當前位置:首頁 » 網路連接 » 計算機網路通信碼分多址訪問
擴展閱讀
網易顯示網路異常 2025-09-26 11:23:48

計算機網路通信碼分多址訪問

發布時間: 2023-05-31 15:27:33

計算機網路——2.物理層

確定與傳輸媒體的 介面 的一些特性,解決在各種傳輸媒體上傳輸 比特流 的問題
1.機械特性 :介面的形狀尺寸大小。
2.電氣特性 :在介面電纜上的各條線的電壓范圍。
3.功能特性 :在某一條線上出現的某個電平電壓表示的意義。
4.過程特性 :對於不同功能的各種可能事件的出現順序。
傳輸媒體主要可以分為 導引型傳輸媒體 非導引型傳輸媒體
導引型傳輸媒體信號沿著固體媒體(銅線或光纖,雙絞線)進行傳輸, 有線傳輸
非導引型傳輸媒體 :信號在自由空間傳輸,常為 無線傳輸

數據通信系統:包括 源系統 (發送方), 傳輸系統 (傳輸網路), 目的系統 (接收方)。
一般來說源系統發出的信號(數字比特流)不適合直接在傳輸系統上直接傳輸,需要轉化(模擬信號)。
調制 :數字比特流-模擬信號
解調 :模擬信號-數字比特流

數據 ——運送消息的實體。
信號 ——數據的電氣化或電磁化的表現。
模擬信號 ——代表消息的參數的取值是 連續 的。
數字信號 ——代表消息的參數的取值是 離散 的。
碼元 ——在使用時間域代表不同離散值的基本波形。

信道 :表示向某一個方向傳送信息的媒體。
單向通信(單工通信) :只有一個方向的通信,不能反方向。
雙向交替通信(半雙工通信) :能兩個方向通信,但是不能同時。
雙向同時通信(全雙工通信) :能同時在兩個方向進行通信。
基帶信號 :來自信源的信號(源系統發送的比特流)。

基帶調制 :對基帶信號的波形進行變換,使之適應信道。調制後的信號仍是基帶信號。基帶調制的過程叫做 編碼
帶通調制 :使用載波進行調制,把基帶信號的頻率調高,並轉換為模擬信號。調制後的信號是 帶通信號

1.歸零制 :兩個相鄰信號中間信號記錄電流要恢復到 零電平 正脈沖表示1,負脈沖表示0 。在歸零制中,相鄰兩個信號之間這段磁層未被磁化,因此在寫入信息之前必須去磁。
2.不歸零制 正電平代表1,負電平代表0 ,不用恢復到零電平。難以分辨開始和結束,連續記錄0或者1時必須要有時鍾同步,容易出現直流分量出錯。
3.曼徹斯特編碼 :在每一位中間都有一個跳變。 低->高表示0,高->低表示1
4.差分曼徹斯特編碼 :在每一位的中心處始終都有跳變。位開始邊界有跳變代表0,沒有跳變代表1。 位中間的跳變代表時鍾,位前跳變代表數據

調幅( AM ):載波的 振幅 隨著基帶數字信號而變化。
調頻( FM ):載波的 頻率 隨著基帶數字信號而變化。
調相( PM ):載波的 初始相位 隨著基帶數字信號而變化。

失真 :發送方的數據和接收方的數據並不完全一樣。
限制碼元在信道上的傳輸速率的因素:信道能夠通過的 頻率范圍 信噪比

碼間串擾 :由於系統特性,導致前後碼元的波形畸變。
理想低通信號的最高碼元傳輸速率為 2W ,單位是波特,W是理想低通信道的 帶寬 ,理想帶通特性信道的最高碼元傳輸速率為W。
信噪比 :信號的平均功率與雜訊的平均功率的比值,單位是 dB 值=10log10(S/N)
信噪比對信道的 極限 信息傳輸速率的影響:速率 C=Wlog2(1+S/N)——香農公式 ,單位為 bit/s
信噪比越大,極限傳輸速率越高。實際速率比極限速率低不少。還可以用編碼的方式來提高速率(讓一個碼元攜帶更多的比特量)。

所謂 復用 就是一種將若干個彼此獨立的信號合並成一個可以在 同一信道 上同時傳輸的 復合信號 的方法。
比如,傳輸的語音信號的頻譜一般在300~3400Hz內,為了使若干個這種信號能在 同一信道(相當於共享信道,能夠降低成本,提高利用率) 上傳輸,可以把它們的頻譜調制到不同的頻段,合並在一起而不致相互影響,並能在接收端彼此分離開來( 分用 )。
信道復用技術就是將一個物理信道按照一定的機制劃分多個互不幹擾互不影響的邏輯信道。信道復用技術可分為以下幾種: 頻分復用,時分復用和統計時分復用,波分復用,碼分復用

1.頻分復用技術FDM(也叫做頻分多路復用技術): 條件是傳送的信號的帶寬是有限的,而 信道的帶寬要遠遠大於信號的帶寬 ,然後採用 不同頻率 進行調制的方法,是各個信號在信道上錯開。頻分復用的各路信號是在 時間 上重疊而在 頻譜 上不重疊的信號。將整個帶寬分為多份,用戶分配一定的帶寬後通信過程 自始至終都佔用 這個頻帶。另外,為保證各個子信道傳輸不受干擾,可以設立 隔離帶
2.時分復用技術TDM:採用同一物理連接的不同時段來傳輸不同的信號。 也就是在信道帶寬上劃分出幾個子信道後,A用戶在某一段時間使用子信道1,用完之後將子信道1釋放讓給用戶B使用,以此類推。將整個信道傳輸時間劃分成若干個時間片(時隙),這些時間片叫做 時分復用幀 。每一個時分用戶在每一個TDM幀中佔用 固定時序 的時隙。

4.波分復用技術WDM: 將兩種或多種不同波長的光載波信號在發送端經過 復用器匯合 在一起,並耦合到光線路的 同一根光纖 中進行傳輸,在接收端經過 分波器 將各種波長的光載波分離進行 恢復 。整個過程類似於頻分復用技術的共享信道。波分復用其實就是光的頻分復用。

1.比特時間,碼片
1比特時間就是發送 1比特 需要的時間,如數據率是10Mb/s,則100比特時間就等於10微秒。
每一個比特時間劃分為m個短的間隔,稱為碼片。每個站被指派一個唯一的m bit 的碼片序列(例如S站的8 bit 碼片序列是00011011)。
如果發送 比特1 ,則發送自己的m bit 碼片序列。如果發送 比特0 ,則發送該碼片序列的二進制反碼。
S站的碼片序列:(-1,-1,-1,+1,+1,-1,+1,+1) -1代表0,+1代表1
用戶發送的信號先受 基帶數字信號 的調試,又受 地址碼 的調試。就比如數據發送後受到基帶數字信號的調試之後變為10,然後又受到地址碼的調試後1就變為了00011011(上面的S站碼片序列),0就變成了11100100。
由於每個比特要轉換成m個比特的碼片序列,因此原本S站的數據率b bit/s要提高到mb bit/s,同時S站所佔用的頻帶寬度也提高到原本數值的m倍。這種方式是擴頻通信中的一種。
擴頻通信通常有兩大類:直接序列擴頻DSSS(上述方式);跳頻擴頻FHSS。
2.碼分多址(CDMA)
CDMA的重要特點 :每個站分配的碼片序列不僅必須 各不相同 ,並且還必須 相互正交 。在實用系統中使用的是 偽隨機碼序列
碼片的互相 正交 的關系:令向量S表示站S的碼片向量,令T表示其他任何站的碼片向量。兩個不同站的碼片序列正交,就是向量S和T的 規格化內積 等於0。

即S T=(S1 T1+S2 T2+......Sm Tm)/m(其實就相當於 兩個向量垂直 ,/m對結果其實也沒多大關系)
推論 1. 一個碼片向量和另一碼片反碼的向量的規格化內積值為0(如果ST=0,那麼ST'也=0)
2. 任何一個碼片向量和該碼片向量自己的規格化內積都是1,即S S=1
3. 一個碼片向量和該碼片向量的規格化內積值是-1,即S
S'=-1
CDMA的工作原理:
用一個列子來說明,假設S站的碼片序列為(-1,-1,-1,+1,+1,-1,+1,+1),S站的擴頻信號為Sx,即若數據比特=1那麼S站發送的是碼片序列本身Sx=S,若數據比特=0那麼S站發送的是碼片序列的反碼Sx=S』。T站的碼片序列為(-1,-1,+1,-1,+1,+1,+1,-1),T站的擴頻信號為Tx。因為所有的站都使用相同的頻率,因此每一個站都能夠收到所有的站發送的擴頻信號。所有的站收到的都是疊加的信號 Sx+Tx
當接收站打算收S站發送的信號時,就用S站的碼片序列與收到的信號求規格化內積,即S (Sx+Tx)=S Sx+S Tx。前者等於+1或0,後者一定等於0,具體看下面(參考上面的 CDMA的工作原理 ):
當數據比特=1時,Sx=S,那麼S
Sx=S S=1;同理 ,當數據比特=0時,Sx=S』,那麼S Sx=S S』=0
當數據比特=1時,Tx=S,那麼S
Tx=S T=0(參考上面 碼片序列的正交關系 );同理 ,當數據比特=0時,Sx=S』,那麼S Tx=S*T』=0

⑵ 計算機網路課後題 誰幫幫講一下

A:(-1 –1 –1 +1 +1 –1 +1 +1)
: (-1 +1 –3 +1 -1 –3 +1 +1)。
S•A=負負得正(-1 -1 =+1)
-1 +1 =-1
-1 -3 =+3
+1 +1 =+1
+1 -1 =-1
-1 -3 =+3
+1 +1 =+1
+1 +1 =+1
其它的同理可得

⑶ 計算機網路

時分和頻分
顧名思義
一個根據時間分段傳輸
一個根據頻率分段傳輸

⑷ 計算機網路題,碼分復用問題

用結果的各位與各站點的各位相乘後相加,結果如下:
A:1-1+3+1-1+3+1+1=8

B:1-1-3-1-1-3+1-1=-8
C:1+1+3+1-1-3-1-1=0
D:1+1+3-1+1+3+1-1=8
故A點發送的是1,B點發送的是0,C點沒有發送,D點發送的是1.

