當前位置:首頁 » 網路連接 » 計算機網路的第一階段的操作系統是
擴展閱讀
簡單網路跨接路由器設置 2024-05-04 02:42:32
蘋果手機維持不了4g網路 2024-05-04 02:13:32

計算機網路的第一階段的操作系統是

發布時間: 2024-04-22 13:49:06

① 計算機的網路發展經歷了哪幾個階段

現代計算機就是從古老的計算工具一步步發展過來的,中間經歷過的難易程度已經很少找到相關記載,但是可以想像如今計算機的智能化大概就能猜測出當時的一步步艱辛!

到第一台真正意義上的電子計算機出現的時候已經到了20世紀中期。

1946年,馮 · 諾依曼提出計算機的基本原理:存儲程序和程序控制。

1. 由二進制代替十進制思想

2. 採用存儲程序思想

3. 從邏輯分為CPU(運算器,控制器),存儲器,輸入設備,輸出設備

同年第一台計算機ENIAC (埃尼阿克(Electronic Numerical Integrator And Calculator)) 在美國賓夕法尼亞大學現世並正式投入運行,參與研製工作的是賓夕法尼亞大學莫爾電機工程學院的莫克萊和埃克特為首的研製小組。

馮諾依曼並沒有參加 ENIAC 的研製,而是在了解到 ENIAC 項目後,在其基礎上帶領 ENIAC 的原班人馬研製了 EDVAC,重新設計了整個架構,從而奠定了當今所有計算機的結構,從而開始採用二進制進行運算。

ENIAC重30噸,使用了約18800個真空電子管,功率達174千瓦,佔地約140平方米,使用十進制運算,每秒能運算5000次加法,但是它不像現在這樣的電腦有輸入控制設備,只能通過人工來扳動龐大面板上的各種開關來進行數據信息輸入,雖然現在看來它真的很落後,但是在當時它代表著人類計算技術的最高成就,它奠定了電子計算機的發展基礎,開辟了信息時代。

第一台計算機操作圖片:

後來的日子裡面,根據計算機電子器件分為了四個階段

1946~1957年 電子管 外存:磁鼓,磁帶 機器語言、匯編語言
1958~1964年 晶體管 內存:磁芯體 出現程序員
1965~1972年 半導體,小規模集成電路 半導體存儲器
1972年至今 超大規模集成電路

整個計算機起始與發展的歷程,是十分的曲折的,發展到如今還在感嘆它鬼斧天工的藝術性。

② 簡述計算機網路的四個發展史

追溯計算機網路的發展歷史,它的演變可概括地分成四個階段:

(1)網路雛形階段。從20世紀50年代中期開始,以單個計算機為中心的遠程聯機系統,構成面向終端的計算機網路,稱為第一代計算機網路。

(2)網路初級階段。從20世紀60年代中期開始進行主機互聯,多個獨立的主計算機通過線路互聯構成計算機網路,無網路操作系統,只是通信網。60年代後期,ARPANET網出現,稱為第二代計算機網路。

(3)20世紀70年代至80年代中期,乙太網產生,ISO制定了網路互連標准OSI,世界上具有統一的網路體系結構,遵循國際標准化協議的計算機網路迅猛發展,這階段的計算機網路稱為第三代計算機網路。

(4)從20世紀90年代中期開始,計算機網路向綜合化高速化發展,同時出現了多媒體智能化網路,發展到現在,已經是第四代了。區域網技術發展成熟。第四代計算機網路就是以千兆位傳輸速率為主的多媒體智能化網路。

拓展資料:

計算機網路,是指將地理位置不同的具有獨立功能的多台計算機及其外部設備,通過通信線路連接起來,在網路操作系統,網路管理軟體及網路通信協議的管理和協調下,實現資源共享和 信息傳遞的計算機系統。

計算機網路也稱計算機通信網。關於計算機網路的最簡單定義是:一些相互連接的、以共享資源為目的的、自治的計算機的集合。若按此定義,則早期的面向終端的網路都不能算是計算機網路,而只能稱為聯機系統(因為那時的許多終端不能算是自治的計算機)。但隨著硬體價格的下降,許多終端都具有一定的智能,因而「終端」和「自治的計算機」逐漸失去了嚴格的界限。若用微型計算機作為終端使用,按上述定義,則早期的那種面向終端的網路也可稱為計算機網路。

另外,從邏輯功能上看,計算機網路是以傳輸信息為基礎目的,用通信線路將多個計算機連接起來的計算機系統的集合,一個計算機網路組成包括傳輸介質和通信設備。

從用戶角度看,計算機網路是這樣定義的:存在著一個能為用戶自動管理的網路操作系統。由它調用完成用戶所調用的資源,而整個網路像一個大的計算機系統一樣,對用戶是透明的。

