❶ 計算機網路原理中求CRC校驗碼。
01100。演算法你可以用手算,或者用代碼計算,代碼分按位和按位元組。手算演算法是:多項式為101101你在信息的後面補5個0信息碼變為1101101100000這時開始用多項式對上面的信息碼進行異或操作,要打的話很麻煩。我只把沒一次運算的結果寫一下1:011011(注意,前面一位已經為零,這時,要在此數後面補一個數,也就是說,現在已經對8為信息碼操作了一位)移位以後變為110111。(此時的首位又為1,再與多項式異或,下面的類似)2:0110103:0110004:0111015:0101116:000011 注意此時的信息碼已經被操作了5次了,就是說還有3位沒有操作,這時把這個數左移3位就好了,因為他的前3位都為零,所以最後的crc碼為01100整個要發送的數據為11011011+01100中間算的可能有錯誤,開始看crc的時候可能會很難懂,看看代碼很不錯的
❷ 計算機網路CRC檢驗中為什麼選擇16或32位效驗碼,效率最高
循環冗餘校驗(CRC)是一種根據網路數據封包或電腦檔案等數據產生少數固定位數的一種散列函數,主要用來檢測或校驗數據傳輸或者保存後可能出現的錯誤。生成的數字在傳輸或者儲存之前計算出來並且附加到數據後面,然後接收方進行檢驗確定數據是否發生變化。一般來說,循環冗餘校驗的值都是32位的整數。由於本函數易於用二進制的電腦硬體使用、容易進行數學分析並且尤其善於檢測傳輸通道干擾引起的錯誤,因此獲得廣泛應用。它是由W.WesleyPeterson在他1961年發表的論文中披露[1]。{{noteTA|T=zh-hans:循環冗餘校驗;zh-hant:循環冗餘校驗;|1=zh-hans:循環冗餘校驗;zh-hant:循環冗餘校驗;}}'''循環冗餘校驗'''(CRC)是一種根據網路數據封包或[[電腦檔案]]等數據產生少數固定位數的一種[[散列函數]],主要用來檢測或校驗數據傳輸或者保存後可能出現的錯誤。生成的數字在傳輸或者儲存之前計算出來並且附加到數據後面,然後接收方進行檢驗確定數據是否發生變化。一般來說,循環冗餘校驗的值都是32位的整數。由於本函數易於用二進制的[[電腦硬體]]使用、容易進行數學分析並且尤其善於檢測傳輸通道干擾引起的錯誤,因此獲得廣泛應用。它是由[[W.WesleyPeterson]]在他1961年發表的論文中披露{{citejournal|author=Peterson,W.W.andBrown,D.T.|year=1961|month=January|title=CyclicCodesforErrorDetection|journal=ProceedingsoftheIRE|doi=10.1109/JRPROC.1961.287814|issn=0096-8390|volume=49|pages=228}}。==簡介==CRC「校驗和」是兩個位元數據流採用二進制除法(沒有進位,使用XOR異或來代替減法)相除所得到的余數。其中被除數是需要計算校驗和的信息數據流的二進製表示;除數是一個長度為n+1的預定義(短)的二進制數,通常用多項式的系數來表示。在做除法之前,要在信息數據之後先加上n個0.CRCa是基於[[有限域]]GF(2)([[同餘|關於2同餘]])的[[多項式環]]。簡單的來說,就是所有系數都為0或1(又叫做二進制)的多項式系數的集合,並且集合對於所有的代數操作都是封閉的。例如::(x^3+x)+(x+1)=x^3+2x+1\equivx^3+12會變成0,因為對系數的加法都會模2.乘法也是類似的::(x^2+x)(x+1)=x^3+2x^2+x\equivx^3+x我們同樣可以對多項式作除法並且得到商和余數。例如,如果我們用''x''3+''x''2+''x''除以''x''+1。我們會得到::\frac{(x^3+x^2+x)}{(x+1)}=(x^2+1)-\frac{1}{(x+1)}也就是說,:(x^3+x^2+x)=(x^2+1)(x+1)-1這里除法得到了商''x''2+1和余數-1,因為是奇數所以最後一位是1。字元串中的每一位其實就對應了這樣類型的多項式的系數。為了得到CRC,我們首先將其乘以x^{n},這里n是一個固定多項式的[[多項式的階|階]]數,然後再將其除以這個固定的多項式,余數的系數就是CRC。在上面的等式中,x^2+x+1表示了本來的信息位是111,x+1是所謂的'''鑰匙''',而余數1(也就是x^0)就是CRC.key的最高次為1,所以我們將原來的信息乘上x^1來得到x^3+x^2+x,也可視為原來的信息位補1個零成為1110。一般來說,其形式為::M(x)\cdotx^{n}=Q(x)\cdotK(x)+R(x)這里M(x)是原始的信息多項式。K(x)是n階的「鑰匙」多項式。M(x)\cdotx^{n}表示了將原始信息後面加上n個0。R(x)是余數多項式,既是CRC「校驗和」。在通訊中,發送者在原始的信息數據M後加上n位的R(替換本來附加的0)再發送。接收者收到M和R後,檢查M(x)\cdotx^{n}-R(x)是否能被K(x)整除。如果是,那麼接收者認為該信息是正確的。值得注意的是M(x)\cdotx^{n}-R(x)就是發送者所想要發送的數據。這個串又叫做''codeword''.CRCs經常被叫做「[[校驗和]]」,但是這樣的說法嚴格來說並不是准確的,因為技術上來說,校驗「和」是通過加法來計算的,而不是CRC這里的除法。「[[錯誤糾正編碼]]」常常和CRCs緊密相關,其語序糾正在傳輸過程中所產生的錯誤。這些編碼方式常常和數學原理緊密相關。==實現====變體==CRC有幾種不同的變體*shiftRegister可以逆向使用,這樣就需要檢測最低位的值,每次向右移動一位。這就要求polynomial生成逆向的數據位結果。''實際上這是最常用的一個變體。''*可以先將數據最高位讀到移位寄存器,也可以先讀最低位。在通訊協議中,為了保留CRC的[[突發錯誤]]檢測特性,通常按照[[物理層]]發送數據位的方式計算CRC。*為了檢查CRC,需要在全部的碼字上進行CRC計算,而不是僅僅計算消息的CRC並把它與CRC比較。如果結果是0,那麼就通過這項檢查。這是因為碼字M(x)\cdotx^{n}-R(x)=Q(x)\cdotK(x)可以被K(x)整除。*移位寄存器可以初始化成1而不是0。同樣,在用演算法處理之前,消息的最初n個數據位要取反。這是因為未經修改的CRC無法區分只有起始0的個數不同的兩條消息。而經過這樣的取反過程,CRC就可以正確地分辨這些消息了。*CRC在附加到消息數據流的時候可以進行取反。這樣,CRC的檢查可以用直接的方法計算消息的CRC、取反、然後與消息數據流中的CRC比較這個過程來完成,也可以通過計算全部的消息來完成。在後一種方法中,正確消息的結果不再是0,而是\sum_{i=n}^{2n-1}x^{i}除以K(x)得到的結果。這個結果叫作核驗多項式C(x),它的十六進製表示也叫作[[幻數]]。按照慣例,使用CRC-32多項式以及CRC-16-CCITT多項式時通常都要取反。CRC-32的核驗多項式是C(x)=x^{31}+x^{30}+x^{26}+x^{25}+x^{24}+x^{18}+x^{15}+x^{14}+x^{12}+x^{11}+x^{10}+x^8+x^6+x^5+x^4+x^3+x+1。==錯誤檢測能力==CRC的錯誤檢測能力依賴於關鍵多項式的階次以及所使用的特定關鍵多項式。''誤碼多項式''E(x)是接收到的消息碼字與正確消息碼字的''異或''結果。當且僅當誤碼多項式能夠被CRC多項式整除的時候CRC演算法無法檢查到錯誤。