當前位置:首頁 » 網路連接 » 該路由器直接交付網路有哪些

該路由器直接交付網路有哪些

發布時間: 2023-02-14 16:18:58

Ⅰ 路由選擇協議——RIP協議

  從本文開始介紹路由選擇協議,也就是討論路由表中的路由是怎麼形成的。
本文內容

  從路由演算法能否隨網路的通信量或拓撲自適應地進行調整變化來劃分,可以分為: 靜態路由選擇策略 動態路由選擇策略
  (1) 靜態路由選擇策略 :即手工配每一條置路由。
  優點:簡單,開銷小。
  缺點:只適用小網路,難以適應網路狀態的變化。

  (2) 動態路由選擇策略 :又叫自適應路由選擇。
  優點:能較好適應網路狀態的變化,適用於大網路。
  缺點:實現復雜,開銷大。

  由於互聯網規模非常大,可以把互聯網劃分為許多較小的 自治系統 (autonomous system),記為 AS 。每個自治系統通常在相同管理控制下的路由器組成,在一個AS中的路由器都全部運行在同樣的路由演算法。各個AS之間彼此是互聯的,因此一個AS中有一個或多個路由器用於不同AS之間的通信,即負責將本AS之外的目的地址轉發分組,這些路由器稱為 網關路由器

  根據上面描述,可以將路由選擇協議劃分為兩個大類: 內部網關協議 外部網關協議
  (1) 內部網關協議IGP (Interior Gateway Protocol):即在一個自治系統內不使用的路由選擇協議,常見的協議有RIP、OSPF協議。
  (2) 外部網關協議EGP (External Gateway Protocol):用於實現不同自治系統之間通信的傳遞,這樣的協議就是EGP協議,目前使用最多的就是BGP的版本4(BGP-4)。

  自治系統之間的路由選擇也叫 域間路由選擇 ,在自治系統之內的路由選擇也叫 域內路由選擇

  RIP(Routing Information Protocol)協議——路由信息協議,是一種分布式的 基於距離向量的路由選擇協議 ,最大的優點是簡單。
  RIP協議要求網路中的每一個路由器都要維護從它自己到其他每一個目的網路的距離記錄( 距離向量 )。RIP協議對距離的定義如下:

  RIP協議是通過 每個路由器要不斷的和其他路由器交換路由信息 ,從而達到自治系統中所有節點都得到正確的路由信息。
  RIP協議考慮了和哪些路由器交換信息、交換什麼信息以及什麼時候交換信息這三個問題,RIP協議特點:

  路由器在剛開始工作時,它的路由表是空的,然後路由器就得出到直接相連的幾個網路的距離(這些距離為1),接著每個絡器也只是和自己相鄰的路由器交換並更新信息。經過若干次交換後,所有路由器都會知道到達本自治系統匯總任何一個網路的最短距離和下一跳地址。

  對每一個相鄰路由器發送過來的RIP報文,會進行一下步驟:
  (1) 路由器R1接收到其相鄰路由器R2發送過來的報文,先修改此報文的所有項目:把「下一條」欄位中的地址都改為R2,並把所有的「距離」欄位的值加1 。每個項目都有三個關鍵欄位:到目的網路 N ,距離是 d ,下一跳路由器是 X

  (2) 對修改後的RIP報文中的每一項,進行以下步驟:
    1) 若原來的路由表中沒有網路N,則把該項目添加到路由表中

    2) 如果R1路由表中已經有目的網路N,這時查看下一跳的地址,如果下一跳地址是R2,則把收到的項目替換原路由表中的項目

     如果下一跳的地址不是R2,那麼如果收到項目中距離小於路由表中的距離,則進行替換,否則什麼也不做。

  (3) 若3分鍾還沒有收到相鄰路由器的更新路由表,則把此路由器記為不可達的距離,即把距離設置為16
  (4) 返回

  RIP存在一個問題是當網路出現故障時,要經過比較長的時間才能將磁信息傳送到所有的路由器。這一特點叫做: 好消息傳得快,壞消息傳得慢。
  如下圖所示,在正常的情況下,R1和R2交換信息,其中只畫出了達到的網路1的表項。