一個比較通用的定義是:利用通信線路將地理上分散的、具有獨立功能的計算機系統和通信設備按不同的形式連接起來,以功能完善的網路軟體及協議實現資源共享和信息傳遞的系統。

從整體上來說計算機網路就是把分布在不同地理區域的計算機與專門的外部設備用通信線路互聯成一個規模大、功能強的系統,從而使眾多的計算機可以方便地互相傳遞信息,共享硬體、軟體、數據信息等資源。簡單來說,計算機網路就是由通信線路互相連接的許多自主工作的計算機構成的集合體。

最簡單的計算機網路就只有兩台計算機和連接它們的一條鏈路,即兩個節點和一條鏈路。

③ 計算機網路概述

在前面我們已經學會了用Word編輯文章,用Excel進行統計和計算,逐步感受到了用計算機處理信息的強大能力。現在假設你在家裡的計算機上已編排好了你的漂亮而有個性的自薦書,怎樣才能把這個文件復制到你的同事或同學的計算機中呢?傳統的方法是將文件復制到磁碟(或U盤),再把磁碟(或U盤)帶到你的同學那兒,把文件從磁碟(或U盤)再復制到另一台計算機上。但是,如果你的同學和你遠隔千里,或者需要將你的文件復制給成百上千個同學,又該怎麼辦呢?通過郵寄!耗時、費力、花金錢。

計算機網路技術能夠很好地解決計算機信息傳輸與共享。

那麼,到底什麼是計算機網路,它的發展過程怎樣,怎樣分類,計算機網路的功能有哪些

一、什麼是計算機網路

計算機網路是將計算機與通信這兩大現代技術相結合的產物。所謂計算機網路,就是把分布在不同地點的具有獨立功能的多台計算機系統,通過通信設備和線路連接起來,再配有相應的支撐軟體,以實現計算機間的相互通信、資源共享的系統。

隨著計算機網路的發展,對「計算機網路」這個概念的定義和理解,也是在不斷變化和完善。

二、計算機網路的發展

計算機網路的發展過程大致分為以下四個階段:

1.第一代計算機網路

第一代計算機網路是面向終端的計算機網路。20世紀50年代中後期,許多系統都將地理上分散的多個終端(一種只有鍵盤和顯示器,沒有存儲和數據處理能力的設備)通過通信線路連接到一台中心計算機上,這就是計算機網路的雛形,早期的計算機——終端系統,也稱聯機系統,也就是第一代計算機網路。其典型應用是由一台計算機和全美2000多個終端組成的飛機訂票系統、美國半自動地面防空系統(SAGE)。在這種方式中,主機是網路的中心和控制者,終端分布在各處並與主機相連,用於通過本地的終端使用遠程的主機。

2.第二代計算機網路

第二代計算機網路是計算機通信網路。面向終端的計算機網路只能在終端和主機之間進行通信,子網之間無法通信。因此,20世紀60年代中期開始,出現了多個主機互聯的系統,可實現計算機—計算機的通信,它由通信子網和用戶資源子網(第一代網路)構成,用戶通過終端不僅可以共享本機上的軟硬體資源,還可共享通信子網中其他主機上的軟硬體資源。但是,由於沒有成熟的網路操作系統軟體來管理網上的資源,它只能稱為網路的初級階段,因此,稱其為計算機通信網。

第二代計算機網路以通信子網為中心。典型的代表是美國國防部高級研究計劃局協助開發的ARPAnet。

3.第三代計算機網路

第三代計算機網路是Internet。這是網路互聯階段,具有統一的網路體系結構並遵循國際標準的開放化和標准化。

20世紀70年代後期,區域網誕生,由於投資少,方便靈活而得到廣泛應用和迅速發展,例如,乙太網。各大公司都開發有相應於自己的系統網路體系結構。為了使不同網路體系結構的網路能相互交換信息,國際標准化組織 ISO(International Standards Organization)於1977年成立專門機構,提出了開放系統互連參考模型 OSI/RM(Open system interconnection/reference model),簡稱OSI,標志著第三代計算機網路的誕生。