*由於CRC的計算基於除法,任何多項式都無法檢測出一組全為零的數據出現的錯誤或者前面丟失的零。但是,可以根據CRC的[[#變體|變體]]來解決這個問題。*所有隻有一個數據位的錯誤都可以被至少有兩個非零系數的任意多項式檢測到。誤碼多項式是x^k,並且x^k只能被i\lek的多項式x^i整除。*CRC可以檢測出所有間隔距離小於[[多項式階次]]的雙位錯誤,在這種情況下的誤碼多項式是E(x)=x^i+x^k=x^k\cdot(x^{i-k}+1),\;i>k。如上所述,x^k不能被CRC多項式整除,它得到一個x^{i-k}+1項。根據定義,滿足多項式整除x^{i-k}+1的{i-k}最小值就是多項是的階次。最高階次的多項式是[[本原多項式]],帶有二進制系數的n階多項式==CRC多項式規范==下面的表格略去了「初始值」、「反射值」以及「最終異或值」。*對於一些復雜的校驗和來說這些十六進制數值是很重要的,如CRC-32以及CRC-64。通常小於CRC-16的CRC不需要使用這些值。*通常可以通過改變這些值來得到各自不同的校驗和,但是校驗和演算法機制並沒有變化。CRC標准化問題*由於CRC-12有三種常用的形式,所以CRC-12的定義會有歧義*在應用的CRC-8的兩種形式都有數學上的缺陷。*據稱CRC-16與CRC-32至少有10種形式,但沒有一種在數學上是最優的。*同樣大小的CCITTCRC與ITUCRC不同,這個機構在不同時期定義了不同的校驗和。==常用CRC(按照ITU-IEEE規范)=={|class="wikitable"!名稱||多項式||表示法:正常或者翻轉|-|CRC-1||x+1(用途:硬體,也稱為[[奇偶校驗位]])||0x1or0x1(0x1)|-|CRC-5-CCITT||x^{5}+x^{3}+x+1([[ITU]]G.704標准)||0x15(0x??)|-|CRC-5-USB||x^{5}+x^{2}+1(用途:[[USB]]信令包)||0x05or0x14(0x9)|-|CRC-7||x^{7}+x^{3}+1(用途:通信系統)||0x09or0x48(0x11)|-|CRC-8-ATM||x^8+x^2+x+1(用途:ATMHEC)||0x07or0xE0(0xC1)|-|CRC-8-[[CCITT]]||x^8+x^7+x^3+x^2+1(用途:[[1-Wire]][[匯流排]])|||-|CRC-8-[[Dallas_Semiconctor|Dallas]]/[[Maxim_IC|Maxim]]||x^8+x^5+x^4+1(用途:[[1-Wire]][[bus]])||0x31or0x8C|-|CRC-8||x^8+x^7+x^6+x^4+x^2+1||0xEA(0x??)|-|CRC-10||x10+x9+x5+x4+x+1||0x233(0x????)|-|CRC-12||x^{12}+x^{11}+x^3+x^2+x+1(用途:通信系統)||0x80For0xF01(0xE03)|-|CRC-16-Fletcher||參見[[Fletcher'schecksum]]||用於[[Adler-32]]A&BCRC|-|CRC-16-CCITT||''x''16+''x''12+''x''5+1([[X25]],[[V.41]],[[Bluetooth]],[[PPP]],[[IrDA]])||0x1021or0x8408(0x0811)|-|CRC-16-[[IBM]]||''x''16+''x''15+''x''2+1||0x8005or0xA001(0x4003)|-|CRC-16-[[BBS]]||x16+x15+x10+x3(用途:[[XMODEM]]協議)||0x8408(0x????)|-|CRC-32-Adler||See[[Adler-32]]||參見[[Adler-32]]|-|CRC-32-MPEG2||See[[IEEE802.3]]||參見[[IEEE802.3]]|-|CRC-32-[[IEEE802.3]]||x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^8+x^7+x^5+x^4+x^2+x+1||0x04C11DB7or0xEDB88320(0xDB710641)|-|CRC-32C(Castagnoli)||x^{32}+x^{28}+x^{27}+x^{26}+x^{25}+x^{23}+x^{22}+x^{20}+x^{19}+x^{18}+x^{14}+x^{13}+x^{11}+x^{10}+x^9+x^8+x^6+1||0x1EDC6F41or0x82F63B78(0x05EC76F1)|-|CRC-64-ISO||x^{64}+x^4+x^3+x+1(use:ISO3309)||(0xB000000000000001)|-|CRC-64-[[EcmaInternational|ECMA]]-182||x^{64}+x^{62}+x^{57}+x^{55}+x^{54}+x^{53}+x^{52}+x^{47}+x^{46}+x^{45}+x^{40}+x^{39}+x^{38}+x^{37}+x^{35}+x^{33}+x^{32}+x^{31}+x^{29}+x^{27}+x^{24}+x^{23}+x^{22}+x^{21}+x^{19}+x^{17}+x^{13}+x^{12}+x^{10}+x^9+x^7+x^4+x+1(asdescribedin[CRC16toCRC64collisionresearch]*[index.htm#SAR-PR-2006-05ReversingCRC–TheoryandPractice.]{{math-stub}}[[Category:校驗和演算法]][[bg:CRC]][[ca:Controlderendànciacíclica]][[cs:Cyklickýrendantnísoučet]][[de:ZyklischeRendanzprüfung]][[en:Cyclicrendancycheck]][[es:Controlderendanciacíclica]][[eu:CRC]][[fi:CRC]][[fr:Contrôlederedondancecyclique]][[he:בדיקתיתירותמחזורית]][[id:CRC]][[it:Cyclicrendancycheck]][[ja:巡迴冗長検査]][[ko:순환중복검사]][[nl:CyclicRendancyCheck]][[pl:CRC]][[pt:CRC]][[ru:Циклическийизбыточныйкод]][[simple:Cyclicrendancycheck]][[sk:Kontrolacyklickýmkódom]][[sv:CyclicRendancyCheck]][[vi:CRC]]
❸ 計算機網路的一個習題求解,解答看不懂,題目和解答如下!關於首部檢驗和的計算。
首部檢驗的方法是,吧首部分成一些16字的序列,將首部檢驗置0,然後對這些序列進行反碼算數運算。求出來的這個和的反碼放入首部檢驗位(16位)。收到數據報時進行檢驗:就是把首部再反碼求和一遍,然後再取反碼,這時應該得到0。
所以說前五行就是首部的前五行。
然後接下來的五行就是,換算成2進制的序列。
將這些序列16位的取反碼合(包括和檢驗欄位)得出來首部檢驗和發送前的值。
0111010001001110
然後再取反碼放入首部檢驗位
1000101110110001
沒有算,不過算出來應該就是這樣。
反碼求和時最高位相加產生進位的話結果要+1.