  如果路由器R1到網1的鏈路出現了故障,R1無法達到網1,於是路由器R1把到網1的距離改為16(表示網1不可達),因而R1路由表響應的項目變為 「1,16,直接交付」。但是,可能需要經過30s後R1,才能把更新信息發送給R2,,然而R2可能已經先把自己的路由表發送給了R1,其中有到達網1的這一項 「1,2,R1」。

  R1收到R2的更新報文後,會誤認為自己無法直接到達網1,但是可經過R2到達網1,於是把收到的路由信息 「1,2,R1」 修改為 「1,3,R2」,表明「我到網1的距離是3,下一跳的R2」。
  同理,R2接收到又會更新自己的路由表為 「1,4,R1」,以為「我到網1的距離為4,下一跳為R1」....就這樣一直更新下去,知道R1和R2到網1的距離為16時,R1和R2才知道網1是不可達的。所以,這就是:好消息傳得快,壞消息傳得慢的原因。

計算機網路(四)——網路層

網際層的IP協議及配套協議 :

(1) 從收到的分組的首部提取 目的 IP 地址 D
(2) 先判斷是否為直接交付,對路由器直接相連的網路逐個檢查:用各網路的 子網掩碼和 D 逐位相「與」 ,看是否和相應的網路地址匹配。若匹配,則將分組直接交付。否則就是間接交付,執行 (3)。
(3) 若路由表中有目的地址為 D 的 特定主機路由 ,則將分組傳送給指明的下一跳路由器;否則,執行 (4)。
(4) 對路由表中的每一行,將 子網掩碼和 D 逐位相「與」 。若結果與該行的目的網路地址匹配,則將分組傳送給該行指明的下一跳路由器;否則,執行 (5)。
(5) 若路由表中有一個默認路由,則將分組傳送給路由表中所指明的默認路由器;否則,執行 (6)。
(6) 報告轉發分組出錯。

從匹配結果中選擇具有最長網路前綴的路由:最長前綴匹配

OSPF 的其他特點:

Ⅲ 計算機網路:網路層(2)

如圖,一個IP數據報由首部和數據兩部分組成。首部的前一部分是固定長度,共20位元組,是所有IP數據報必須具有的。在首部的固定部分的後面是一些可選欄位,其長度是可變的。