4.第四代計算機網路

第四代計算機網路是千兆位網路。千兆位網路也叫寬頻綜合業務數字網,也就是人們常說的「信息高速公路」。

計算機網路發展的基本方向:開放、集成、高性能(高速)、智能化。

開放是指開放的體系結構,開放的介面標准,使各種異構系統便於互聯和具有高度的互操作性,歸根結底是標准化問題。

集成表現在各種服務和多種媒體應用的高度集成。

高性能表現在網路應當提供高速的傳輸,高效的協議處理和高品質的網路服務。

智能化表現在網路的傳輸和處理上能向用戶提供更為方便、友好的應用介面;在路由選擇、擁塞控制和網路管理等方面顯示出更強的主動性。

三、計算機網路的分類

對計算機網路進行分類的標准很多,按信息傳輸技術可分為廣播式和點到點網路,按傳輸介質可分為有線網和無線網等,這些標准都只能給出網路某一方面的特徵,我們採用一種能反映網路技術本質的分類標准,即按計算機網路的通信距離來分類。

按照通信距離,計算機網路通常分為:區域網(Local area network)、城域網(Metropolitan area network)、廣域網(Wide area network)、互聯網(Internetwork)。它們所具有的特徵參數如表6-1。

表6-1 計算機網路特徵參數表

1.區域網

區域網是指連接近距離的計算機組成的網路。規模相對較小,區域網的分布范圍一般在幾千米以內,最大距離不超過10千米。這種網路是小型機、微型機大量推廣後發展起來的,具有組網成本低,配置容易,速率高,組網方便、靈活、應用廣等特點。常見於一個房間、一幢大樓、一個學校、一個工廠或一個企業內。

目前,許多學校都建了區域網,如聯網的微機教室等。

2.廣域網

廣域網也稱遠程網,是相對於區域網而言的,它涉及范圍較大,通常可以達幾十千米,甚至上百千米。它把分布在若干城市、地區甚至國家中的計算機連接在一起而組成網路。因為傳輸距離較遠,所以傳輸速率低於區域網,誤碼率高於區域網。在廣域網中為了保證網路的可靠性,採用比較復雜的控制機制。

許多全國性的計算機網路就屬於這種網路,例如,中國的CHINANET網等。

3.城域網

城域網是介於區域網和廣域網之間的一種較大范圍內的高速網路。隨著區域網功效的日益顯現,人們逐漸要求擴大區域網的范圍,或者將各個區域網連接起來,以便在更大范圍內進行信息傳輸和共享。城域網正好能滿足這種需求,其覆蓋范圍一般是在一個城市內。

目前,我國的各大城市都建有城域網。

4.互聯網

互聯網技術其實並不是一種具體的物理網路技術,而是將跨地區和國家的若干網路按照某種協議統一起來,實現WAN和WAN、WAN和LAN、LAN和LAN之間互聯的技術。

目前,世界上發展最快、也是最熱門的互聯網就是Internet網,即網際網路。關於網際網路的具體內容將在本章第三節介紹。

四、計算機網路的功能

1.資源共享

充分利用計算機系統軟硬體資源是計算機網路最主要的功能。網路的用戶可以共享分布在任何地理位置的資源,包括軟體、硬體(如硬碟、列印機等)、尤其是數據,這種資源共享功能方便了用戶,節約了投資。

2.遠程通信

計算機與計算機、計算機與終端之間快速可靠地相互傳送信息,這是計算機網路最基本的功能。通過網路,兩個或多個相隔千里之遙的人可以一起寫報告、編教材,你可以直接和感興趣的作者交換意見,或者商討合作事宜,遠隔千里,卻「不再遙遠」。當某人修改了聯機文檔的某處時,其他人員可以立即看到變更,而不必花幾天的時間等待信件。利用這種方式大大提高了效率、節約了費用(這種通信手段比電話、信件便宜得多)。

有著「第四媒體」之稱的Internet網路打破了時間和空間的限制,使信息傳播速度很快,幾乎達到頃刻就能傳遍全球的地步。網路通信具有傳播的實時性、交互性,內容豐富性,聲音、圖像、多媒體並舉等優勢。春節聯歡晚會、奧運會等大型事件的現場直播都採用了互聯網作為直接的傳播渠道,充分展示了網路超強的通信能力。

3.集中管理和分布管理

由於計算機網路具有資源共享能力,使得在一台或多台伺服器上管理其他計算機上的資源成為可能,這一功能在某些部門顯得尤為重要,例如銀行系統通過計算機網路,可以將分布於各地的計算機上的財務信息傳到伺服器上實現集中管理。

在計算機網路中,把一項復雜的任務(或一個比較大的問題)劃分成若干個子任務(或子問題),由網路上各計算機分別承擔一部分任務,同時運作,共同完成,從而使整個系統的效率和功能加強。