⑸ 計算機網路的 一道題目

A,D發送了1,B發送了0,C沒有發送數據。

下面給出兩種解法。

解法一:

這個問題其實就是個解方程的問題。
k1(-1,-1,-1,1,1,-1,1,-1)+k2(-1,-1,1,-1,1,1,1,-1)+k3(-1,1,-1,1,1,1,-1,-1)+k4(-1,1,-1,-1,-1,1,-1)=(-1,1,-3,1,-1,-3,1,1)
這里k1,k2,k3,k4可以取值-1,0,1.
可以得到8個方程,然後解出方程組,就知道了。事實上,我們只需要幾個方程就可以解出來了。
第一個數字 -k1-k2-k3-k4=-1
第二個數字 -k1-k2+k3+k4=1
兩式相加,得-2k1-2k2=0--->k1=-k2,k3+k4=1.
第三個數字-k1+k2-k3-k4=-3--->-(-k2)+k2-(k3+k4)=-3--->2k2-1=-3--->k2=-1
所以k1=1
第4個數字,k1-k2+k3-k4=1--->1-(-1)+(1-k4)-k4=1, k4=1,因此k3=0.
所以不需要解出所有8個方程,我們已經知道了k1=k4=1,k2=-1,k3=0.
這就說明A,D發送了源碼,B發送了反碼,C沒有發送任何代碼鄭做差。

解法二:

這個問題也可以不通過上面的解方程的辦法,而直接從這5個胡氏碼片看出:因為每個碼片或者是1,或者是-1,而我們看到最後收到的碼片的第三,第六個數字為3,這說明信號一定是通過疊加而成,就是說不止一個站發送了信息。如果是兩個或者四個站參與了發送信息,不管喊皮是源碼或者反碼,得到的數字一定是偶數。因此可以推出,有三個站參與了發送。我們先來看4個站碼片的第3個和第6個數字,A,B,C,D分別為-1,1,-1,-1和-1,1,1,-1.除了C的數字從-1變為1外,其他三個數字都沒有變,而收到的碼片相應的數字都是-3,這就說明C站沒有參與發送信息,否則收到的碼片第3個第6個數字會不同。因此A,B,D參與了發送信息。再看第三個數字,A,B,D的第三個數字分別為-1,1,-1,而收到的疊加的碼片的第3個數字為-3,因此只有A,D發送源代碼,B發送反代碼才能獲得。

結論:A,D發送了1,B發送了0,C沒有發送數據。

⑹ 【山外筆記-計算機網路·第7版】第02章:物理層

[學習筆記]第02章_物理層-列印版.pdf

本章最重要的內容是:

(1)物理層的任務。

(2)幾種常用的信道復用技術。

(3)幾種常用的寬頻接入技術,主要是ADSL和FTTx。

1、物理層簡介

(1)物理層在連接各種計算機的傳輸媒體上傳輸數據比特流,而不是指具體的傳輸媒體。

(2)物理層的作用是盡可能地屏蔽掉傳輸媒體和通信手段的差異。

(3)用於物理層的協議常稱為物理層規程(procere),其實物理層規程就是物理層協議。

2、物理層的主要任務 :確定與傳輸媒體的介面有關的一些特性。

(1)機械特性:指明介面所用接線器的形狀和尺寸、引腳數目和排列、固定和鎖定裝置等。

(2)電氣特性:指明在介面電纜的各條線上出現的電壓的范圍。

(3)功能特性:指明某條線上出現的某一電平的電壓的意義。

(4)過程特性:指明對於不同功能的各種可能事件的出現順序。

3、物理層要完成傳輸方式的轉換。

(1)數據在計算機內部多採用並行傳輸方式。

(2)數據在通信線路(傳輸媒體)上的傳輸方式一般都是串列傳輸,即逐個比特按照時間順序傳輸。

(3)物理連接的方式:點對點、多點連接或廣播連接。

(4)傳輸媒體的種類:架空明線、雙絞線、對稱電纜、同軸電纜、光纜,以及各種波段的無線信道等。

1、數據通信系統的組成

一個數據通信系統可劃分為源系統(或發送端、發送方)、傳輸系統(或傳輸網路)和目的系統(或接收端、接收方)三大部分。

(1)源系統:一般包括以下兩個部分:

(2)目的系統:一般也包括以下兩個部分:

(3)傳輸系統:可以是簡單的傳輸線,也可以是連接在源系統和目的系統之間的復雜網路系統。

2、通信常用術語

(1)通信的目的是傳送消息(message),數據(data)是運送消息的實體。

(2)數據是使用特定方式表示的信息,通常是有意義的符號序列。

(3)信息的表示可用計算機或其他機器(或人)處理或產生。

(4)信號(signal)則是數據的電氣或電磁的表現。

3、信號的分類 :根據信號中代表消息的參數的取值方式不同

(1)模擬信號/連續信號:代表消息的參數的取值是連續的。

(2)數字信號/離散信號:代表消息的參數的取值是離散的。

1、信道

(1)信道一般都是用來表示向某一個方向傳送信息的媒體。

(2)一條通信電路往往包含一條發送信道和一條接收信道。

(3)單向通信只需要一條信道,而雙向交替通信或雙向同時通信則都需要兩條信道(每個方向各一條)。

2、通信的基本方式

(1)單向通信又稱為單工通信,只能有一個方向的通信而沒有反方向的交互。如無線電廣播、有線電廣播、電視廣播。

(2)雙向交替通信又稱為半雙工通信,即通信的雙方都可以發送信息,但不能雙方同時發送/接收。

(3)雙向同時通信又稱為全雙工通信,即通信的雙方可以同時發送和接收信息。

3、調制 (molation)

(1)基帶信號:來自信源的信號,即基本頻帶信號。許多信道不能傳輸基帶信號,必須對其進行調制。

(2)調制的分類

4、基帶調制常用的編碼方式 (如圖2-2)

(1)不歸零制:正電平代表1,負電平代表0。

(2)歸零制:正脈沖代表1,負脈沖代表0。

(3)曼徹斯特:編碼位周期中心的向上跳變代表0,位周期中心的向下跳變代表1。也可反過來定義。

(4)差分曼徹斯特:編碼在每一位的中心處始終都有跳變。位開始邊界有跳變代表0,而位開始邊界沒有跳變代表1。

5、帶通調制的基本方法

(1)調幅(AM)即載波的振幅隨基帶數字信號而變化。例如,0或1分別對應於無載波或有載波輸出。

(2)調頻(FM)即載波的頻率隨基帶數字信號而變化。例如,0或1分別對應於頻率f1或f2。

(3)調相(PM)即載波的初始相位隨基帶數字信號而變化。例如,0或1分別對應於相位0度或180度。

(4)多元制的振幅相位混合調制方法:正交振幅調制QAM(Quadrature Amplitude Molation)。

1、信號失真

(1)信號在信道上傳輸時會不可避免地產生失真,但在接收端只要從失真的波形中能夠識別並恢復出原來的碼元信號,那麼這種失真對通信質量就沒有影響。

(2)碼元傳輸的速率越高,或信號傳輸的距離越遠,或雜訊干擾越大,或傳輸媒體質量越差,在接收端的波形的失真就越嚴重。

2、限制碼元在信道上的傳輸速率的因素

(1)信道能夠通過的頻率范圍

(2)信噪比

3、香農公式 (Shannon)

(1)香農公式(Shannon):C = W*log2(1+S/N) (bit/s)