(1)版本
佔4位,指IP協議的版本。通信雙方使用的IP協議的版本必須一致。目前廣泛使用的IP協議版本號為4(即IPv4)。也有使用IPv6的(即版本6的IP協議)。
(2)首部長度
佔4位,可表示的最大十進制數值是15。 這個欄位所表示數的單位是32位字(1個32位字長是4位元組),因此,當I的首部長度為1111時(即十進制的15),首部長度就達到最大值60位元組。當分組的首部長度不是4位元組的整數倍時,必須利用最後的填充欄位加以填充。 因此數據部分永遠在4位元組的整數倍時開始,這樣在實現IP協議時較為方便。首部長度限制為60位元組的缺點是有時可能不夠用。但這樣做是希望用戶盡量減少開銷。最常用的首部長度就是20位元組(即首部長度為0101),這時不使用任何選項。
(3)區分服務
佔8位,用來獲得更好的服務。這個欄位在舊標准中叫做服務類型,但實際上一直沒有被使用過。1998年ITF把這個欄位改名為區分服務DS( Differentiated Services。只有在使用區分服務時,這個欄位才起作用。在一般的情況下都不使用這個欄位。
(4)總長度
總長度指首部和數據之和的長度,單位為位元組。總長度欄位為16位,因此數據報的最大長度為216-1=65535位元組。
在IP層下面的每一種數據鏈路層都有其自己的幀格式,其中包括幀格式中的數據欄位的最大長度,這稱為最大傳送單元MTU( Maximum Transfer Unit)。當一個IP數據報封裝成鏈路層的幀時,此數據報的總長度(即首部加上數據部分)一定不能超過下面的數據鏈路層的MTU值。雖然使用盡可能長的數據報會使傳輸效率提高,但由於乙太網的普遍應用,所以實際上使用的數據報長度 很少有超過1500位元組 的。為了不使IP數據報的傳輸效率降低,有關IP的標准文檔規定,所有的主機和路由器必須能夠處理的IP數據報長度不得小於576位元組。這個數值也就是最小的IP數據報的總長度。當數據報長度超過網路所容許的最大傳送單元MTU時,就必須把過長的數據報進行分片後才能在網路上傳送。這時,數據報首部中的「總長度」欄位不是指未分片前的數據報長度,而是指分片後的每一個分片的首部長度與數據長度的總和。
(5)標識 (identification)
佔16位。軟體在存儲器中維持一個計數器,每產生一個數據報,計數器就加1,並將此值賦給標識欄位。但這個「標識」並不是序號,因為IP是無連接服務,數據報不存在按序接收的問題。當數據報由於長度超過網路的MTU而必須分片時,這個標識欄位的值就被復制到所有的數據報片的標識欄位中。相同的標識欄位的值使分片後的各數據報片最後能正確地重裝成為原來的數據報。
(6)標志(flag)
佔3位,但目前只有兩位有意義。
標志欄位中的最低位記為 MF ( More Fragment)。MF=1即表示後面「還有分片」的數據報。MF=0表示這已是若千數據報片中的最後一個。
標志欄位中間的一位記為 DF (Dont Fragment),意思是「不能分片」。只有當DF=0時才允許分片。
(7)片偏移
佔13位。片偏移指出:較長的分組在分片後,某片在原分組中的相對位置。也就是說,相對於用戶數據欄位的起點,該片從何處開始。片偏移以8個位元組為偏移單位。這就是說,每個分片的長度一定是8位元組(64位)的整數倍。
(8)生存時間
佔8位,生存時間欄位常用的英文縮寫是TTL( Time To live),表明是數據報在網路中的壽命。由發出數據報的源點設置這個欄位。其目的是防止無法交付的數據報無限制地在網際網路中兜圈子(例如從路由器R1轉發到R2,再轉發到R3,然後又轉發到R1),因而白白消耗網路資源。最初的設計是以秒作為TTL值的單位。每經過一個路由器時,就把TTL減去數據報在路由器所消耗掉的一段時間。若數據報在路由器消耗的時間小於1秒,就把TTL值減1。當TTL值減為零時,就丟棄這個數據報然而隨著技術的進步,路由器處理數據報所需的時間不斷在縮短,一般都遠遠小於1秒鍾,後來就把TTL欄位的功能改為「跳數限制」(但名稱不變)。路由器在轉發數據報之前就把TTL值減1。若TTL值減小到零,就丟棄這個數據報,不再轉發。因此,現在TTL的單位不再是秒,而是跳數。 TTL的意義是指明數據報在網際網路中至多可經過多少個路由器 。顯然,數據報能在網際網路中經過的路由器的最大數值是255。若把TTL的初始值設置為1,就表示這個數據報只能在本區域網中傳送。因為這個數據報一傳送到區域網上的某個路由器,在被轉發之前TTL值就減小到零,因而就會被這個路由器丟棄。
(9)協議
佔8位,協議欄位指出此數據報攜帶的數據是使用何種協議,以便使目的主機的IP層知道應將數據部分上交給哪個處理過程。

過程大致如下:
(1)從數據報的首部提取目的主機的IP地址D,得出目的網路地址為N。
(2)若N就是與此路由器直接相連的某個網路地址,則進行直接交付,不需要再經過其他的路由器,直接把數據報交付給目的主機(這里包括把目的主機地址D轉換為具體的硬體地址,把數據報封裝為MAC幀,再發送此幀);否則就是間接交付,執行(3)。
(3)若路由表中有目的地址為D的特定主機路由,則把數據報傳送給路由表中所指明的下一跳路由器;否則,執行(4)。
(4)若路由表中有到達網路N的路由,則把數據報傳送給路由表中所指明的下一跳路由器;否則,執行(5)
(5)若路由表中有一個默認路由,則把數據報傳送給路由表中所指明的默認路由器;否則,執行(6)。
(6)報告轉發分組出錯。