❹ 計算機網路問題,急,,,
2017年12月13日星期三,
這里需要強調一點,生成多項式(generator polynomial)和多項式不是一個概念,這里需要注意。我個人的理解是你要進行幾位的CRC校驗,就需要幾位的生成多項式(generator polynomial),但還收到生成多項式(generator polynomial)的第一位必須為1的限制,因此生成的多項式還需要注意這一點。原始信息所對應的多項式和生成多項式(generator polynomial)不是一個概念。
首先,我們要知道,任何一串二進制數都可以用一個多項式表示:且這串二進制數的各位對應多項式的各冪次,多項式中假如有此冪次項(比如多項式匯中有冪次項x^2對應二進制串碼中從右至左的第三位二進制數一定為1.因為右數第一位的冪次項為x^0,右數第二位的冪次項為x^1),則對應二進制數串碼中此位置的1,無此冪次項對應0。
舉例:代碼1010111對應的多項式為x^6+x^4+x^2+x+1,若我們將缺失的冪次項補全的話就有x^6+(x^5)+x^4+(X^3)+x^2+x+1,又因為x^5和X^3所對應的二進制位為0,不記入多項式中,因此有x^6+x^4+x^2+x+1,就是表示 1010111這個串碼。
而多項式為x^5+x^3+x^2+x+1的完整多項式為x^5+(x^4)+x^3+x^2+x+1正好對應二進制串碼101111,而x^4對應的二進制串碼中右數第五位(左數第二位)為0,不記入多項式中,因此,101111可以使用多項式x^5+x^3+x^2+x+1來表示。
通過上述兩個多項式的例子,可以看出,當多項式中的冪次項所對應的那一位二進制為1時,多項式中的那一個冪次項存在,而當二進制串碼中的某位為0時,對應的多項式冪次項忽略不記錄,例如,10111 1因為從左向右第二位是0,因此對應的多項式分子x^4就沒有被記錄到多項式中,
書面的說法是:
多項式和二進制數有直接對應關系:X的最高冪次對應二進制數的最高位,以下各位對應多項式的各冪次,有此冪次項對應1,無此冪次項對應0。可以看出:X的最高冪次為R,轉換成對應的二進制數有R+1位,
我們現在來看題目中generator plynomial (生成多項式)is X^4+x^2+1,最高冪次是4,因此,其表示的二進制為(4+1=5)5位,
且通過crc的原理,我們知道,循環冗餘校驗碼(CRC)是由兩部分組拼接而成的,
第一部分是信息碼,
第二部分是校驗碼,
可得公式:
CRC=信息碼+校驗碼,
很明顯校驗碼是跟在信息碼之後的,所以,題目中1101011011中左數的那5位是真正傳輸的信息(信息碼),即actual bit string transmitted(實際傳輸的信息位流)是11010,而後面的5位(11011)是校驗碼,
接下來我們結合上面的內容來理解對CRC的定義:
循環冗餘校驗碼(CRC)的基本原理是:在K位信息碼後再拼接R位的校驗碼,整個編碼長度為N位,因此,這種編碼也叫(N,K)碼。對於一個給定的(N,K)碼,可以證明存在一個最高次冪為N-K=R的多項式G(x)。根據G(x)可以生成K位信息的校驗碼,而G(x)叫做這個CRC碼的生成多項式。 校驗碼的具體生成過程為:假設要發送的信息用多項式C(X)表示,將C(x)左移R位(可表示成C(x)*2^R),這樣C(x)的右邊就會空出R位,這就是校驗碼的位置。用 C(x)*2^R 除以生成多項式G(x)得到的余數就是校驗碼。
另一個定義:
利用CRC進行檢錯的過程可簡單描述為:在發送端根據要傳送的k位二進制碼序列,以一定的規則產生一個校驗用的r位監督碼(CRC碼),附在原始信息後邊,構成一個新的二進制碼序列數共k+r位,然後發送出去。在接收端,根據信息碼和CRC碼之間所遵循的規則進行檢驗,以確定傳送中是否出錯。這個規則,在差錯控制理論中稱為「生成多項式」。
再看另一個描述,在代數編碼理論中,將一個碼組表示為一個多項式,碼組中各碼元當作多項式的系數。例如 1100101 表示為1·x^6+1·x^5+0·x^4+0·x^3+1·x^2+0·x^1+1,即 x^6+x^5+x^2+1。
設,編碼前的原始信息多項式為P(x),P(x)的最高冪次加1等於k(這里的K就是整個原始信息的二進制編碼的長度,以上例1100101為例,此串二進制編碼的最高位對應的多項式冪次為6,根據定義得K=6+1=7,正好是此串二進制編碼的長度,);
設,生成多項式為G(x),G(x)的最高冪次等於r,這個r可以隨意指定,也就是r可以不等於K,但指定r時,必須滿足生成多項式G(x)最高位必須為1的條件,
設,CRC多項式為R(x)。:將P(x)乘以x^r(即對應的二進制碼序列左移r位),再除以G(x),所得余式即為R(x)。
設,編碼後的帶CRC的信息多項式為T(x)。:用公式表示為T(x)=x^r*P(x)+R(x),翻譯過來就是,編碼後的帶CRC校驗的多項式由左移了r位的原始信息P(x)後接CRC的校驗碼R(x)組成,
而在接收端,是使用T(x )去除G(x),若無余數,則表示接收正確。就是接收端使用接收到的信息T(x )去除和發送端約好的生成多項式G(x),若除盡沒有餘數則表示信息正確接收。
我們再來看本題,
題中給出已傳輸的信息為:1101011011,即T(x )=1101011011;
而generator polynomial 生成多項式是:x^4+x^2+1,即G(x)=10101;
那麼,我們來使用T(x )除以G(x)=110,根據上面的定義,我們知道,出現了沒有除盡的情況,有餘數,余數為110,則說明信息11010在傳遞過程出現了錯誤,而題目中給出,若將此信息串碼的左數第三位進行翻轉,則接收到的信息為:1111011011,那麼,
T(x )=1111011011,
則,再通過T(x )除以G(x)進行校驗運算後,得到余數1,沒有除盡
即T(x )除以G(x)=1,
所以沒有通過CRC校驗,此時,接收端能發現這個錯誤,
但是,如果我們將此串數據的左數第三位和最後一位同時翻轉,得到1111011010,那麼再經過T(x )除以G(x)的接收端校驗後,除盡了,余數為0,則,此時,因為T(x )除以G(x)=0,通過了接收端的校驗,因此,接收端並不能發現這個錯誤,以為是收到了正確的串碼:11110,但實際上我們發送的串碼是:11010,
最後,我們再來研究一下,T(x )是怎麼除G(x)的,實際上我們必須清楚,這里的除法實際上並不是我們傳統意義上的十進制除法,而是兩個二進制的「按位異或」(請注意每步運算都是先進行高位對齊的。)的演算法,在二進制數運算中,這被稱為模二除運算,