(2)香農公式表明:信道的帶寬或信道中的信噪比越大,信息的極限傳輸速率就越高。

(3)香農公式指出了信息傳輸速率的上限。

(4)香農公式的意義:只要信息傳輸速率低於信道的極限信息傳輸速率,就一定存在某種辦法來實現無差錯的傳輸。

(5)在實際信道上能夠達到的信息傳輸速率要比香農的極限傳輸速率低不少,是因為香農公式的推導過程中並未考慮如各種脈沖干擾和在傳輸中產生的失真等信號損傷。

1、傳輸媒體

傳輸媒體也稱為傳輸介質或傳輸媒介,是數據傳輸系統中在發送器和接收器之間的物理通路。

2、傳輸媒體的分類

(1)導引型傳輸媒體:電磁波被導引沿著固體媒體(雙絞線、同軸電纜或光纖)傳播。

(2)非導引型傳輸媒體:是指自由空間,電磁波的傳輸常稱為無線傳輸。

1、雙絞線

(1)雙絞線也稱為雙扭線, 即把兩根互相絕緣的銅導線並排放在一起,然後用規則的方法絞合(twist)起來。絞合可減少對相鄰導線的電磁干擾。

(2)電纜:通常由一定數量的雙絞線捆成,在其外麵包上護套。

(3)屏蔽雙絞線STP(Shielded Twisted Pair):在雙絞線的外面再加上一層用金屬絲編織成的屏蔽層,提高了雙絞線抗電磁干擾的能力。價格比無屏蔽雙絞線UTP(Unshielded Twisted Pair)要貴一些。

(4)模擬傳輸和數字傳輸都可以使用雙絞線,其通信距離一般為幾到十幾公里。

(5)雙絞線布線標准

(6)雙絞線的使用

2、同軸電纜

(1)同軸電纜由內導體銅質芯線(單股實心線或多股絞合線)、絕緣層、網狀編織的外導體屏蔽層(也可以是單股的)以及保護塑料外層所組成。

(2)由於外導體屏蔽層的作用,同軸電纜具有很好的抗干擾特性,被廣泛用於傳輸較高速率的數據。

(3)同軸電纜主要用在有線電視網的居民小區中。

(4)同軸電纜的帶寬取決於電纜的質量。目前高質量的同軸電纜的帶寬已接近1GHz。

3、光纜

(1)光纖通信就是利用光導纖維(簡稱光纖)傳遞光脈沖來進行通信。有光脈沖為1,沒有光脈沖為0。

(2)光纖是光纖通信的傳輸媒體。

(3)多模光纖:可以存在多條不同角度入射的光線在一條光纖中傳輸。光脈沖在多模光纖中傳輸時會逐漸展寬,造成失真,多模光纖只適合於近距離傳輸。

(4)單模光纖:若光纖的直徑減小到只有一個光的波長,則光纖就像一根波導那樣,可使光線一直向前傳播,而不會產生多次反射。單模光纖的纖芯很細,其直徑只有幾個微米,製造起來成本較高。

(5)光纖通信中常用的三個波段中心:850nm,1300nm和1550nm。

(6)光纜:一根光纜少則只有一根光纖,多則可包括數十至數百根光纖,再加上加強芯和填充物,必要時還可放入遠供電源線,最後加上包帶層和外護套。

(7)光纖的優點

1、無線傳輸

(1)無線傳輸是利用無線信道進行信息的傳輸,可使用的頻段很廣。

(2)LF,MF和HF分別是低頻(30kHz-300kHz)、中頻(300kHz-3MH z)和高頻(3MHz-30MHz)。

(3)V,U,S和E分別是甚高頻(30MHz-300MHz)、特高頻(300MHz-3GHz)、超高頻(3GHz-30GHz)和極高頻(30GHz-300GHz),最高的一個頻段中的T是Tremendously。

2、短波通信: 即高頻通信,主要是靠電離層的反射傳播到地面上很遠的地方,通信質量較差。

3、無線電微波通信

(1)微波的頻率范圍為300M Hz-300GHz(波長1m-1mm),但主要使用2~40GHz的頻率范圍。

(2)微波在空間中直線傳播,會穿透電離層而進入宇宙空間,傳播距離受到限制,一般只有50km左右。

(3)傳統的微波通信主要有兩種方式,即地面微波接力通信和衛星通信。

(4)微波接力通信:在一條微波通信信道的兩個終端之間建立若干個中繼站,中繼站把前一站送來的信號經過放大後再發送到下一站,故稱為「接力」,可傳輸電話、電報、圖像、數據等信息。

(5)衛星通信:利用高空的人造同步地球衛星作為中繼器的一種微波接力通信。

(6)無線區域網使用ISM無線電頻段中的2.4GHz和5.8GHz頻段。

(7)紅外通信、激光通信也使用非導引型媒體,可用於近距離的筆記本電腦相互傳送數據。

1、復用(multiplexing)技術原理

(1)在發送端使用一個復用器,就可以使用一個共享信道進行通信。

(2)在接收端再使用分用器,把合起來傳輸的信息分別送到相應的終點。

(3)復用器和分用器總是成對使用,在復用器和分用器之間是用戶共享的高速信道。

(4)分用器(demultiplexer)的作用:把高速信道傳送過來的數據進行分用,分別送交到相應的用戶。

2、最基本的復用

(1)頻分復用FDM(Frequency Division Multiplexing)

(2)時分復用TDM(Time Division Multiplexing):

3、統計時分復用STDM (Statistic TDM)

(1)統計時分復用STDM是一種改進的時分復用,能明顯地提高信道的利用率。

(2)集中器(concentrator):將多個用戶的數據集中起來通過高速線路發送到一個遠地計算機。

(3)統計時分復用使用STDM幀來傳送數據,每一個STDM幀中的時隙數小於連接在集中器上的用戶數。

(4)STDM幀不是固定分配時隙,而是按需動態地分配時隙,提高了線路的利用率。

(5)統計復用又稱為非同步時分復用,而普通的時分復用稱為同步時分復用。

(6)STDM幀中每個時隙必須有用戶的地址信息,這是統計時分復用必須要有的和不可避免的一些開銷。

(7)TDM幀和STDM幀都是在物理層傳送的比特流中所劃分的幀。和數據鏈路層的幀是完全不同的概念。

(8)使用統計時分復用的集中器也叫做智能復用器,能提供對整個報文的存儲轉發能力,通過排隊方式使各用戶更合理地共享信道。此外,許多集中器還可能具有路由選擇、數據壓縮、前向糾錯等功能。

1、波分復用WDM (Wavelength Division Multiplexing)

波分復用WDM是光的頻分復用,在一根光纖上用波長來復用兩路光載波信號。

2、密集波分復用DWDM (Dense Wavelength Division Multiplexing)

密集波分復用DWDM是在一根光纖上復用幾十路或更多路數的光載波信號。

1、碼分復用CDM (Code Division Multiplexing)

(1)每一個用戶可以在同樣的時間使用同樣的頻帶進行通信。

(2)各用戶使用經過特殊挑選的不同碼型,因此各用戶之間不會造成干擾。

(3)碼分復用最初用於軍事通信,現已廣泛用於民用的移動通信中,特別是在無線區域網中。

2、碼分多址CDMA (Code Division Multiple Access)。

(1)在CDMA中,每一個比特時間再劃分為m個短的間隔,稱為碼片(chip)。通常m的值是64或128。

(2)使用CDMA的每一個站被指派一個唯一的m bit碼片序列(chip sequence)。

(3)一個站如果發送比特1,則發送m bit碼片序列。如果發送比特0,則發送該碼片序列的二進制反碼。

(4)發送信息的每一個比特要轉換成m個比特的碼片,這種通信方式是擴頻通信中的直接序列擴頻DSSS。

(5)CDMA系統給每一個站分配的碼片序列必須各不相同,並且還互相正交(orthogonal)。

(6)CDMA的工作原理:現假定有一個X站要接收S站發送的數據。

(7)擴頻通信(spread spectrum)分為直接序列擴頻DSSS(Direct Sequence Spread Spectrum)和跳頻擴頻FHSS(Frequency Hopping Spread Spectrum)兩大類。

早起電話機用戶使用雙絞線電纜。長途干線採用的是頻分復用FDM的模擬傳輸方式,現在大都採用時分復用PCM的數字傳輸方式。現代電信網,在數字化的同時,光纖開始成為長途干線最主要的傳輸媒體。

1、早期的數字傳輸系統最主要的缺點:

(1)速率標准不統一。互不兼容的國際標准使國際范圍的基於光纖的高速數據傳輸就很難實現。

(2)不是同步傳輸。為了節約經費,各國的數字網主要採用准同步方式。

2、數字傳輸標准

(1)同步光纖網SONET(Synchronous Optical Network)

(2)同步數字系列SDH(Synchronous Digital Hierarchy)

(3)SDH/SONET定義了標准光信號,規定了波長為1310nm和1550nm的激光源。在物理層定義了幀結構。

(4)SDH/SONET標準的制定,使北美、日本和歐洲三種不同的數字傳輸體制在STM-1等級上獲得了統一,第一次真正實現了數字傳輸體制上的世界性標准。

互聯網的發展初期,用戶利用電話的用戶線通過數據機連接到ISP,速率最高只能達到56kbit/s。

從寬頻接入的媒體來看,寬頻接入技術可以分為有線寬頻接入和無線寬頻接入兩大類。

1、非對稱數字用戶線ADSL (Asymmetric Digital Subscriber Line)