在進行更詳細的轉發解釋之前,先要了解一下子網掩碼:

上一篇說到了二級IP地址,也就是IP地址由網路號和主機號組成。

二級IP地址有以下缺點:
第一,IP地址空間的利用率有時很低每一個A類地址網路可連接的主機數超過1000萬,而每一個B類地址網路可連接的主機數也超過6萬。然而有些網路對連接在網路上的計算機數目有限制,根本達不到這樣大的數值。例如10 BASE-T乙太網規定其最大結點數只有1024個。這樣的乙太網若使用一個B類地址就浪費6萬多個IP地址,地址空間的利用率還不到2%,而其他單位的主機無法使用這些被浪費的地址。有的單位申請到了一個B類地址網路,但所連接的主機數並不多,可是又不願意申請一個足夠使用的C類地址,理由是考慮到今後可能的發展。IP地址的浪費,還會使IP地址空間的資源過早地被用完。
第二,給每一個物理網路分配一個網路號會使路由表變得太大因而使網路性能變壞。
每一個路由器都應當能夠從路由表査出應怎樣到達其他網路的下一跳路由器。因此,互聯網中的網路數越多,路由器的路由表的項目數也就越多。這樣,即使我們擁有足夠多的IP地址資源可以給每一個物理網路分配一個網路號,也會導致路由器中的路由表中的項目數過多。這不僅增加了路由器的成本(需要更多的存儲空間),而且使查找路由時耗費更多的時間,同時也使路由器之間定期交換的路由信息急劇增加,因而使路由器和整個網際網路的性能都下降了。
第三,兩級IP地址不夠靈活。
有時情況緊急,一個單位需要在新的地點馬上開通一個新的網路。但是在申請到一個新的IP地址之前,新增加的網路是不可能連接到網際網路上工作的。我們希望有一種方法,使一個單位能隨時靈活地增加本單位的網路,而不必事先到網際網路管理機構去申請新的網路號。原來的兩級IP地址無法做到這一點。

於是為解決上述問題,從1985年起在IP地址中又增加了一個「子網號欄位」,使兩級IP地址變成為三級IP地址,它能夠較好地解決上述問題,並且使用起來也很靈活。這種做法叫作劃分子網 (subnetting),或子網定址或子網路由選擇。劃分子網已成為網際網路的正式標准協議。

劃分子網的基本思路如下:
(1)一個擁有許多物理網路的單位,可將所屬的物理網路劃分為若干個子網 subnet)。劃分子網純屬一個單位內部的事情。本單位以外的網路看不見這個網路是由多少個子網組成,因為這個單位對外仍然表現為一個網路。
(2)劃分子網的方法是從網路的主機號借用若干位作為子網號 subnet-id,當然主機號也就相應減少了同樣的位數。於是兩級IP地址在本單位內部就變為三級IP地址:網路號、子網號和主機號。也可以用以下記法來表示:
IP地址:=(<網路號>,<子網號>,<主機號>}

(3)凡是從其他網路發送給本單位某個主機的IP數據報,仍然是根據IP數據報的目的網路號找到連接在本單位網路上的路由器。但此路由器在收到IP數據報後,再按目的網路號和子網號找到目的子網,把IP數據報交付給目的主機。

簡單來說就是原來的IP地址總長度不變,把原來由「網路號+主機號」組成的IP地址,變為了「網路號+子網號+主機號」,因為其他網路找當前網路的主機時,使用的還是網路號,所以外面的網看不見當前網路的子網。當本網的路由器在收到IP數據報後,按目的網路號和子網號找到目的子網,把IP數據報交付給目的主機。