來看兩個例子,
【例一】假設使用的生成多項式是G(X)=X3+X+1。4位的原始報文為1010,求編碼後的報文。
解:
1、將生成多項式G(X)=X^3+X+1轉換成對應的二進制除數1011。
R=3,R就是生成多項式的最高次冪,
2、此題生成多項式有4位(R+1)(注意:通過對生成多項式計算所得的校驗碼為3位,因為,生成多項式的R為生成多項式的最高次冪,所以校驗碼位數是3位),要把原始報文C(X)【這里的C(X)就是1010】左移3(R)位變成1010 000
3、用生成多項式對應的二進制數對左移3位後的原始報文進行模2除(高位對齊),相當於按位異或:
1010000
1011
------------------
0001000, 請注意這里,通過第一次除法,也就是模2除(高位對齊)的運算,將兩個二進制代碼進行了高位對齊後的按位異或的操作後,得到0001000即1000,接下來,需要進行第二次除法,即使用第一步得到的二進制數1000去除1011【G(x)】,則有下面的式子,
1000
1011
------------------
0011,請注意,結果為0011,也可以寫成11,但是我們由上面得知,由生成多項式G(X)=X^3+X+1,已經確定了校驗位是3位,因此,
得到的余位011,所以最終編碼為:1010 011。
例二:
信息欄位代碼為: 1011001;對應的原始多項式P(x)=x6+x4+x3+1
假設生成多項式為:g(x)=x4+x3+1;則對應g(x)的代碼為: 11001,又因為g(x)最高次冪為4,因此可以確定校驗位是4位,
根據CRC給生成多項式g(x)定義的規則,將原始代碼整體左移4位,這樣在原始數據後面多出4位校驗位的位置,即x^4*P(x),得到:10110010000;
接下來使用10110010000去除以g(x),得到最終的余數1010,並與原始信息組成二進制串碼:1011001 1010發送出去,
接收方:使用相同的生成多項式進行校驗:接收到的欄位/生成碼(二進制除法)
如果能夠除盡,則正確,
給出余數(1010)的計算步驟:
除法沒有數學上的含義,而是採用計算機的模二除法,即除數和被除數做異或運算。進行異或運算時除數和被除數最高位對齊,按位異或。
10110010000
^11001
--------------------------
01111010000 ,這里進行第一次按位異或,得到01111010000,即1111010000,將1111010000再去除以11001,如下步驟,
1111010000
^11001
-------------------------
0011110000,進行了第二次模2除後,得到0011110000,即11110000,將
11110000去除11001,
11110000
^11001
--------------------------
00111000,第三次摸2除,得到00111000,即111000,用
111000去除11001,
111000
^11001
-------------------
001010,進行第四次模2除後,得到最終的余數,001010,即1010,
則四位CRC校驗碼就為:1010。
❺ 計算機網路技術專業代碼
計算機網路技術專業代碼是510202
計算機網路技術專業就業方向:主要是從事大中型企業的計算機及網路設備的售前與售後技術支持、網路工程的設計與施工、網路及安全管理與維護、網路應用開發等等,並在中小型企事業單位從事網路組建、網路安全與管理、網路服務應用開發等工作。
❻ 計算機網路技術專業代碼是多少
590102
❼ 計算機網路,UDP數據報的校驗和欄位是通過什麼來校驗源和目的IP的呢
其實這是一種加密技術用於對文件內容進行審計的方法,使用 精通讀文件把文件讀到內存中,再對文件內容作一個 MD5 校驗得到一串密碼,就是校驗和。
補充:
1、IP首部校驗和欄位是根據IP首部計算的校驗和碼,它不對首部後面的數據進行計算。ICMP、IGMP、UDP和TCP在它們各自的首部中均含有同時覆蓋首部和數據校驗和碼。
2、IP首部校驗和計算:
為了計算一份數據報的IP檢驗和,首先把檢驗和欄位置為0。然後,對首部中每個16bit進行二進制反碼求和(整個首部看成是由一串16bit的字組成),結果存在檢驗和欄位中。當收到一份IP數據報後,同樣對首部中每個16bit進行二進制反碼的求和。由於接收方在計算過程中包含了發送方存在首部中的檢驗和,因此,如果首部在傳輸過程中沒有發生任何差錯,那麼接收方計算的結果應該為全1。如果結果不是全1(即檢驗和錯誤),那麼IP就丟棄收到的數據報。但是不生成差錯報文,由上層去發現丟失的數據報並進行重傳。
3、TCP和UDP校驗和計算(兩者相同)
校驗和還包含—個96位的偽首標,理論上它位於TCP首標的前面。這個偽首標包含了源地址、目的地址、協議和TCP長度等欄位,這使得TCP能夠防止出現路由選擇錯誤的數據段。這些信息由網際協議(IP)承載,通過TCP/網路介面,在IP上運行的TCP調用參數或者結果中傳遞。
偽首部並非UDP數據報中實際的有效成分。偽首部是一個虛擬的數據結構,其中的信息是從數據報所在IP分組頭的分組頭中提取的,既不向下傳送也不向上遞交,而僅僅是為計算校驗和。
這樣的校驗和,既校驗了UDP用戶數據的源埠號和目的埠號以及UDP用戶數據報的數據部分,又檢驗了IP數據報的源IP地址和目的地址。(偽報頭保證UDP和TCP數據單元到達正確的目的地址。因此,偽報頭中包含IP地址並且作為計算校驗和需要考慮的一部分。最終目的端根據偽報頭和數據單元計算校驗和以驗證通信數據在傳輸過程中沒有改變而且到達了正確的目的地址。
❽ 首部檢驗和怎麼計算
IP首部校驗和的計算方法:
把校驗和欄位清零,對每16位(2位元組)進行二進制反碼求和, 反碼求和的意思是先對每16位求和,再將得到的和轉為反碼。
IP數據報校驗只對首部進行校驗,不對數據部分進行校驗。把首部看成16位為單位的數字組成,依次進行二進制反碼求和,再把結果依次存入校驗和欄位中即可。
(8)計算機網路計算檢驗和代碼擴展閱讀:
將發送的進行檢驗和運算的數據分成若干個16位的位串,每個位串看成一個二進制數,這里並不管字元串代表什麼,是整數、浮點數還是點陣圖都無所謂。將IP、UDP或TCP的PDU首部中的檢驗和欄位置為0,該欄位也參與檢驗和運算。
對這些16位的二進制數進行1的補碼和(one's complement sum)運算,累加的結果再取反碼即生成了檢驗碼。將檢驗碼放入檢驗和欄位中。