(1)ADSL技術是用數字技術對現有的模擬電話用戶線進行改造,使它能夠承載寬頻數字業務。

(2)ADSL技術把0-4kHz低端頻譜留給傳統電話使用,把原來沒有被利用的高端頻譜留給用戶上網使用。

(3)ADSL的ITU的標準是G.992.1(或稱G.dmt,表示它使用DMT技術)。

(4)「非對稱」是指ADSL的下行(從ISP到用戶)帶寬都遠遠大於上行(從用戶到ISP)帶寬。

(5)ADSL的傳輸距離取決於數據率和用戶線的線徑(用戶線越細,信號傳輸時的衰減就越大)。

(6)ADSL所能得到的最高數據傳輸速率還與實際的用戶線上的信噪比密切相關。

2、ADSL數據機的實現方案 :離散多音調DMT(Discrete Multi-Tone)調制技術

(1)ADSL在用戶線(銅線)的兩端各安裝一個ADSL數據機。

(2)「多音調」就是「多載波」或「多子信道」的意思。

(3)DMT調制技術採用頻分復用的方法,把40kHz-1.1MHz的高端頻譜劃分為許多子信道。

(4)當ADSL啟動時,用戶線兩端的ADSL數據機就測試可用的頻率、各子信道受到的干擾情況,以及在每一個頻率上測試信號的傳輸質量。

(5)ADSL能夠選擇合適的調制方案以獲得盡可能高的數據率,但不能保證固定的數據率。

3、數字用戶線接入復用器DSLAM (DSL Access Multiplexer)

(1)數字用戶線接入復用器包括許多ADSL數據機。

(2)ADSL數據機又稱為接入端接單元ATU(Access Termination Unit)。

(3)ADSL數據機必須成對使用,因此把在電話端局記為ATU-C,用戶家中記為ATU-R。

(4)ADSL最大的好處就是可以利用現有電話網中的用戶線(銅線),而不需要重新布線。

(5)ADSL數據機有兩個插口:

(6)一個DSLAM可支持多達500-1000個用戶。

4、第二代ADSL

(1)ITU-T已頒布了G系列標准,被稱為第二代ADSL,ADSL2。

(1)第二代ADSL通過提高調制效率得到了更高的數據率。

(2)第二代ADSL採用了無縫速率自適應技術SRA(Seamless Rate Adaptation),可在運營中不中斷通信和不產生誤碼的情況下,根據線路的實時狀況,自適應地調整數據率。

(3)第二代ADSL改善了線路質量評測和故障定位功能。

5、ADSL技術的變型 :xDSL

ADSL並不適合於企業,為了滿足企業的需要,產生了ADSL技術的變型:xDSL。

(1)對稱DSL(Symmetric DSL,SDSL):把帶寬平均分配到下行和上行兩個方向,每個方向的速度分別為384kbit/s或1.5Mbit/s,距離分別為5.5km或3km。

(2)HDSL(High speed DSL):使用一對線或兩對線的對稱DSL,是用來取代T1線路的高速數字用戶線,數據速率可達768KBit/s或1.5Mbit/s,距離為2.7-3.6km。

(3)VDSL(Very high speed DSL):比ADSL更快的、用於短距離傳送(300-1800m),即甚高速數字用戶線,是ADSL的快速版本。

1、光纖同軸混合網HFC (Hybrid Fiber Coax)

(1)光纖同軸混合網HFC是在有線電視網的基礎上改造開發的一種居民寬頻接入網。

(2)光纖同軸混合網HFC可傳送電視節目,能提供電話、數據和其他寬頻交互型業務。

(3)有線電視網最早是樹形拓撲結構的同軸電纜網路,採用模擬技術的頻分復用進行單向廣播傳輸。

2、光纖同軸混合網HFC的主要特點:

(1)HFC網把原有線電視網中的同軸電纜主幹部分改換為光纖,光纖從頭端連接到光纖結點(fiber node)。

(2)在光纖結點光信號被轉換為電信號,然後通過同軸電纜傳送到每個用戶家庭。

(3)HFC網具有雙向傳輸功能,而且擴展了傳輸頻帶。

(4)連接到一個光纖結點的典型用戶數是500左右,但不超過2000。

3、電纜數據機 (cable modem)

(1)模擬電視機接收數字電視信號需要把機頂盒(set-top box)的設備連接在同軸電纜和電視機之間。

(2)電纜數據機:用於用戶接入互聯網,以及在上行信道中傳送交互數字電視所需的一些信息。

(3)電纜數據機可以做成一個單獨的設備,也可以做成內置式的,安裝在電視機的機頂盒裡面。

(4)電纜數據機不需要成對使用,而只需安裝在用戶端。

(5)電纜數據機必須解決共享信道中可能出現的沖突問題,比ADSL數據機復雜得多。

信號在陸地上長距離的傳輸,已經基本實現了光纖化。遠距離的傳輸媒體使用光纜。只是到了臨近用戶家庭的地方,才轉為銅纜(電話的用戶線和同軸電纜)。

1、多種寬頻光纖接入方式FTTx

(1)多種寬頻光纖接入方式FTTx,x可代表不同的光纖接入地點,即光電轉換的地方。

(2)光纖到戶FTTH(Fiber To The Home):把光纖一直鋪設到用戶家庭,在光纖進入用戶後,把光信號轉換為電信號,可以使用戶獲得最高的上網速率。

(3)光纖到路邊FTTC(C表示Curb)

(4)光纖到小區FTTZ(Z表示Zone)

(5)光纖到大樓FTTB(B表示Building)

(6)光纖到樓層FTTF(F表示Floor)

(7)光纖到辦公室FTTO(O表示Office)

(8)光纖到桌面FTTD(D表示Desk)

2、無源光網路PON (Passive Optical Network)

(1)光配線網ODN(Optical Distribution Network):在光纖干線和廣大用戶之間,鋪設的轉換裝置,使得數十個家庭用戶能夠共享一根光纖干線。

(2)無源光網路PON(Passive Optical Network),即無源的光配線網。

(3) 無源:表明在光配線網中無須配備電源,因此基本上不用維護,其長期運營成本和管理成本都很低。

(4)光配線網採用波分復用,上行和下行分別使用不同的波長。

(5)光線路終端OLT( Optical Line Terminal)是連接到光纖干線的終端設備。

(6)無源光網路PON下行數據傳輸

(7)無源光網路PON上行數據傳輸

當ONU發送上行數據時,先把電信號轉換為光信號,光分路器把各ONU發來的上行數據匯總後,以TDMA方式發往OLT,而發送時間和長度都由OLT集中控制,以便有序地共享光纖主幹。

(8)從ONU到用戶的個人電腦一般使用乙太網連接,使用5類線作為傳輸媒體。

(9)從總的趨勢來看,光網路單元ONU越來越靠近用戶的家庭,即「光進銅退」。

3、無源光網路PON的種類

(1)乙太網無源光網路EPON(Ethernet PON)

(2)吉比特無源光網路GPON(Gigabit PON)

⑺ 計算機網路(三)數據鏈路層

結點:主機、路由器

鏈路:網路中兩個結點之間的物理通道,鏈路的傳輸介質主要有雙絞線、光纖和微波。分為有線鏈路、無線鏈路。

數據鏈路:網路中兩個結點之間的邏輯通道,把實現控制數據傳輸協議的硬體和軟體加到鏈路上就構成數據鏈路。

幀:鏈路層的協議數據單元,封裝網路層數據報。

數據鏈路層負責通過一條鏈路從一個結點向另一個物理鏈路直接相連的相鄰結點傳送數據報。

數據鏈路層在物理層提供服務的基礎上向網路層提供服務,其最基本的服務是將源自網路層來的數據可靠地傳輸到相鄰節點的目標機網路層。其主要作用是加強物理層傳輸原始比特流的功能,將物理層提供的可能出錯的物理連接改造成為 邏輯上無差錯的數據鏈路 ,使之對網路層表現為一條無差錯的鏈路。

封裝成幀就是在一段數據的前後部分添加首部和尾部,這樣就構成了一個幀。接收端在收到物理層上交的比特流後,就能根據首部和尾部的標記,從收到的比特流中識別幀的開始和結束。首部和尾部包含許多的控制信息,他們的一個重要作用:幀定界(確定幀的界限)。

幀同步:接收方應當能從接收到的二進制比特流中區分出幀的起始和終止。

組幀的四種方法:

透明傳輸是指不管所傳數據是什麼樣的比特組合,都應當能夠在鏈路上傳送。因此,鏈路層就「看不見」有什麼妨礙數據傳輸的東西。

當所傳數據中的比特組合恰巧與某一個控制信息完全一樣時,就必須採取適當的措施,使收方不會將這樣的數據誤認為是某種控制信息。這樣才能保證數據鏈路層的傳輸是透明的。

概括來說,傳輸中的差錯都是由於雜訊引起的。

數據鏈路層編碼和物理層的數據編碼與調制不同。物理層編碼針對的是單個比特,解決傳輸過程中比特的同步等問題,如曼徹斯特編碼。而數據鏈路層的編碼針對的是一組比特,它通過冗餘碼的技術實現一組二進制比特串在傳輸過程是否出現了差錯。

較高的發送速度和較低的接收能力的不匹配,會造成傳輸出錯,因此流量控制也是數據鏈路層的一項重要工作。數據鏈路層的流量控制是點對點的,而傳輸層的流量控制是端到端的。

滑動窗口有以下重要特性:

若採用n個比特對幀編號,那麼發送窗口的尺寸W T 應滿足: 。因為發送窗口尺寸過大,就會使得接收方無法區別新幀和舊幀。

每發送完一個幀就停止發送,等待對方的確認,在收到確認後再發送下一個幀。

除了比特出差錯,底層信道還會出現丟包 [1] 問題

「停止-等待」就是每發送完一個分組就停止發送,等待對方確認,在收到確認後再發送下一個分組。其操作簡單,但信道利用率較低

信道利用率是指發送方在一個發送周期內,有效地發送數據所需要的時間占整個發送周期的比率。即

GBN發送方:

GBN接收方:

因連續發送數據幀而提高了信道利用率,重傳時必須把原來已經正確傳送的數據幀重傳,是傳送效率降低。

設置單個確認,同時加大接收窗口,設置接收緩存,緩存亂序到達的幀。

SR發送方:

SR接收方:

發送窗口最好等於接收窗口。(大了會溢出,小了沒意義),即

傳輸數據使用的兩種鏈路

信道劃分介質訪問控制將使用介質的每個設備與來自同一通信信道上的其他設備的通信隔離開來,把時域和頻域資源合理地分配給網路上的設備。

當傳輸介質的帶寬超過傳輸單個信號所需的帶寬時,人們就通過在一條介質上同時攜帶多個傳輸信號的方法來提高傳輸系統的利用率,這就是所謂的多路復用,也是實現信道劃分介質訪問控制的途徑。多路復用技術把多個信號組合在一條物理信道上進行傳輸,使多個計算機或終端設備共享信道資源,提高了信道的利用率。信道劃分的實質就是通過分時、分頻、分碼等方法把原來的一條廣播信道,邏輯上分為幾條用於兩個結點之間通信的互不幹擾的子信道,實際上就是把廣播信道轉變為點對點信道。

頻分多路復用是一種將多路基帶信號調制到不同頻率載波上,再疊加形成一個復合信號的多路復用技術。在物理信道的可用帶寬超過單個原始信號所需帶寬的情況下,可將該物理信道的總帶寬分割成若千與傳輸單個信號帶寬相同(或略寬)的子信道,每個子信道傳輸一種信號,這就是頻分多路復用。

每個子信道分配的帶寬可不相同,但它們的總和必須不超過信道的總帶寬。在實際應用中,為了防止子信道之間的千擾,相鄰信道之間需要加入「保護頻帶」。頻分多路復用的優點在於充分利用了傳輸介質的帶寬,系統效率較高;由於技術比較成熟,實現也較容易。

時分多路復用是將一條物理信道按時間分成若干時間片,輪流地分配給多個信號使用。每個時間片由復用的一個信號佔用,而不像FDM那樣,同一時間同時發送多路信號。這樣,利用每個信號在時間上的交叉,就可以在一條物理信道上傳輸多個信號。

就某個時刻來看,時分多路復用信道上傳送的僅是某一對設備之間的信號:就某段時間而言,傳送的是按時間分割的多路復用信號。但由於計算機數據的突發性,一個用戶對已經分配到的子信道的利用率一般不高。統計時分多路復用(STDM,又稱非同步時分多路復用)是TDM 的一種改進,它採用STDM幀,STDM幀並不固定分配時隙,面按需動態地分配時隙,當終端有數據要傳送時,才會分配到時間片,因此可以提高線路的利用率。例如,線路傳輸速率為8000b/s,4個用戶的平均速率都為2000b/s,當採用TDM方式時,每個用戶的最高速率為2000b/s.而在STDM方式下,每個用戶的最高速率可達8000b/s.

波分多路復用即光的頻分多路復用,它在一根光纖中傳輸多種不同波長(頻率)的光信號,由於波長(頻率)不同,各路光信號互不幹擾,最後再用波長分解復用器將各路波長分解出來。由於光波處於頻譜的高頻段,有很高的帶寬,因而可以實現多路的波分復用

碼分多路復用是採用不同的編碼來區分各路原始信號的一種復用方式。與FDM和 TDM不同,它既共享信道的頻率,又共享時間。下面舉一個直觀的例子來理解碼分復用。

實際上,更常用的名詞是碼分多址(Code Division Multiple Access.CDMA),1個比特分為多個碼片/晶元( chip),每一個站點被指定一個唯一的m位的晶元序列,發送1時發送晶元序列(通常把o寫成-1) 。發送1時站點發送晶元序列,發送o時發送晶元序列反碼。

純ALOHA協議思想:不監聽信道,不按時間槽發送,隨機重發。想發就發

如果發生沖突,接收方在就會檢測出差錯,然後不予確認,發送方在一定時間內收不到就判斷發生沖突。超時後等一隨機時間再重傳。

時隙ALOHA協議的思想:把時間分成若干個相同的時間片,所有用戶在時間片開始時刻同步接入網路信道,若發生沖突,則必須等到下一個時間片開始時刻再發送。

載波監聽多路訪問協議CSMA(carrier sense multiple access)協議思想:發送幀之前,監聽信道。

堅持指的是對於監聽信道忙之後的堅持。

1-堅持CSMA思想:如果一個主機要發送消息,那麼它先監聽信道。

優點:只要媒體空閑,站點就馬上發送,避免了媒體利用率的損失。

缺點:假如有兩個或兩個以上的站點有數據要發送,沖突就不可避免。

非堅持指的是對於監聽信道忙之後就不繼續監聽。

非堅持CSMA思想:如果一個主機要發送消息,那麼它先監聽信道。

優點:採用隨機的重發延遲時間可以減少沖突發生的可能性。

缺點:可能存在大家都在延遲等待過程中,使得媒體仍可能處於空閑狀態,媒體使用率降低。

p-堅持指的是對於監聽信道空閑的處理。

p-堅持CSMA思想:如果一個主機要發送消息,那麼它先監聽信道。

優點:既能像非堅持演算法那樣減少沖突,又能像1-堅持演算法那樣減少媒體空閑時間的這種方案。

缺點:發生沖突後還是要堅持把數據幀發送完,造成了浪費。

載波監聽多點接入/碰撞檢測CSMA/CD(carrier sense multiple access with collision detection)

CSMA/CD的工作流程:

由圖可知,至多在發送幀後經過時間 就能知道所發送的幀有沒有發生碰撞。因此把乙太網端到端往返時間為 稱為爭周期(也稱沖突窗口或碰撞窗口)。

截斷二進制指數規避演算法:

最小幀長問題:幀的傳輸時延至少要兩倍於信號在匯流排中的傳播時延。

載波監聽多點接入/碰撞避免CSMA/CA(carrier sense multiple access with collision avoidance)其工作原理如下

CSMA/CD與CSMA/CA的異同點:

相同點:CSMA/CD與CSMA/CA機制都從屬於CSMA的思路,其核心是先聽再說。換言之,兩個在接入信道之前都須要進行監聽。當發現信道空閑後,才能進行接入。

不同點:

輪詢協議:主結點輪流「邀請」從屬結點發送數據。

令牌:一個特殊格式的MAC控制幀,不含任何信息。控制信道的使用,確保同一時刻只有一個結點獨占信道。每個結點都可以在一定的時間內(令牌持有時間)獲得發送數據的權利,並不是無限制地持有令牌。應用於令牌環網(物理星型拓撲,邏輯環形拓撲)。採用令牌傳送方式的網路常用於負載較重、通信量較大的網路中。

輪詢訪問MAC協議/輪流協議/輪轉訪問MAC協議:基於多路復用技術劃分資源。

隨機訪問MAC協議: 用戶根據意願隨機發送信息,發送信息時可獨占信道帶寬。 會發生沖突

信道劃分介質訪問控制(MAC Multiple Access Control )協議:既要不產生沖突,又要發送時佔全部帶寬。

區域網(Local Area Network):簡稱LAN,是指在某一區域內由多台計算機互聯成的計算機組,使用廣播信道。其特點有

決定區域網的主要要素為:網路拓撲,傳輸介質與介質訪問控制方法。

區域網的分類

IEEE 802標准所描述的區域網參考模型只對應OSI參考模型的數據鏈路層與物理層,它將數據鏈路層劃分為邏輯鏈路層LLC子層和介質訪問控制MAC子層。

乙太網(Ethernet)指的是由Xerox公司創建並由Xerox、Intel和DEC公司聯合開發的基帶匯流排區域網規范,是當今現有區域網採用的最通用的通信協議標准。乙太網絡使用CSMA/CD(載波監聽多路訪問及沖突檢測)技術。 乙太網只實現無差錯接收,不實現可靠傳輸。

乙太網兩個標准:

乙太網提供無連接、不可靠的服務

10BASE-T是傳送基帶信號的雙絞線乙太網,T表示採用雙絞線,現10BASE-T 採用的是無屏蔽雙絞線(UTP),傳輸速率是10Mb/s。

計算機與外界有區域網的連接是通過通信適配器的。

在區域網中,硬體地址又稱為物理地址,或MAC地址。MAC地址:每個適配器有一個全球唯一的48位二進制地址,前24位代表廠家(由IEEE規定),後24位廠家自己指定。常用6個十六進制數表示,如02-60-8c-e4-b1-21。