現在剩下的問題就是:假定有一個數據報(其目的地址是145.133.10)已經到達了路由器R1。那麼這個路由器如何把它轉發到子網145.3.3.0呢?
我們知道,從IP數據報的首部並不知道源主機或目的主機所連接的網路是否進行了子網的劃分。這是因為32位的IP地址本身以及數據報的首部都沒有包含任何有關子網劃分的信息。因此必須另外想辦法,這就是使用子網掩碼( (subnet mask)。

子網掩碼,簡單來說就是把除了主機號設置為0,其他位置的數字都設置為1。
以B類地址為例:

把三級IP地址的網路號與子網號連起來,與子網掩碼做「與」運算,就得到了子網的網路地址。

在網際網路的標准規定:所有的網路都必須使用子網掩碼,同時在路由器的路由表中也必須有子網掩碼這一欄。如果一個網路不劃分子網,那麼該網路的子網掩碼就使用默認子網掩碼。
那麼既然沒有子網,為什麼還要使用子網掩碼?
這就是為了更便於査找路由表。
默認子網掩碼中1的位置和IP地址中的網路號欄位 net-id正好相對應。因此,若用默認子網掩碼和某個不劃分子網的IP地址逐位相「與」(AND),就應當能夠得出該IP地址的網路地址來。這樣做可以不用查找該地址的類別位就能知道這是哪一類的IP地址。顯然,

子網掩碼是一個網路或一個子網的重要屬性。在RFC950成為網際網路的正式標准後,路由器在和相鄰路由器交換路由信息時,必須把自己所在網路(或子網)的子網掩碼告訴相鄰路由器。在路由器的路由表中的每一個項目,除了要給出目的網路地址外,還必須同時給出該網路的子網掩碼。若一個路由器連接在兩個子網上就擁有兩個網路地址和兩個子網掩碼。
以一個B類地址為例,說明可以有多少種子網劃分的方法。在採用固定長度子網時,所劃分的所有子網的子網掩碼都是相同的。

表中的「子網號的位數」中沒有0,1,15和16這四種情況,因為這沒有意義。雖然根據已成為網際網路標准協議的RFC950文檔,子網號不能為全1或全0,但隨著無分類域間路由選擇CIDR的廣泛使用,現在全1和全0的子網號也可以使用了,但一定要謹慎使用,要弄清你的路由器所用的路由選擇軟體是否支持全0或全1的子網號。這種較新的用法我們可以看出,若使用較少位數的子網號,則每一個子網上可連接的主機數就較多。
反之,若使用較多位數的子網號,則子網的數目較多但每個子網上可連接的主機數就較少因此我們可根據網路的具體情況(一共需要劃分多少個子網,每個子網中最多有多少個主機)來選擇合適的子網掩碼。

所以,劃分子網增加了靈活性,但卻減少了能夠連接在網路上的主機總數。

在劃分子網的情況下,分組轉發的演算法必須做相應的改動。
使用子網劃分後,路由表必須包含以下三項內容:目的網路地址、子網掩碼和下一跳地址。
所以之前的流程變成了下面這樣:
(1)從收到的數據報的首部提取目的IP地址D。
(2)先判斷是否為直接交付。對路由器直接相連的網路逐個進行檢查:用各網路的子網掩碼和D逐位相「與」(AND操作),看結果是否和相應的網路地址匹配。若匹配,則把分組進行直接交付(當然還需要把D轉換成物理地址,把數據報封裝成幀發送出去),轉發任務結束。否則就是間接交付,執行(3)。
(3)若路由表中有目的地址為D的特定主機路由,則把數據報傳送給路由表中所指明的下一跳路由器;否則,執行(4)。
(4)對路由表中的每一行(目的網路地址,子網掩碼,下一跳地址),用其中的子網掩碼和D逐位相「與」(AND操作),其結果為N。若N與該行的目的網路地址匹配,則把數據報傳送給該行指明的下一跳路由器;否則,執行(5)。
5)若路由表中有一個默認路由,則把數據報傳送給路由表中所指明的默認路由器;否則,執行(6)
(6)報告轉發分組出錯。

