在計算接近中心度的時候,我們關注的是捷徑,而不是直接關系。如果一個點通過比較短的路徑與許多其他點相連,我們就說該點具有較高的接近中心性。

對一個社會網路來說,接近中心勢越高,表明網路中節點的差異性越大;反之,則表明網路中節點間的差異越小。

註:以上公式都是針對無向圖,如果是有向圖則根據定義相應修改公式即可

當網路中某些個體之間的關系特別緊密,以至於結合成一個次級團體時,這樣的團體在社會網路分析中被稱為凝聚子群。分析網路中存在多少個這樣的子群,子群內部成員之間關系的特點,子群之間關系特點,一個子群的成員與另一個子群成員之間的關系特點等就是凝聚子群分析。

由於凝聚子群成員之間的關系十分緊密,因此有的學者也將凝聚子群分析形象地稱為「小團體分析」或「社區現象」。

常用的社區檢測方法主要有如下幾種:

(1)基於圖分割的方法,如Kernighan-Lin演算法,譜平分法等;

(2)基於層次聚類的方法,如GN演算法、Newman快速演算法等;

(3)基於模塊度優化的方法,如貪婪演算法、模擬退火演算法、Memetic演算法、PSO演算法、進化多目標優化演算法等。

凝聚子群密度(External-Internallndex,E-IIndex)主要用來衡量一個大的網路中小團體現象是否十分嚴重,在分析組織管理等問題時非常有效。

最差的情形是大團體很散漫,核心小團體卻有高度內聚力。另外一種情況是,大團體中有許多內聚力很高的小團體,很可能就會出現小團體間相互斗爭的現象。凝聚子群密度的取值范圍為[-1,+1]。該值越向1靠近,意味著派系林立的程度越大;該值越接近-1,意味著派系林立的程度越小;該值越接近0,表明關系越趨向於隨機分布,未出現派系林立的情形。

E-I Index可以說是企業管理者的一個重要的危機指數。當一個企業的E-I Index過高時,就表示該企業中的小團體有可能結合緊密而開始圖謀小團體私利,從而傷害到整個企業的利益。其實E-I Index不僅僅可以應用到企業管理領域,也可以應用到其他領域,比如用來研究某一學科領域學者之間的關系。如果該網路存在凝聚子群,並且凝聚子群的密度較高,說明處於這個凝聚子群內部的這部分學者之間聯系緊密,在信息分享和科研合作方面交往頻繁,而處於子群外部的成員則不能得到足夠的信息和科研合作機會。從一定程度上來說,這種情況也是不利於該學科領域發展的。

核心-邊緣(Core-Periphery)結構分析的目的是研究社會網路中哪些節點處於核心地位,哪些節點處於邊緣地位。核心-邊緣結構分析具有較廣的應用性,可用於分析精英網路、論文引用關系網路以及組織關系網路等多種社會現象。

根據關系數據的類型(定類數據和定比數據),核心—邊緣結構有不同的形式。定類數據和定比數據是統計學中的基本概念,一般來說,定類數據是用類別來表示的,通常用數字表示這些類別,但是這些數值不能用來進行數學計算;定比數據是用數值來表示的,可以用來進行數學計算。如果數據是定類數據,可以構建離散的核心-邊緣模型;如果數據是定比數據,可以構建連續的核心-邊緣模型。

離散的核心-邊緣模型,根據核心成員和邊緣成員之間關系的有無及緊密程度,又可分為3種:核心-邊緣全關聯模型、核心-邊緣局部關聯模型、核心-邊緣關系缺失模型。如果把核心和邊緣之間的關系看成是缺失值,就構成了核心-邊緣關系缺失模型。

這里介紹適用於定類數據的4種離散的核心-邊緣模型:

參考