最常用的MAC幀是乙太網V2的格式。

IEEE 802.11是無線區域網通用的標准,它是由IEEE所定義的無線網路通信的標准。

廣域網(WAN,Wide Area Network),通常跨接很大的物理范圍,所覆蓋的范圍從幾十公里到幾千公里,它能連接多個城市或國家,或橫跨幾個洲並能提供遠距離通信,形成國際性的遠程網路。

廣域網的通信子網主要使用分組交換技術。廣域網的通信子網可以利用公用分組交換網、衛星通信網和無線分組交換網,它將分布在不同地區的區域網或計算機系統互連起來,達到資源共享的目的。如網際網路(Internet)是世界范圍內最大的廣域網。

點對點協議PPP(Point-to-Point Protocol)是目前使用最廣泛的數據鏈路層協議,用戶使用撥號電話接入網際網路時一般都使用PPP協議。 只支持全雙工鏈路。

PPP協議應滿足的要求

PPP協議的三個組成部分

乙太網交換機

沖突域:在同一個沖突域中的每一個節點都能收到所有被發送的幀。簡單的說就是同一時間內只能有一台設備發送信息的范圍。

廣播域:網路中能接收任一設備發出的廣播幀的所有設備的集合。簡單的說如果站點發出一個廣播信號,所有能接收收到這個信號的設備范圍稱為一個廣播域。

乙太網交換機的兩種交換方式:

直通式交換機:查完目的地址(6B)就立刻轉發。延遲小,可靠性低,無法支持具有不同速率的埠的交換。

存儲轉發式交換機:將幀放入高速緩存,並檢查否正確,正確則轉發,錯誤則丟棄。延遲大,可靠性高,可以支持具有不同速率的埠的交換。

⑻ 計算機網路-物理層-碼分復用技術

碼分復用CDM(Code Division Multiplexing)是另一種共享信道的方法。實際上,人們更常用的名詞是碼分多址CDMA(Code Division Multiple Access) 。每一個用戶可以在同樣的時間使用同樣的頻帶進行通信。由於各用戶使用經過特殊挑選的不同碼型,因此各用戶之間不會造成干擾。碼分復用最初用於軍事通信,因為這種系統發送的信號有很強的抗干擾能力,其頻譜類似於白雜訊,不易被敵人發現。現在已廣泛使用在民用的移動通信中,特別是在無線區域網中。採用CDMA可提高通信的話音質量和數據傳輸的可靠性,減少干擾對通信的影響,增大通信系統的容量(是使用全球移動通信系統GSM的4-5倍),降低手機的平均發射功率,等等。

在CDMA中,每一個比特時間再劃分為m個短的間隔,稱為碼片(chip) 。通常m的值是64或128。在下面的原理性說明中,為了畫圖簡單起見,我們設m為8。

使用CDMA的每一個站林指派一個唯一的mbit碼片序列(chip sequence)。一個站如果要發送比特1,則發送它自己的m bit碼片序列;如果要發送比特0,則發送該碼片序列的二進制反碼。 例如,指派給S站的8bit碼片序列是00011011。當S發送比特1時,它就發送序列00011011,而當S發送比特0時,就發送11100100。為了方便,我們按慣例將碼片中的0寫為-1,將1寫為+1。因此S站的碼片序列是(-1-1-1+1+1-1+1+1)。

「現假定S站要發送信息的數據率為b bit/s。由於每一個比特要轉換成m個比特的碼片,因此S站實際上發送的數據率提高到mb bit/s,同時S站所佔用的頻帶寬度也提高到原來數值的m倍。這種通信方式是 擴頻 (spread spectrum)通信中的一種。擴頻通信通常有兩大類。一種是 直接序列擴DSSS(Direct Sequence Spread Spectrum) ,如上面講的使用碼片序列就是這一類。另一種是 跳頻擴頻FHSS(Frequency Hopping Spread Spectrum) 。」

1) 每一個站分配的碼片序列 必須 各不相同

2) 任意兩站的碼片序列 還必須互相正交(orthogonal) 。 在實用的系統中是使用偽隨機碼序列。

用數學公式可以很清楚地表示碼片序列的這種正交關系。令向量S表示站S的碼片向量,再令T表示其他任何站的碼片向量。兩個不同站的碼片序列正交,就是向量S和T的碼片序列的規格化內積(inner proct)都是0 :

例如,向量S為(-1-1-1+1+1-1+1+1),同時設向量T為(-1-1+1-1+1+1+1-1),這相當於T站的碼片序列為00101110,將向量S和T的各分量值代入 (1) 式就可看出這兩個碼片序列是正交的。

3) 一個站點與各站碼片反碼的向量的內積正交(等於0)。 上例中,向量S和T碼片反碼的向量的內積也是0。

4) 任何一個碼片向量和該碼片向量自己的規格化內積都是1。

5) 一個碼片向量和該碼片反碼的向量的規格化內積值是 -1。

現假定有一個X站要接收S站發送的數據。X站必須知道S站所特有的碼片序列:X站使用它得到的碼片向量S與接收到的未知信號進行求內積的運算。X站接收到的信號是各個站發送的碼片序列之和。根據上面的公式(1)和(2),再根據疊加原理(假定各種信號經過信道到達接收端是疊加的關系),那麼求內積得到的結果是:所有其他站的信號都被過濾掉(其內積的相關項都是0),而只剩下S站發送的信號。當S站發送比特1時,在X站計算內積的結果是+1,當S站發送比特0時,內積的結果是-1。

設S站要發送的數據是1 1 0三個碼元,再設CDMA將每一個瑪元擴展為8個碼片,而S站選擇的碼片序列為(-1-1-1+1+1-1+1+1),S站發送的擴頻信號為Sx。我們應當注意到,S站發送的擴領信號Sx.中,只包含互為反碼(發送比特0,則發送該碼片序列的二進制反碼)的兩種碼片序列。T站選擇的碼片序列為(-1-1+1-1+1+1+1-1),T站也發送1 1 0三個碼元,而T站的擴頻信號為Tx。因所有的站都使用相同的頻率,因此每一個站都能夠收到所有的站發送的擴須信號。對於我們的例子,所有的站收到的都是疊加的信號Sx+Tx。

當接收站打算收 S 站發送的信號時,就用S站的碼片序列與收到的信號求規格化內積。這相當於分別計算S*Sx 和 T*Tx,顯然,S*Sx就是S站發送的數據比特,因為在計算規格化內積時,按(2) (3)式相加的各項,或者都是+1,或者都是-1:而S*Tx,一定是零,因為相加的8項中的+1和-1各佔一半,因此總和一定是零。