Ⅳ 分組交付類型有哪些,路由是如何分類的

分組交付可以分為直接交付和間接交付兩類,路由分為本地路由和遠程路由兩類。直接交付:當分組的源主機和目的主機是在同一個網路,或轉發是在最後一個路由器與目的主機之間時將直接交付。間接交付:目的主機與源主機不在同一個網路上,分組間接交付。本地路由用來連接網路傳輸介質,如光纖、同軸電纜。遠程路由則用來連接遠程傳輸戒指,並要求具有相應的設備,如電話線要數據機,DDN需要配DTU,無線連接則要求有無線接收機和發射機。

Ⅳ 計算機網路-網路層-內部網關協議RIP

RIP (Routing Information Protocol))是內部網關協議IGP中最先得到廣泛使用的協議,它的中文名稱叫做 路由信息協議 ,但很少被使用。RIP是一種分布式的基於距離向量的路由選擇協議,是互聯網的標准協議,其最大優點就是簡單。

RIP協議要求網路中的每一個路由器都要維護從它自己到其他每一個目的網路的距離記錄(因此,這是一組距離,即「距離向量」)。RIP協議將「 距離 」定義如下:從一路由器到直接連接的網路的距離定義為1。從一路由器到非直接連接的網路的距離定義為所經過的路由器數加1。「加1」是因為到達目的網路後就進行直接交付,而到直接連接的網路的距離已經定義為1。例如路由器R1到網1或網2的距離都是1(直接連接),而到網3的距離是2,到網4的距離是3。

RIP協議的「距離」也稱為「跳數」(hop count)吧,因為每經過一個路由器,跳數就加1。RP認為好的路由就是它通過的路由器的數目少,即「距離短」, RIP允許一條路徑最多隻能包含15個路由器 。因此「距離」等於16時即相當於不可達,可見RIP只適用於小型互聯網。

"需要注意的是,到直接連接的網路的距離也可定義為0(採用這種定義的理由是:路由器在和直接連接在該網路上的主機通信時,不需要經過另外的路由器。既然每經過一個路由器要將距高加1,那麼不再經過路由器的距離就應當為0)。但兩種不同的定義對實現RIP協議並無影響,因為重要的是要找出最短距離,將所有的距離都加1或都減1,對迭擇最佳路由其實是一樣的。"

RIP不能在兩個網格之間同時使用多條路由 ,RIP選擇一條具有最少路由器的路由(即最短路由),哪怕還存在另一條高速(低時廷)但路由器較多的路由。

RIP協議和OSPF協議,都是分布式路由選擇協議。 它們的共同特點就是每一個路由器都要不新地和其他一些路由器交換路由信息。我們一定要弄清以下三個要點,即和哪些路由器交換信息?交換什麼信息?在什麼時候交換信息?

RIP協議的特點是:

(1) 僅和相鄰路由器交換信息 。如果兩個路由器之間的通信不需要經過另一個路由器,那麼這兩個路由器就是相鄰的。RIP協議規定,不相鄰的路由器不交換信息。

(2) 路由器交換的信息是當前本路由器所知道的全部信息,即自己現在的路由表。 也就是說,交換的信息是:「我到本自治系統中所有網路的(最短)距離,以及到每個網路應經過的下一跳路由器」。

(3) 按因定的時間間隔交換路由信息 ,例如,母隔30秒。然後路由器根據收到的路由信息更新路由表。當網路拓撲發生變化時,路由器也及時向相鄰路由器通告拓撲變化後的路由信息。

路由器在剛剛開始工作時,它的路由表是空的,然後路由器就得出到直接相連的幾個網路的距離(這些距離定義為1)。接著,每一個路由器也只和數目非常有限的相鄰路由器交換並更新路由信息。但經過若干次的更新後,所有的路由器最終都會知道到達本自治系統中任何一個網路的最短距離和下一跳路由器的地址。