其中1的補碼和運算,即帶循環進位(end round carry)的加法,最高位有進位應循環進到最低位。反碼即二進制各位取反,如0111的反碼為1000。
❾ 在計算機網路中什麼是crc校驗和,怎麼計算
計算機網路原理的計算題(crc校驗和數據傳輸問題)第1題:設要發送的二進制數據為10110011,若採用crc校驗方法,生成多項式為x^4+x^3+1,度求出實際發送的二進制數字序列。(要求寫出計算
計算機網路原理的計算題(crc校驗和數據傳輸問題)
第1題:設要發送的二進制數據為10110011,若採用crc校驗方法,生成多項式為x^4+x^3+1,度求出實際發送的二進制數字序列。(要求寫出計算過程)
這是自考08年四月份的試題,我總是跟答案算的不一樣。
答案是:待發送的序列m=10110011,除數p=11001,m*2^5與除數p進行模2除法運算,得余數r=1000,所以要發送的二進制序列為:101100111000
我不明白為什麼m要乘以2的5次方,我是用101100110000除以11001得到的余數是100。
第2題:一條長度為100km的點對點鏈路,對於一個100位元組的分組,帶寬為多大時傳播延遲等於發送延遲?(信道傳輸速度為2*10^8m/s)
答案是:
傳播延遲為:100km/(2*10^8m/s)=50ms
發送延遲等於傳播延遲時:100/c=50ms
則信道傳輸速率:c=200kbps
❿ 《計算機網路》數據交換有幾種方式,各自的優缺點是什麼
自己看
計算機網路的應用
計算機網路在資源共享和信息交換方面所具有的功能,是其它系統所不能替代的。計算機網路所具有的高可靠性、高性能價格比和易擴充性等優點,使得它在工 業、農業、交通運輸、郵電通信、文化教育、商業、國防以及科學研究等各個領域、各個行業獲得了越來越廣泛的應用。我國有關部門也已制訂了"金橋"、"金關 "和"金卡"三大工程,以及其它的一些金字型大小工程,這些工程都是以計算機網路為基礎設施,為促使國民經濟早日實現信息化的主幹工程,也是計算機網路的具體 應用。計算機網路的應用范圍實在太廣泛,本節僅能涉及一些帶有普遍意義和典型意義的應用領域。
(1)辦公自動化OA(Office Automation)
辦公自動化系統,按計算機系統結構來看是一個計算機網路,每個辦公室相當於一個工作站。它集計算機技術、資料庫、區域網、遠距離通信技術以及人工智 能、聲音、圖像、文字處理技術等綜合應用技術之大成,是一種全新的信息處理方式。辦公自動化系統的核心是通信,其所提供的通信手段主要為數據/聲音綜合服 務、可視會議服務和電子郵件服務。
(2)電子數據交換EDI(Electronic Data Interchange)
電子數據交換,是將貿易、運輸、保險、銀行、海關等行業信息用一種國際公認的標准格式,通過計算機網路通信,實現各企業之間的數據交換,並完成以貿易為中心的業務全過程。EDI在發達國家應用已很廣泛,我國的"金關"工程就是以EDI作為通信平台的。
(3)遠程交換(Telecommuting)
遠程交換是一種在線服務(Online Serving)系統,原指在工作人員與其辦公室之間的計算機通信形式,按通俗的說法即為家庭辦公。
一個公司內本部與子公司辦公室之間也可通過遠程交換系統,實現分布式辦公系統。遠程交換的作用也不僅僅是工作場地的轉移,它大大加強了企業的活力與快速反應能力。近年來各大企業的本部,紛紛採用一種被之為"虛擬辦公室"(Virtual Office)的技術,創造出一種全新的商業環境與空間。遠程交換技術的發展,對世界的整個經濟運作規則產生了巨大的影響。
(4)遠程教育(Distance Ecation)
遠程教育是一種利用在線服務系統,開展學歷或非學歷教育的全新的教學模式。遠程教育幾乎可以提供大學中所有的課程,學員們通過遠程教育,同樣可得到正規大學從學士到博士的所有學位。這種教育方式,對於已從事工作而仍想完成高學位的人士特別有吸引力。
遠程教育的基礎設施是電子大學網路EUN(Electronic University Network)。EUN的主要作用是向學員提供課程軟體及主機系統的使用,支持學員完成在線課程,並負責行政管理、協作合同等。這里所指的軟體除系統軟 件之外,包括CAI課件,即計算機輔助教學(Computer Aided Instruction)軟體。CAI課件一般採用對話和引導式的方式指導學生學習發現學生錯誤還具有回溯功能,從本質上解決了學生學習中的困難。
(5)電子銀行
電子銀行也是一種在線服務系統,是一種由銀行提供的基於計算機和計算機網路的新型金融服務系統。電子銀行的功能包括:金融交易卡服務、自動存取款作 業、銷售點自動轉帳服務、電子匯款與清算等,其核心為金融交易卡服務。金融交易卡的誕生,標志了人類交換方式從物物交換、貨幣交換到信息交換的又一次飛 躍。
圍繞金融交易卡服務,產生了自動存取款服務,自動取款機(CD)及自動存取款機(ATM)也應運而生。自動取款機與自動存取款機大多採用聯網方式工 作,現已由原來的一行聯網發展到多行聯網,形成覆蓋整個城市、地區,甚至全國的網路,全球性國際金融網路也正在建設之中。
電子匯款與清算系統可以提供客戶轉帳、銀行轉帳、外幣兌換、托收、押匯信用證、行間證券交易、市場查證、借貸通知書、財務報表、資產負債表、資金調撥 及清算處理等金融通信服務。由於大型零售商店等消費場所採用了終端收款機(POS),從而使商場內部的資金即時清算成為現實。銷售點的電子資金轉帳是 POS與銀行計算機系統聯網而成的。
當前電子銀行服務又出現了智能卡(IC)。IC卡內裝有微處理器、存儲器及輸入輸出介面,實際上是一台不帶電源的微型電子計算機。由於採用IC卡,持卡人的安全性和方便性大大提高了,
(6)電子公告板系統BBS(Bulletin Board System)
電子公告板是一種發布並交換信息的在線服務系統。BBS可以使更多的用戶通過電話線以簡單的終端形式實現互聯,從而得到廉價的豐富信息,並為其會員提供網上交談、發布消息、討論問題、傳送文件、學習交流和游戲等的機會和空間。
(7)證券及期貨交易
證券及期貨交易是由於其獲利巨大、風險巨大,且行情變化迅速,投資者對信息的依賴格外顯得重要。金融業通過在線服務計算機網路提供證券市場分析、預 測、金融管理、投資計劃等需要大量計算工作的服務,提供在線股票經紀人服務和在線資料庫服務(包括最新股價資料庫、歷史股價資料庫、股指資料庫以及有關新 聞、文章、股評等)。
(8)廣播分組交換