例如,從1988年開始實施的「人類基因組計劃」是由美國倡導,在世界范圍內進行的,整個研究過程依託了高性能超大容量的網路伺服器和網路,對龐大的基因資料庫進行分布式管理,利用稱之為「網路計算」(網路把分布在各地的計算機連接起來,用戶分享網上資源,感覺如同個人使用一台超級計算機一樣)的方式來解決破解基因代碼中數據量極大的科學工程計算。

④ 早期的計算機網路是由什麼組成系統

早期的計算機網路是由計算機——通信路線——終端組成系統。

第一代計算機網路---遠程終端聯機階段。

第二代計算機網路---計算機網路階段。

第三代計算機網路---計算機網路互聯階段。

第四代計算機網路---國際互聯網與信息高速公路階段。

(4)計算機網路的第一階段的操作系統是擴展閱讀:

三個階段的演進:

1、從單個網路ARPAnet向互聯網發展:1969年美國國防部創建了第一個分組交換網ARPAnet只是一個單個的分組交換網,所有想連接在它上的主機都直接與就近的結點交換機相連,它規模增長很快,到70年代中期,人們認識到僅使用一個單獨的網路無法滿足所有的通信問題。

於是ARPA開始研究很多網路互聯的技術,這就導致後來的互聯網的出現。1983年TCP/IP協議稱為ARPAnet的標准協議。同年,ARPAnet分解成兩個網路,一個進行試驗研究用的科研網ARPAnet,另一個是軍用的計算機網路MILnet。1990,ARPAnet因試驗任務完成正式宣布關閉。

2、建立三級結構的網際網路:1985年起,美國國家科學基金會NSF就認識到計算機網路對科學研究的重要性,1986年,NSF圍繞六個大型計算機中心建設計算機網路NSFnet,它是個三級網路,分主幹網、地區網、校園網。它代替ARPAnet成為internet的主要部分。

1991年,NSF和美國政府認識到網際網路不會限於大學和研究機構,於是支持地方網路接入,許多公司的紛紛加入,使網路的信息量急劇增加,美國政府就決定將網際網路的主幹網轉交給私人公司經營,並開始對接入網際網路的單位收費。

3、多級結構網際網路的形成:1993年開始,美國政府資助的NSFnet就逐漸被若干個商用的網際網路主幹網替代。

這種主幹網也叫網際網路服務提供者ISP,考慮到網際網路商用化後可能出現很多的ISP,為了使不同ISP經營的網路能夠互通,在1994創建了4個網路接入點NAP分別由4個電信公司經營,本世紀初,美國的NAP達到了十幾個。

NAP是最高級的接入點,它主要是向不同的ISP提供交換設備,使它們相互通信。網際網路已經很難對其網路結構給出很精細的描述,但大致可分為五個接入級:網路接入點NAP,多個公司經營的國家主幹網,地區ISP,本地ISP,校園網、企業或家庭PC機上網用戶。

⑤ 計算機網路分為幾個階段,代表產物是什麼

1、以單計算機為中心的聯機系統;

2、計算機-計算機網路;

3、體系結構標准化網路;

4、Internet時代。

計算機網路從產生到發展,總體來說可以分成4個階段。

第1階段:20世紀60年代末到20世紀70年代初為計算機網路發展的萌芽階段。其主要特徵是:為了增加系統的計算能力和資源共享,把小型計算機連成實驗性的網路。第一個遠程分組交換網叫ARPANET,是由美國國防部於1969年建成的。

第一次實現了由通信網路和資源網路復合構成計算機網路系統。標志計算機網路的真正產生ARPANET是這一階段的典型代表.。

第2階段:20世紀70年代中後期是區域網絡(LAN)發展的重要階段,其主要特徵為:區域網絡作為一種新型的計算機體系結構開始進入產業部門。區域網技術是從遠程分組交換通信網路和I/O匯流排結構計算機系統派生出來的。

1976年,美國Xerox公司的Palo Alto研究中心推出乙太網(Ethernet),它成功地採用了夏威夷大學ALOHA無線電網路系統的基本原理,使之發展成為第一個匯流排競爭式區域網絡。1974年,英國劍橋大學計算機研究所開發了著名的劍橋環區域網(Cambridge Ring)。

這些網路的成功實現,一方面標志著區域網絡的產生,另一方面,它們形成的乙太網及環網對以後區域網絡的發展起到導航的作用。

第3階段:整個20世紀80年代是計算機區域網絡的發展時期。其主要特徵是:區域網絡完全從硬體上實現了ISO的開放系統互連通信模式協議的能力。計算機區域網及其互連產品的集成,使得區域網與局域互連、區域網與各類主機互連,以及區域網與廣域網互連的技術越來越成熟。