已知S,T,R×(接收到的擴頻信號),求S發,T發

頻分復用:不同用戶,相同時間,不同頻率,適用於電磁信號傳輸 。

時分復用:不同用戶,不同時間,相同頻率,適用於電磁信號傳輸,時分復用相比頻分復用則更有利於數字信號的傳輸 。

波分復用:不同用戶,相同時間,不同波長,適用於光波傳輸 。

碼分復用:不同用戶,相同時間,相同頻率,適用於移動通信中,特別是在無線區域網中。

⑼ 計算機網路與通信的分組交換

20世紀60年代,美蘇冷戰期間,美國國防部領導的遠景研究規劃局ARPA提出要研製一種嶄新的網路對付來自前蘇聯的核攻擊威脅。因為當時,傳統的電路交換的電信網雖已經四通八達,但戰爭期間,一旦正在通信的電路有一個交換機或鏈路被炸,則整個通信電路就要中斷,如要立即改用其他迂迴電路,還必須重新撥號建立連接,這將要延誤一些時間。這個新型網路必須滿足一些基本要求:
1:不是為了打電話,而是用於計算機之間的數據傳送。
2:能連接不同類型的計算機。
3:所有的網路節點都同等重要,這就大大提高了網路的生存性。
4:計算機在通信時,必須有迂迴路由。當鏈路或結點被破壞時,迂迴路由能使正在進行的通信自動地找到合適的路由。
5:網路結構要盡可能地簡單,但要非常可靠地傳送數據。
根據這些要求,一批專家設計出了使用分組交換的新型計算機網路。而且,用電路交換來傳送計算機數據,其線路的傳輸速率往往很低。因為計算機數據是突發式地出現在傳輸線路上的,比如,當用戶閱讀終端屏幕上的信息或用鍵盤輸入和編輯一份文件時或計算機正在進行處理而結果尚未返回時,寶貴的通信線路資源就被浪費了。
分組交換是採用存儲轉發技術。把欲發送的報文分成一個個的「分組」,在網路中傳送。分組的首部是重要的控制信息,因此分組交換的特徵是基於標記的。分組交換網由若干個結點交換機和連接這些交換機的鏈路組成。從概念上講,一個結點交換機就是一個小型的計算機,但主機是為用戶進行信息處理的,結點交換機是進行分組交換的。每個結點交換機都有兩組埠,一組是與計算機相連,鏈路的速率較低。一組是與高速鏈路和網路中的其他結點交換機相連。注意,既然結點交換機是計算機,那輸入和輸出埠之間是沒有直接連線的,它的處理過程是:將收到的分組先放入緩存,結點交換機暫存的是短分組,而不是整個長報文,短分組暫存在交換機的存儲器(即內存)中而不是存儲在磁碟中,這就保證了較高的交換速率。再查找轉發表,找出到某個目的地址應從那個埠轉發,然後由交換機構將該分組遞給適當的埠轉發出去。各結點交換機之間也要經常交換路由信息,但這是為了進行路由選擇,當某段鏈路的通信量太大或中斷時,結點交換機中運行的路由選擇協議能自動找到其他路徑轉發分組。通訊線路資源利用率提高:當分組在某鏈路時,其他段的通信鏈路並不被當前通信的雙方所佔用,即使是這段鏈路,只有當分組在此鏈路傳送時才被佔用,在各分組傳送之間的空閑時間,該鏈路仍可為其他主機發送分組。可見採用存儲轉發的分組交換的實質上是採用了在數據通信的過程中動態分配傳輸帶寬的策略。
1.3計算機網路的分類4
計算機網路的分類與的一般的事物分類方法一樣,可以按事物的所具有的不同性質特點即事物的屬性分類。計算機網路通俗地講就是由多台計算機(或其它計算機網路設備)通過傳輸介質和軟體物理(或邏輯)連接在一起組成的。總的來說計算機網路的組成基本上包括:計算機、網路操作系統、傳輸介質(可以是有形的,也可以是無形的,如無線網路的傳輸介質就是空氣)以及相應的應用軟體四部分。
要學習網路,首先就要了解當前的主要網路類型,分清哪些是我們初級學者必須掌握的,哪些是現有的主流網路類型。
1.3.1按地理范圍劃分4
1.3.2按拓撲結構劃分7
1.3.3按資源共享方式劃分9
1.3.4區域網的分類10
1.4計算機網路結構12
1.4.1通信子網與資源子網12
1.4.2主機和終端12
1.4.3現代網路的結構特點12
1.5我國建立的計算機數據通信網簡介13
1.5.1電話網上的數據傳輸13
1.5.2中國公用分組交換網13
1.5.3中國公用數字數據網14
1.6計算機網路的標准15
1.6.1世界重要的標准化組織15
1.6.2網際網路的標准化16
小結16
習題16
第2章數據通信基礎18
2.1數據通信基礎知識18
2.1.1數據通信模型18
2.1.2並行傳輸和串列傳輸18
2.1.3同步傳輸和非同步傳輸19
2.1.4傳輸方式20
2.1.5模擬傳輸和數字傳輸20
2.2數據通信中的基本概念21
2.2.1頻率、頻譜和帶寬21
2.2.2數據傳輸速率24
2.2.3基帶傳輸和寬頻傳輸25
2.3傳輸介質25
2.3.1雙絞線25
雙絞線(Twisted Pair)是由兩條相互絕緣的導線按照一定的規格互相纏繞(一般以逆時針纏繞)在一起而製成的一種通用配線,屬於信息通信網路傳輸介質。雙絞線過去主要是用來傳輸模擬信號的,但現同樣適用於數字信號的傳輸。
雙絞線是綜合布線工程中最常用的一種傳輸介質。
雙絞線是由一對相互絕緣的金屬導線絞合而成。採用這種方式,不僅可以抵禦一部分來自外界的電磁波干擾,而且可以降低自身信號的對外干擾。把兩根絕緣的銅導線按一定密度互相絞在一起,一根導線在傳輸中輻射的電波會被另一根線上發出的電波抵消。「雙絞線」的名字也是由此而來。
雙絞線一般由兩根22-26號絕緣銅導線相互纏繞而成,實際使用時,雙絞線是由多對雙絞線一起包在一個絕緣電纜套管里的。典型的雙絞線有四對的,也有更多對雙絞線放在一個電纜套管里的。這些我們稱之為雙絞線電纜。在雙絞線電纜(也稱雙扭線電纜)內,不同線對具有不同的扭絞長度,一般地說,扭絞長度在3.81cm至14cm內,按逆時針方向扭絞。相鄰線對的扭絞長度在1.27cm以上,一般扭線的越密其抗干擾能力就越強,與其他傳輸介質相比,雙絞線在傳輸距離,信道寬度和數據傳輸速率等方面均受到一定限制,但價格較為低廉。
2.3.2同軸電纜27
同軸電纜從用途上分可分為基帶同軸電纜和寬頻同軸電纜(即網路同軸電纜和視頻同軸電纜)。同軸電纜分50Ω基帶電纜和75Ω寬頻電纜兩類。基帶電纜又分細同軸電纜和粗同軸電纜。基帶電纜僅僅用於數字傳輸,數據率可達10Mbps。
同軸電纜由里到外分為四層:中心銅線(單股的實心線或多股絞合線),塑料絕緣體,網狀導電層和電線外皮。中心銅線和網狀導電層形成電流迴路。因為中心銅線和網狀導電層為同軸關系而得名。
同軸電纜傳導交流電而非直流電,也就是說每秒鍾會有好幾次的電流方向發生逆轉。
如果使用一般電線傳輸高頻率電流,這種電線就會相當於一根向外發射無線電的天線,這種效應損耗了信號的功率,使得接收到的信號強度減小。
同軸電纜的設計正是為了解決這個問題。中心電線發射出來的無線電被網狀導電層所隔離,網狀導電層可以通過接地的方式來控制發射出來的無線電。
同軸電纜也存在一個問題,就是如果電纜某一段發生比較大的擠壓或者扭曲變形,那麼中心電線和網狀導電層之間的距離就不是始終如一的,這會造成內部的無線電波會被反射回信號發送源。這種效應減低了可接收的信號功率。為了克服這個問題,中心電線和網狀導電層之間被加入一層塑料絕緣體來保證它們之間的距離始終如一。這也造成了這種電纜比較僵直而不容易彎曲的特性。
2.3.3光纖27
光纖是光導纖維的簡寫,是一種利用光在玻璃或塑料製成的纖維中的全反射原理而達成的光傳導工具。前香港中文大學校長高錕和George A. Hockham首先提出光纖可以用於通訊傳輸的設想,高錕因此獲得2009年諾貝爾物理學獎。
微細的光纖封裝在塑料護套中,使得它能夠彎曲而不至於斷裂。通常,光纖的一端的發射裝置使用發光二極體(light emitting diode,LED)或一束激光將光脈沖傳送至光纖,光纖的另一端的接收裝置使用光敏元件檢測脈沖。
在日常生活中,由於光在光導纖維的傳導損耗比電在電線傳導的損耗低得多,光纖被用作長距離的信息傳遞。
通常光纖與光纜兩個名詞會被混淆。多數光纖在使用前必須由幾層保護結構包覆,包覆後的纜線即被稱為光纜。光纖外層的保護層和絕緣層可防止周圍環境對光纖的傷害,如水、火、電擊等。光纜分為:光纖,緩沖層及披覆。光纖和同軸電纜相似,只是沒有網狀屏蔽層。中心是光傳播的玻璃芯。
在多模光纖中,芯的直徑是15μm~50μm, 大致與人的頭發的粗細相當。而單模光纖芯的直徑為8μm~10μm。芯外麵包圍著一層折射率比芯低的玻璃封套, 以使光線保持在芯內。再外面的是一層薄的塑料外套,用來保護封套。光纖通常被紮成束,外面有外殼保護。 纖芯通常是由石英玻璃製成的橫截面積很小的雙層同心圓柱體,它質地脆,易斷裂,因此需要外加一保護層。
2.4無線通信與衛星通信技術30
2.4.1電磁波譜30
2.4.2無線電波的傳輸32
2.4.3衛星通信32
2.4.4微波傳輸(地面微波)33
2.4.5紅外線及毫米波(室內通信)33
2.5編碼和調制技術33
2.5.1數字數據編碼為數字信號34
2.5.2數字數據調制為模擬信號36
2.5.3模擬數據轉換為數字信號39
2.5.4模擬數據轉換為模擬信號40
2.6數據交換技術41
2.6.1數據交換技術的類別41
2.6.2數據交換技術的比較45
2.7多路復用技術47
2.7.1頻分多路復用47
2.7.2同步時分多路復用48
2.7.3非同步時分多路復用48
2.7.4密集波分多路復用49
2.7.5碼分多址訪問52
2.8光纖通信54
2.8.1光纖通信的特點54
2.8.2光纖通信中的編碼技術55
2.9移動通信及蜂窩無線通信57
2.9.1模擬蜂窩電話57
2.9.2數字蜂窩無線通信58
2.9.3第三代移動通信60
2.10差錯控制的基礎知識62
2.10.1差錯產生的原因與差錯類型62
2.10.2差錯控制的方法62
小結64
習題64
第3章計算機網路體系結構66
3.1計算機網路體系結構66
3.1.1ISO/OSI參考模型的產生66
3.1.2各層功能概述68
3.1.3層間關系69
3.2TCP/IP的體系結構71
3.2.1TCP/IP與OSI參考模型的比較71
3.2.2TCP/IP的分層結構72
小結73
習題73
第4章物理層協議75
4.1物理層協議的基本概念75
4.1.1物理層的功能75
4.1.2物理層的服務76
4.1.3物理層對數據鏈路層提供的服務76
4.1.4常用的物理層標准77
4.2同步數字序列和同步光纖網79
4.2.1SDH/SONET的產生79
4.2.2SONET/SDH的傳輸速率80
4.2.3SONET數字體系第一級STS-1/OC-1的幀格式81
4.2.4SDH中的信元傳輸81
小結85
習題85
第5章數據鏈路層86
5.1數據鏈路層的功能與協議86
5.2流量控制方法88
5.3差錯控制方法90
5.3.1自動請求重發協議91
5.3.2差錯控制方法——循環冗餘校驗碼92
5.4高級數據鏈路控制協議94
5.4.1面向字元和面向位的鏈路控制協議94
5.4.2HDLC協議的基本概念95
5.4.3HDLC協議的幀格式96
5.4.4HDLC協議的主要內容97
5.5網際網路中的點對點協議99
5.5.1PPP的工作原理100
5.5.2PPP的應用102
小結103
習題103
第6章介質訪問控制子層和區域網105
6.1區域網參考模型105
6.2邏輯鏈路控制子層協議106
6.3介質訪問控制子層協議107
6.4CSMA/CD介質訪問控制方法108
6.4.1CSMA/CD協議的工作原理108
6.4.2MAC子層的幀格式112
6.5區域網協議標准114
6.5.1IEEE 802協議標准114
6.5.2IEEE 802.3乙太網標准115
6.6虛擬區域網122
6.6.1VLAN的作用123
6.6.2VLAN的連接和劃分124
6.6.3VLAN的標准802.1Q和802.1P126
6.6.4VLAN之間的通信127
6.7無線區域網129
6.7.1無線區域網的優點130
6.7.2無線區域網的組成結構130
6.7.3CSMA/CA協議的工作原理133
小結134
習題134
第7章網路層協議138
7.1網路層提供的服務138
7.1.1網路層為傳輸層提供的服務138
7.1.2網路層的兩種傳輸方式139
7.2網路層路由演算法139
7.2.1路由演算法的要求和分類139
7.2.2最短路徑演算法140
7.2.3擴散法141
7.2.4距離向量路由演算法142
7.2.5鏈路狀態路由演算法143
7.3擁塞控制145
7.3.1擁塞控制的一般概念145
7.3.2擁塞控制的方法和演算法147
7.4網際網路中的網際協議149
7.4.1IP數據報的格式149
7.4.2IP地址151
7.4.3劃分子網和子網掩碼153
7.4.4專用地址與網際網路地址轉換NAT技術157
7.5地址解析159
7.5.1IP地址與物理地址的映射159
7.5.2地址解析協議161
7.5.3反向地址解析協議163
7.6無分類域間路由選擇163
7.7網際網路控制報文協議165
7.7.1差錯報告報文166
7.7.2ICMP的查詢報文168
7.8IPv6和ICMPv6169
7.8.1IPv6概述169
7.8.2IPv6基本報頭格式171
7.8.3IPv6的地址結構172
7.8.4IPv6的擴展報頭174
7.8.5IPv4向IPv6的過渡簡介177
7.8.6ICMPv6177
7.9網際網路的路由選擇協議180
7.9.1內部網關路由協議180
7.9.2開放式最短路徑優先協議186
7.9.3單區域中OSPF的工作原理189
7.9.4多區域中OSPF的工作原理195
7.9.5邊界網關協議197
7.10虛擬專用網201
7.10.1VPN的基本概念201
7.10.2VPN連接和路由202
7.10.3VPN中的隧道技術204
7.11IP多播和IGMP206
7.11.1IP多播的用途207
7.11.2IGMP207
7.11.3多播地址208
7.11.4分布路由和多播路由協議210
小結211
習題211
第8章傳輸層協議214
8.1傳輸控制協議的基本功能214
8.1.1傳輸層的功能和服務214
8.1.2傳輸層的幾個重要概念215
8.2傳輸控制協議217
8.2.1TCP報文段的報頭217
8.2.2TCP的特性220
8.2.3TCP的流量控制222
8.2.4TCP的差錯控制223
8.2.5TCP的擁塞控制224
8.3用戶數據報協議225
8.3.1UDP概述225
8.3.2UDP通信過程和埠號226
8.3.3UDP用戶數據報的報頭格式227
8.3.4UDP的通信過程228
8.4服務質量保證230
8.4.1QoS的技術要求230
8.4.2QoS保證的相關技術231
8.4.3綜合服務和區分服務235
8.4.4多協議標簽交換協議238
小結242
習題242
第9章應用層協議245
9.1域名系統245
9.2TCP/IP應用層協議247
9.2.1文件傳輸協議247
9.2.2電子郵件248
9.2.3萬維網249
9.2.4遠程終端協議251
9.2.5信息檢索252
9.2.6簡單網路管理協議252
9.3博客和播客253
9.3.1新聞與公告服務253
9.3.2博客服務和播客服務254
9.4即時通信服務與網路電視服務256
9.4.1即時通信軟體256
9.4.2網路電視服務256
9.5對等連接軟體259
9.5.1P2P概述259
9.5.2P2P網路模型259
9.5.3P2P文件共享程序261
9.5.4P2P網路模型存在的問題和展望262
9.6動態主機配置協議262
9.6.1DHCP的用途262
9.6.2DHCP的工作流程263
小結264
習題264
第10章網路安全技術266
10.1網路安全概述266
10.1.1網路安全的概念266
10.1.2網路安全的分層理論267
10.1.3網路安全策略269
10.2信息加密技術270
10.2.1密碼技術基礎270
10.2.2加密演算法271
10.2.3數字簽名274
10.3報文鑒別275
10.4防火牆技術276
10.5入侵檢測278
10.5.1入侵檢測的概念278
10.5.2入侵檢測系統模型278
10.5.3入侵檢測原理279
10.6網路安全協議280
10.6.1網路層安全協議簇280
10.6.2安全套接字層282
10.6.3電子郵件安全283
小結285
習題285
第11章聯網設備287
11.1網路介面卡287
11.1.1網卡的分類287
11.1.2網卡的工作原理290
11.2數據機292
11.2.1Modem的基本工作原理292
11.2.2電纜電視Modem293
11.2.3ADSL技術294
11.3中繼器和集線器296
11.4網橋296
11.4.1網橋的功能296
11.4.2網橋的路徑演算法298
11.5交換機301
11.5.1交換機的功能和應用301
11.5.2交換機的工作原理303
11.5.3交換機的工作方式305
11.5.4交換機的模塊結構305
11.6路由器309
11.6.1路由器的工作原理309
11.6.2路由器的結構310
11.6.3路由器的功能311
11.6.4網關312
11.7三層交換機313
11.7.1三層交換機的產生313
11.7.2Switch Node的總體結構314
小結314
習題315
第12章網路實驗316
12.1網路實驗室介紹316
12.1.1網路實驗室拓撲結構316
12.1.2RACK實驗櫃的組成結構317
12.1.3配線架插座的說明317
12.1.4實驗室的布局318
12.1.5訪問控制伺服器簡介319
12.1.6基於Web的RCMS訪問管理319
12.2雙絞線製作實驗320
12.2.1雙絞線網線的製作標准320
12.2.2雙絞線網線製作實驗321
12.3交換機基礎配置實驗323
12.3.1交換機配置的基礎知識323
12.3.2交換機的基礎配置實驗329
12.3.3VLAN實現交換機埠隔離實驗332
12.3.4生成樹協議的應用實驗334
12.4路由器基礎配置實驗338
12.4.1路由器配置的基本知識339
12.4.2路由器的基本配置實驗342
12.4.3路由器的靜態路由配置實驗347
12.4.4路由器的動態路由——RIP配置實驗350
12.4.5配置PPP的PAP認證實驗354
習題358
參考文獻360