廣播分組交換實際上是由一種無線廣播與在線系統結合的特殊服務,該系統使用戶在任何地點都可使用在線服務系統。廣播分組交換可提供電子郵件、新聞、文 件等傳送服務,無線廣播與在線系統通過數據機,再通過電話局可以結合在一起。移動式電話也屬於廣播系統。
(9)校園網(Campus Network)
校園網是在大學校園區內用以完成大中型計算機資源及其它網內資源共享的通信網路。一些發達國家已將校園網確定為信息高速公路的主要分支。無論在國內還 是國外,校園網的存在與否,是衡量該院校學術水平與管理水平的重要標志,也是提高學校教學、科研水平不可或缺的重要支撐環節。
共享資源是校園網最基本的應用,人們通過網路更有效地共享各種軟、硬體及信息資源,為眾多的科研人員提供一種嶄新的合作環境。校園網可以提供異型機聯網的 公共計算環境、海量的用戶文件存儲空間、昂貴的列印輸出設備、能方便獲取的圖文並茂的電子圖書信息,以及為各級行政人員服務的行政信息管理系統和為一般用 戶服務的電子郵件系統。
(10)信息高速公路
如同現代信息高速公路的結構一樣,信息高速公司也分為主幹、分支及樹葉。圖像、聲音、文字轉化為數字信號在光纖主幹線上傳送,由交換技術再送到電話線或電纜分支線上,最終送到具體的用戶"樹葉"。主幹部分由光纖及其附屬設備組成,是信息高速公路的骨架。
我國政府也十分重視信息化事業,為了促進國家經濟信息化,提出個"金橋"工程--國家公用經濟信息網工程、"金關"工程--外貿專用網工程、"金卡" 工程--電子貨幣工程。這些工程是規模宏大的系統工程,其中的"金橋工程"是國民經濟的基礎設施,也是其它"金"字系列工程的基礎。
「金橋」工程包含信息源、信息通道和信息處理三個組成部分,通過衛星網與地面光纖網開發,並利用國家及各部委、大中型企業的信息資源為經濟建設服務。 「金卡」工程是在金橋網上運行的重要業務系統之一,主要包括電子銀行及信用卡等內容。「金卡」工程又稱為無紙化貿易工程,其主要實現手段為EDI,它以網 絡通信和計算機管理系統為支撐,以標准化的電子數據交換替代了傳統的紙面貿易文件和單證。其它的一些「金」字系列工程,如「金稅」工程、「金智」工程、 「金盾」工程等亦在籌劃與運作之中。這些重大信息工程的全面實施,在國內外引起了強烈反響,開創了我國信息化建設事業的新紀元。
(11)企業網路
集散系統和計算機集成製造系統是兩種典型的企業網路系統。
集散系統實質上是一種分散型自動化系統,又稱做以微處理機為基礎的分散綜合自動化系統。集散系統具有分散監控和集中綜合管理兩方面的特徵,而更將"集 "字放在首位,更注重於全系統信息的綜合管理。80年代以來,集散系統逐漸取代常規儀表,成為工業自動化的主流。工業自動化不僅體現在工業現場,也體現在 企業事務行政管理上。集散系統的發展及工業自動化的需求,導致了一個更龐大、更完善的計算機集成製造系統CIMS(Computer Integrated Manufacturing System)的誕生。
集散系統一般分為三級:過程級、監控級和管理信息級。集散系統是將分散於現場的以微機為基礎的過程監測單元、過程式控制制單元、圖文操作站及主機(上位 機)集成在一起的系統。它採用了區域網技術,將多個過程監控、操作站和上位機互連在一起,使通信功能增強,信息傳輸速度加快,吞吐量加大,為信息的綜合管 理提供了基礎。因為CIMS具有提高生產率、縮短生產周期等一系列極具吸引力的優點,所以已經成為未來工廠自動化的方向。
(12)智能大廈和結構化綜合布線系統
智能大廈(Intelligent Building)是近十年來新興的高技術建築形式,它集計算機技術、通信技術、人類工程學、樓宇控制、樓宇設施管理為一體,使大樓具有高度的適應性(柔 性),以適應各種不同環境與不同客戶的需要。智能大廈是以信息技術為主要支撐的,這也是其具有"智能"之名稱的由來。有人認為具有三A的大廈,可視為智能 大廈。所謂三A就是CA(通信自動化)、OA(辦公自動化)和BA(樓宇自動化)。概括起來,可以認為智能大廈除有傳統大廈功能之外,主要必須具備下列基 本構成要素:高舒適的工程環境、高效率的管理信息系統和辦公自動化系統、先進的計算機網路和遠距離通信網路及樓宇自動化。
智能大廈及計算機網路的信息基礎設施是結構化綜合布線系統SCS(Structure Cabling System)。在建設計算機網路系統時,布線系統是整個計算機網路系統設計中不可分割的一部分,它關繫到日後網路的性能、投資效益、實際使用效果以及日 常維護工作。結構化布線系統是指在一個樓宇或樓群中的通信傳輸網路能連接所有的話音、數字設備,並將它們與交換系統相連,構成一個統一、開放的結構化布線 系統。在綜合布線系統中,設備的增減、工位的變動,僅需通過跳線簡單插拔即可,而不必變動布線本身,從而大大方便了管理、使用和維護。
網路的分類
按照網路的類型特徵,對網路進行分類是了解網路、學習網路技術的重要基礎之一。從不同的角度對網路分類則有不同的分類方法。常見的分類方法有以下幾種:
1、按分布地理范圍分類
按分布地理范圍分類,計算機網路可以分為廣域網、區域網和城域網三種。
廣域網(Wide Area Network,簡稱WAN)又稱遠程網,其分布范圍可達數百公里乃至更遠,可以覆蓋一個地區,一個國家,更至全世界。
區域網(Local Area Network,簡稱LAN)是將小區域內的計算機及各種通信設備互連在一起的網路,其分布范圍局限在一個辦公室、一個建築物或一個企業內。
城域網(Metropolitan Area Network,簡稱MAN)的分布范圍介於區域網與廣域網之間,其目的是在一個較大的地理區域內提供數據、聲音和圖像的傳輸。
2、按交換方式分類
按網路的交換方式分類,計算機網路可以分為電路交換網,報文交換網和分組交換網三種。
電路交換(Circuit Switching)方式類似於傳統的電話交換方式,用戶在開始通信之前,必須申請建立一條從發送端到接收端的物理通道,並且在雙方通信期間始終佔用該信道。
報文交換(Message Switching)方式的數據單元是要發送一個完整報文,其長度不受限制。報文交換採用存儲轉發原理,這點像古代的郵政通信,郵件由途中的驛站逐個存儲 轉發一樣。每個報文中含有目的地址,每個用戶節點要為途徑的報文選擇適當的路徑,使其能最終達到目的端。
分組交換(Packet Switching)方式也稱包交換方式,1969年首次在ARPANET上使用,現在人們都公認ARPANET是分組交換網之父,並將分組交換網的出現 作為計算機網路新時代的開始。採用分組交換方式通信前,發送端先將數據劃分為一個個等長的單位(即分組),這些分組逐個由各中間節點採用存儲轉發方式進行 傳輸,最終達到目的端。由於分組長度有限,可以在中間節點機的內存中進行存儲處理,其轉發速度可大大提高。