綜合業務數據通信網路(ISDN)和智能化網路(IN)的發展,標志著區域網絡的飛速發展。1980年2月,IEEE (美國電氣和電子工程師學會)下屬的802區域網絡標准委員會宣告成立,並相繼提出IEEE801.5~802.6等區域網絡標准草案,其中的絕大部分內容已被國際標准化組織(ISO)正式認可。

作為區域網絡的國際標准,它標志著區域網協議及其標准化的確定,為區域網的進一步發展奠定了基礎.。

第4階段:20世紀90年代初至現在是計算機網路飛速發展的階段,其主要特徵是:計算機網路化,協同計算能力發展以及全球互連網路(Internet)的盛行。計算機的發展已經完全與網路融為一體,體現了「網路就是計算機」的口號。

目前,計算機網路已經真正進入社會各行各業,為社會各行各業所採用。另外,虛擬網路FDDI及ATM技術的應用,使網路技術蓬勃發展並迅速走向市場,走進平民百姓的生活。

(5)計算機網路的第一階段的操作系統是擴展閱讀:

計算機網路的體系結構:

要想讓兩台計算機進行通信,必須使它們採用相同的信息交換規則。我們把在計算機網路中用於規定信息的格式以及如何發送和接收信息的一套規則稱為網路協議或通信協議。

為了減少網路協議設計的復雜性,網路設計者並不是設計一個單一、巨大的協議來為所有形式的通信規定完整的細節,而是採用把通信問題劃分為許多個小問題,然後為每個小問題設計一個單獨的協議的方法。

這樣做使得每個協議的設計、分析、編碼和測試都比較容易。分層模型(是一種用於開發網路協議的設計方法。本質上,分層模型描述了把通信問題分為幾個小問題(稱為層次)的方法,每個小問題對應於一層。

在計算機網路中要做到有條不紊地交換數據,就必須遵守一些事先約定好的規則。這些規則明確規定了所交換的數據格式以及有關的同步問題。

這里所說的同步不是狹義的(即同頻或同頻同相)而是廣義的,即在一定的條件下應當發生什麼事件(如發送一個應答信息),因而同步含有時序的意思。這些為進行網路中的數據交換而建立的規則、標准或約定稱為網路協議,網路協議也可簡稱為協議。網路協議主要由以下三個要素組成。

① 語法,即數據與控制信息的結構或格式。

② 語義,即需要發出何種控制信息,完成何種動作以及做出何種響應。

③ 同步,即事件實現順序的詳細說明。

網路協議是計算機網路的不可缺少的組成部分。

協議通常有兩種不同的形式。一種是使用便於人來閱讀和理解的文字描述,另一種是使用計算機能夠理解的程序代碼。

對於非常復雜的計算機網路協議,其結構應該是層次式的。分層可以帶來許多好處。

① 各層之間是獨立的。某一層並不需要知道它的下一層是如何實現的,而僅僅需要知道該層通過層間的介面(即界面)所提供的服務。由於每一層只實現一種相對獨立的功能,因而可將一個難以處理的復雜問題分解為若干個較容易處理的更小一些的問題。這樣,整個問題的復雜程度就下降了。

② 靈活性好。當任何一層發生變化時(例如由於技術的變化),只要層間介面關系保持不變,則在這層以上或以下各層均不受影響。此外,對某一層提供的服務還可進行修改。當某層提供的服務不再需要時,甚至可以將這層取消。

③ 結構上可分割開。各層都可以採用最合適的技術來實現。

④ 易於實現和維護。這種結構使得實現和調試一個龐大而又復雜的系統變得易於處理,因為整個的系統已被分解為若干個相對獨立的子系統。

⑤ 能促進標准化工作。因為每一層的功能及其所提供的服務都已有了精確的說明。

分層時應注意使每一層的功能非常明確。若層數太少,就會使每一層的協議太復雜。但層數太多又會在描述和綜合各層功能的系統工程任務時遇到較多的困難。

我們把計算機網路的各層及其協議的集合,稱為網路的體系結構。換種說法,計算機網路的體系結構就是這個計算機網路及其構件所應完成的功能的精確定義。需要強調的是:這些功能究竟是用何種硬體或軟體完成的,則是一個遵循這種體系結構的實現的問題。

體系結構的英文名詞architecture的原意是建築學或建築的設計和風格。但是它和一個具體的建築物的概念很不相同。我們也不能把一個具體的計算機網路說成是一個抽象的網路體系結構。總之,體系結構是抽象的,而實現則是具體的,是真正在運行的計算機硬體和軟體。

參考資料來源:網路-計算機網路