⑽ 請計算機網路的高手做一下下面的名詞解釋各是什麼意思,謝謝

ARP (Address Resolution Protocol)地址解析協議
ARQ (auto repeat request)自動重傳請求
CSMA/CD (Carrier Sense Multiple Access/Collision Derect)載波監聽多路訪問/沖突檢測
CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance)載波監聽多路訪問/沖突防止
CTS 不知道
FTP (File Transfer Protocal)文件傳輸協議
HDSL(High-data-rate Digital Subscriber Line)高速率數字用戶線路
ADSL(Asymmetric Digital Subscriber Line)非對稱數字用戶線
HTTP(HyperTextTransferProtocol)超文本傳輸協議
LAN (Local Area Network)區域網
MAC (Media Access Control)媒體訪問控制
PING (Packet Internet Grope) 網際網路探索數據包
QOS (Quality of Service) 服務質量
RTS 即時戰略類游戲??
TCP (Transmission Control Protocol)傳輸控制協議
UDD 沒聽過,是不是UDP?(User Datagram Protocol)用戶數據報協議
WAN (Wide Area Network) 廣域網
WWW (World Wide Web )萬維網
ATM (Asynchronous Transfer Mode)非同步傳輸模式
DNS (Domain Name Server)域名伺服器
RARP (Reverse Address Resolution Protocol)反向地址轉換協議
IP (Internet Protocol)Internet協議
CDMA (Code Division Multiple Access)碼分多址