3、按拓撲結構分類
按拓撲結構分類,計算機網路可分為星形網、匯流排網、環形網、樹型網和網形網。
星形網是最早採用的拓撲結構形式,其每個站點都通過連接電纜與主控機相聯,相關站點之間的通信都由主控機進行,所以要求主控機有很高的可靠性,這種結構是一種集中控制方式。
環形網中各工作站依次相互連接組成一個閉合的環形,信息可以沿著環形線路單向(或雙向)傳輸,由目的站點接收。環形網適合那些數據不需要在中心主控機上集中處理而主要在各站點進行處理的情況。
匯流排結構網中各個工作站通過一條匯流排連接,信息可以沿著兩個不同的方向由一個站點傳向另一個站點,是目前區域網中普遍採用的一種網路拓撲結構情形。
除了以上分類方法以外,還可按所採用的傳輸媒體分為雙絞線網,同軸電纜網、光纖網、無線網;按信道的帶寬分為窄帶網和寬頻網;按不同用戶分為科研網、教育網、商業網和企業網等。
計算機網路的拓撲結構和傳輸媒體
1、網路的拓撲結構
「拓撲」"這個名詞是從幾何學中借用來的。網路拓撲是指網路形狀,或者是它在物理上的連通性。下面介紹幾種最為主要的網路拓撲結構。
(1)星形拓撲
星形拓撲是由中央節點和通過點到點通信鏈路接到中央節點的各個站點組成,如圖 7.5所示。中央節點執行集中工通信控制策略,因此中央節點相當復雜,而各個站點的通信處理負擔都很小。星形網採用的交換方式有電路交換和報文交換,尤以 電路交換方式更為普遍。這種結構一旦建立通道連接,就可以無延遲地在連通的兩個站點之間傳送數據。目前流行的專用交換機 PBX( Private Branch eXchange)就是星形拓撲結構的典型實例。
星形拓撲結構有以下優點:
① 控制簡單。在星形網路中,任何一個站點只和中央節點相連接,因而媒體訪問控制方法很簡單,致使訪問協議也十分簡單。
② 故障診斷和隔離容易。在星形網路中,中央節點對網路連接線路可以逐一地隔離開來進行故障檢測和定位,單個連節點的故障隻影響一個設備,不會影響整個網路。
③ 方便服務。中央節點可方便地對各個站點提供服務和網路重新配置。
星形拓撲結構的缺點:
① 電纜長度和安裝工作量相當可觀。因為每個站點都要和中央節點直接連接,需要耗費大量的電纜、安裝、維護的工作量也劇增。
② 中央節點的負擔較重,易形成瓶頸。一旦發生故障,則全網受影響,因而對中央節點的可靠性和冗餘度方面的要求很高。
③ 各站點的分布處理能力較低。
星形拓撲結構廣泛應用於網路智能集中於某個中央站點的場合。從目前的趨勢看,計算機的發展已從集中的主機系統發展到大量功能很強的微型機和工作站,在這種形勢下,傳統的星形拓撲使用會有所減少。
(2)匯流排拓撲
匯流排拓撲結構採用一個信道作為傳輸媒體,所有站點都通過相應的硬體介面直接連到這一公共傳輸媒體上,該公共傳輸媒體即稱為匯流排。任何一個站發送的信號都沿著傳輸媒體傳播,而且能被所有的其它站點所接收。匯流排拓撲結構見圖 7.6所示。
因為所有站點共享一條公用的通信信道,所以一次只能有一個設備傳輸信號。通常採用分布式控制策略來確定哪個站點可以發送。發送時,發送站將報文分成分 組,然後逐個依次發送這些分組,有時還要與其它站來的分組交替地在傳輸媒體上傳輸。當分組經過各站時,其中的目的站會識別到分組所攜帶的目的地址,然後復 制下這些分組的內容。
匯流排拓撲結構的優點:
① 匯流排結構所需要的電纜數量少。
② 匯流排結構簡單,又無源工作,有較高的可靠性。
③ 易於擴充,增加和減少用戶比較方便。
匯流排拓撲結構的缺點:
① 匯流排傳輸距離有限,通信范圍受限制。
② 故障診斷和隔離比較困難。
③ 分布式協議不能保證信息的及時傳輸。
④ 不具有實時功能,站點必須是智能的,要有媒體訪問控制功能,從而增加了站點的硬體和軟體開銷。
(3)環形拓撲
環形拓撲網路由站點和連接站點的鏈路組成一個閉合環,如圖 7.7所示,每個站點能夠接收從一鏈路傳來的數據,並以同樣的速率串列地把該數據沿環送到另一鏈路上。這種鏈路可以是單向的,也可以是雙向的。數據以分組形式發送,如果環上 A站希望發送一個報文到 C站,就先要把報文分成若干個分組,每個分組除了數據還要加上某些控制信息,其中包括 C站的地址。 A站依次把每個分組送到環上,開始沿環傳輸, C站識別到帶有它自己地址的分組時,便將其中的數據復制下來。由於多個設備連接在一個環上,因此需要用分布式控制策略來進行控制。
環形拓撲結構的優點:
① 電纜的長度短。環形拓撲結構的網路所需的電纜長度和匯流排拓撲網路相似,但比起星形拓撲結構的網路要短得多。
② 減少或增加工作站時,僅需簡單的連接操作。
③ 可使用光纖。光纖的傳輸速度率很高,十分適合於環形拓撲的單向傳輸。
環形拓撲結構的缺點:
① 節點的故障會引起全網路的故障。這是因為環上的數據傳輸要通過接在環上的每一個節點,一旦環中某個節點發生故障就會引起全網路的故障。
② 故障檢測困難。這與匯流排拓撲結構相似,因為不是集中控制,故障檢測需要在網上各個節點進行,因此故障檢測就較為困難。
③ 環形拓撲結構的媒體訪問控制協議都採用令牌傳送的方式,在負載很輕時,信道利用率相對來說比較低。
總的來說,不管區域網或廣域網,網路的拓撲選擇,需要考慮諸多因素,網路要既利於安裝,又有利於擴展,網路的可靠性也是要考慮的重要因素,以外網路拓撲結構的選擇還會影響傳輸媒體的選擇和媒體訪問控制方法的確定。
2、傳輸媒體
傳輸媒體是通信網中發送方和接收方之間的物理通路,計算機網路中採用的傳輸媒體可以分為有線和無線兩大類。雙絞線、同軸電纜和光纖是常用的三種有線傳輸媒體,無線電通信、微波通信、紅外線通信以及激光通信的信息載體都屬於無線傳輸媒體。
傳輸媒體的特性對網路數據通信質量有很大的影響,這些特性是:
① 物理特性,說明傳輸媒體的特徵。
② 傳輸特徵,包括信號形式、調制技術、傳輸速度及頻帶寬度等內容。
③ 連通性,採用點到點連接還是多點連接。
④ 地域范圍,網上各點間的最大距離。
⑤ 抗干擾性,防止雜訊、電磁干擾對數據傳輸影響的能力。
⑥ 相對價格,以元件、安裝和維護的價格為基礎。
以下分別介紹其中最為常用的傳輸媒體的特性。
(1)雙絞線
由螺旋狀扭在一起的兩根絕緣導線組成,線對扭在一起可以減少相互間的輻射電磁干擾。雙絞線是最常用的傳輸媒體,早就用於電話通信中的模擬信號傳輸,也 可用於數字信號的傳輸。雙絞線一般是銅質的,能提供良好的傳導率。雙絞線既可用於傳輸模擬信號,也可用於傳輸數字信號。對於模擬信號來說,大約每 5 -6km需要一個放大器;對於數字信號來說,每 2 -3km使用一個中繼器。