看起來RIP協議有些奇怪,因為「我的路由表中的信息要依賴於你的,而你的信息又依賴於我的。」然而事實證明,通過這樣的方式一「我告訴別人一些信息,而別人又告訴我一些信息。我再把我知道的更新後的信息告訴別人,別人也這樣把更新後的信息再告訴我」,最後在自治系統中所有的結點都得到了正確的路由選擇信息。在一般情況下,RIP協議可以收斂,並且過程也較快。 「收斂」就是在自治系統中所有的結點都得到正確的路由選信的過程。

路由表中最主要的信息就是: 到某個網鉻的距離(即最短距離),以及應經過的下一跳地址 。路由表更新的原則是找出到每個目的網路的最短距離。這種 更新演算法又稱為距離向量演算法 。

對每一個相鄰路由器發送過來的RIP報文,進行以下步驟:

現在較新的RIP版本是1998年1I月公布的RIP2RFC2453](已成為互聯網標准),新版本協議本身並無多大變化,但性能上有些改進。RIP2可以支持變長子網掩碼和無分類域間路由選擇CIDR。此外,RIP2還提供簡單的鑒別過程支特多播。圖4-32是RP2的報文格式,它和RIP1的首部相同,但後面的路由部分不一樣。

RIP報文由首部和路由部分組成。

RIP的首部佔4個位元組,其中的命令欄位指出報文的意義。例如,1 表示請求路由信息,2表示對請求路由信息的響應或未被請求而發出的路由更新報文,首部後而的「必為0」是為了4位元組字的對齊。

RIP2報文中的路由部分由若干個路由信息組成,每個路由信息需要用20個位元組。 地址族標識符(又稱為地址類別)欄位用來標志所使用的地址協議。 如採用IP地址就令這個欄位的值為2(原來考慮RIP也可用於其他非TCPP協議的情況), 路由標記填入自治系統號ASN (Autonomous System Number))( 自治系統號ASN原來規定為一個16位的號碼(最大的號碼是655),由1ANA分配.現在已經把ASN擴展到32位),這是考慮使RIP有可能收到本自治系統以外的路由選擇信息。再後面指出某個網路地址、該網路的子網掩碼、下一跳路由器地址以及到此網路的距離,一個RIP報文最多可包括25個路由,因而RIP報文的最大長度是4+20×25=504位元組。如超過,必須再用一個RIP報文來傳送。

RIP2還具有簡單的鑒別功能。若使用鑒別功能,則將原來寫入第一個路由信息(20位元組)的位置用作鑒別。這時應將地址族標識符置為全1(即0 xFFFF),而路由標記寫入鑒別類型,剩下的16位元組為鑒別數據。在鑒別數據之後才寫入路由信息,但這時最多隻能再放入24個路由信息。

優點: RIP協議最大的優點就是實現簡單,開銷較小;如果發現更短的路由,這種更新信息傳播的很快。

缺點: 限制了網路的規模,它能使用的最大距離為15(16表示不可達);路由器之間交換的路由信息是路由器中的完整路由表,因而隨著網路規模的擴大,開銷也就增加; 當出現網路故障時,要經過比較長的時間才能將此信息傳送到所有的路由器。

設三個網路通過兩個路由器互連起來,並且都已建立了各自的路由表。圖中路由器交換的信息只給出了我們感興趣的一行內容。路由器R1中的「 1,1,直接 」表示「到網1的距離是1,直接交付」。路由器R2中的「 1,2,R1 」表示「到網1的距離是2,下一跳經過R1」。

現在假定路由器R1到網1的鏈路出了故障,R1無法到達網1。於是路由器R1把到網1的距離改為16(表示到網1不可達),因而在R1的路由表中的相應項目變為「 1,16,直接 」。但是,很可能要經過30秒鍾後R1才把更新信息發送給R2。然而R2可能已經先把自己的路由表發送給了R1,其中有「1,2,R1」這一項。