雙絞線也可用於區域網,如 10BASE-T和 100BASE-T匯流排,可分別提供 10Mbit/s和 100Mbit/s的數據傳輸速率。通常將多對雙絞線封裝於一個絕緣套里組成雙絞線電纜,區域網中常用的 3類雙絞線和 5類雙絞線,均由 4對雙絞線組成,其中 3類雙絞線常用於 10BASE-T匯流排區域網, 5類雙絞線常用於 100BASE-T匯流排區域網。
雙絞線普遍話用於點到點的連接,雙絞線可以很容易地在 15km或更大范圍內提供數據傳輸。區域網的雙絞線主要用於一個建築物或幾個建築物間的通信,但在 10Mbit/s和 100Mbit/s傳輸速率的 10BASE-T和 100BASE-T的匯流排傳輸距離都不超過 100m。
雙絞線的抗干擾性能不如同軸電纜,但價格比同軸電纜要便宜。
(2)同軸電纜
同軸電纜也像雙絞線一樣由一對導體組成,但它們是按 "同軸 "的形式構成線對,其最里層是內芯,向外依次為絕緣層、屏蔽層,最外則是起保護作用的塑料外套,內芯和屏蔽層構成一對導體。
同軸電纜分為基帶同軸電纜和寬頻同軸電纜。基帶同軸電纜又可以分為粗纜和細纜兩種,都用於直接傳送數字信號;寬頻同軸電纜用於頻分多路復用的模擬信號傳輸,也可用於不使用頻分多路復用的高速數據通信和模擬信號的傳輸,閉路電視所使用的 CATV電纜就是寬頻同軸電纜。
同軸電纜適用於點到點連接和多點連接,基帶電纜每段可支持幾百台設備,在大系統中還可以用轉接器將各段連接起來;寬頻同軸電纜可支持數千台設備,但在高數據傳輸速率( 50Mbit/s)下使用寬頻電纜時,設備數目限制在 20-30台。
同軸電纜的傳輸距離取決於傳輸信號的形式和傳輸的速率,典型基帶電纜的電大距離限制在幾公里。在相同速率條件下,粗纜傳輸距離較細纜長。
同軸電纜的抗干擾性能比雙絞線好,但在價格上較雙絞線貴,但比光纖要便宜。
(3)光纖
光纖是光纖纖維的簡稱,它由能傳導光波的石英玻璃纖維外加保護層構成。相對於金屬導線來說具有重量輕、線徑細的特點。用光纖傳輸信號時,在發送端先要將電信號轉換成光信號,而在接收端要由光檢測器還原成電信號。
光纖在計算機網路中普遍採用點到點連接,從地域范圍來看可以在 6 -8km的距離內不用中繼器傳輸,因此光纖適合於在幾個建築物之間通過點到點的鏈路連接區域網。由於光纖具有不受電磁干擾和噪音影響的獨有特徵,適宜在長 距離內保持高速數據傳輸率,而且能提供很好的安全性。
網路除了有線媒體以外,還可以通過無線傳輸媒體進行無線傳輸,目前常用的技術有無線電波、微波、紅外線和激光。隨著攜帶型計算機的出現和普及,以及在軍事、野外等特殊場合下移動產品的通信聯網需要,促進了無線通信網路的發展,出現了無線網路產品。
計算機網路的協議及其作用
兩個計算機間通信時對傳輸信息內容的理解、信息表示形式以及各種情況下的應答信號都必需進行一個共同的約定,我們稱為協議( Protocol)。一般來說,協議要由如下三個要素組成:
(1)語義( Semantics)。涉及用於協調和差錯處理的控制信息。
(2)語法( Syntax)。涉及數據及控制信息的格式、編碼及信號電平等。
(3)定時( Timing)。涉及速度匹配和排序等。
協議本質上無非是一種網上交流的約定,由於聯網的計算機類型可以各不相同,各自使用的操作系統和應用軟體也不盡相同,為了保持彼此之間實現信息交換和資源共享,它們必須具有共同的語言,交流什麼、怎樣交流及何時交流,都必須遵行某種互相都能夠接受的規則。
目前,全球最大的網路是網際網路( Internet),它所採用的網路協議是 TCP/IP協議。它是網際網路的核心技術。 TCP/IP協議,具體的說就是傳輸控制協議( Transmission Control Protocol,即 TCP)和網際協議( Internet Protocol,即 IP)。其中 TCP協議用於負責網上信息的正確傳輸,而 IP協議則是負責將信息從一處傳輸到另一處。
TCP/IP協議本質上是一種採用分組交換技術的協議。其基本思想是把信息分割成一個個不超過一定大小的信息包來傳送。目的是:一方面可以避免單個用戶長時間地佔用網路線路;另一方面,可以在傳輸出錯時不必重新傳送全部信息,只需重傳出錯的信息包就行了。
TCP/IP協議組織信息傳輸的方式是一種 4層的協議方式。下表是一種簡化了的層次模型:
應用層 Telnet、FTP和e-mail等
傳輸層 TCP和UDP
網路層 IP、ICMP和IGMP
網路介面層 設備驅動程序及介面卡
模型中,最底層為 TCP/IP的實現基礎,主要用於訪問具體區域網,如以大網等。中間兩層為 TCP/IP協議,其中的 UDP為一種建立在 IP協議基礎上的用戶數據協議( User Data gram Protocol,即 UDP)。最上層為建立在 TCP/IP協議基礎上的一些服務: TELNET(遠程登錄),允許某個用戶登錄到網上的其它計算機上(要求用戶必須擁有該機帳號),然後像使用自己的計算機一樣使用遠端計算機: FTP( File Transfer Protocol,文件傳輸協議),允許用戶在網上計算機之間傳送程序或文件; SMTP( Simple Message Transfer Protocol,簡單郵件傳送協議),允許網上計算機之間互通信函; DNS( Domain Name Service,域名服務協議),用於將域名地址轉換成 IP地址等。
網際網路(Internet)及其應用
網際網路概述
網際網路( Internet)是一個建立在網路互連基礎上的最大的、開放的全球性網路。網際網路擁有數千萬台計算機和上億個用戶,是全球信息資源的超大型集合體。所有 採用 TCP/IP協議的計算機都可以加入網際網路,實現信息共享和互相通信。與傳統的書籍、報刊、廣播、電視等傳播媒體相比,網際網路使用更方便,查閱更快捷,內 容更豐富。今天,網際網路已在世界范圍內得到了廣泛的普及與應用,並正在迅速地改變人們的工作方式和生活方式。
網際網路起源於 20世紀 60年代中期由美國國防部高級研究計劃局( ARPA)資助的 ARPANET,此後提出的 TCP/IP協議為網際網路的發展奠定了基礎。 1986年美國國家科學基金會( NSF)的 NSFNET加入了網際網路主幹網,由此推動了網際網路的發展。但是,網際網路的真正飛躍發展應該歸功於 20世紀 90年代的商業化應用。此後,世界各地無數的企業和個人紛紛加入,終於發展演變成今天成熟的網際網路。
我國正式接入網際網路是在 1994年 4月,當時為了發展國際科研合作的需要,中國科學院高能物理研究所和北京化工大學開通了到美國的網際網路專