當前位置:首頁 » 網路連接 » 計算機網路的精髓是什麼
擴展閱讀
怎樣設置網路引導 2025-07-18 12:12:42
如何做網站和百度百科 2025-07-18 11:54:22

計算機網路的精髓是什麼

發布時間: 2025-07-18 09:32:20

A. 計算機網路——TCP/UDP協議

計算機網路七層模型中,傳輸層有兩個重要的協議:
(1)用戶數據報協議UDP (User Datagram Protocol)
(2)傳輸控制協議TCP (Transmission Control Protocol)

UDP 在傳送數據之前不需要先建立連接。遠地主機的運輸層在收到UDP 報文後,不需要給出任何確認。雖然UDP 不提供可靠交付,但在某些情況下UDP 卻是一種最有效的工作方式。

TCP 則提供面向連接的服務。在傳送數據之前必須先建立連接,數據傳送結束後要釋放連接。TCP 不提供廣播或多播服務。由於TCP 要提供可靠的、面向連接的運輸服務,因此不可避免地增加了許多的開銷,如確認、流量控制、計時器以及連接管理等。

UDP 的主要特點是:

首部手段很簡單,只有8 個位元組,由四個欄位組成,每個欄位的長度都是兩個位元組。

前面已經講過,每條TCP 連接有兩個端點,TCP 連接的端點叫做套接字(socket)或插口。套接字格式如下:

套接寧socket= (IP 地址:埠號』)

每一條TCP 連接唯一地被通信兩端的兩個端點(即兩個套接宇)所確定。即:
TCP 連接= {socket1, socket2} = {(IP1: port1), (IP2: port2)}

3次握手鏈接

4次握手釋放鏈接

斷開連接請求可以由客戶端發出,也可以由伺服器端發出,在這里我們稱A端向B端請求斷開連接。

各個狀態節點解釋如下:

下面為了討論問題的萬便,我們僅考慮A發送數據而B 接收數據並發送確認。因此A 叫做發送方,而B 叫做接收方。

「停止等待」就是每發送完一個分組就停止發送,等待對方的確認。在收到確認後再發送下一個分組。

使用上述的確認和重傳機制,我們就可以在不可靠的傳輸網路上實現可靠的通信。像上述的這種可靠傳輸協議常稱為自動重傳請求ARQ (Automatic Repeat reQuest)。意思是重傳的請求是自動進行的。接收方不需要請求發送方重傳某個出錯的分組。

滑動窗口協議比較復雜,是TCP 協議的精髓所在。這里先給出連續ARQ 協議最基本的概念,但不涉提到許多細節問題。詳細的滑動窗口協議將在後面討論。

下圖表示發送方維持的發送窗口,它的意義是:位於發送窗口內的5 個分組都可連續發送出去,而不需要等待對方的確認。這樣,信道利用率就提高了。

連續ARQ 協議規定,發送方每收到一個確認,就把發送窗口向前滑動一個分組的位置。

接收方一般都是採用 累積確認 的方式。這就是說,接收方不必對收到的分組逐個發送確認,而是可以在收到幾個分組後,對按序到達的最後一個分組發送確認,這樣就表示:到這個分組為止的所有分組都己正確收到了。

累積確認 的優點是容易實現,即使確認丟失也不必重傳。但缺點是不能向發送方反映出接收方己經正確收到的所有分組的信息。

例如,如果發送方發送了前5 個分組,而中間的第3 個分組丟失了。這時接收方只能對前兩個分組發出確認。發送方無法知道後面三個分組的下落,而只好把後面的三個分組都再重傳一次。這就叫做Go-back-N (回退N ),表示需要再退回來重傳己發送過的N 個分組。可見當通信線路質量不好時,連續ARQ 協議會帶來負面的影響。

TCP 的滑動窗口是以位元組為單位的。現假定A 收到了B 發來的確認報文段,其中窗口是20 (位元組),而確認號是31 (這表明B 期望收到的下一個序號是31 ,而序號30 為止的數據己經收到了)。根據這兩個數據, A 就構造出自己的發送窗口,其位置如圖所示。

發送窗口表示:在沒有收到B 的確認的情況下, A可以連續把窗口內的數據都發送出去。凡是己經發送過的數據,在未收到確認之前都必須暫時保留,以便在超時重傳時使用。

發送窗口後沿的後面部分表示己發送且己收到了確認。這些數據顯然不需要再保留了。而發送窗口前沿的前面部分表示不允許發送的,因為接收方都沒有為這部分數據保留臨時存放的緩存空間。

現在假定A 發送了序號為31 ~ 41 的數據。這時發送窗口位置並未改變,但發送窗口內靠後面有11個位元組(灰色小方框表示)表示己發送但未收到確認。而發送窗口內靠前面的9 個位元組( 42 ~ 50 )是允許發送但尚未發送的。】

再看一下B 的接收窗口。B 的接收窗口大小是20,在接收窗口外面,到30 號為止的數據是已經發送過確認,並且己經交付給主機了。因此在B 可以不再保留這些數據。接收窗口內的序號(31~50)足允許接收的。B 收到了序號為32 和33 的數據,這些數據沒有按序到達,因為序號為31 的數據沒有收到(也許丟失了,也許滯留在網路中的某處)。 請注意, B 只能對按序收到的數據中的最高序號給出確認,因此B 發送的確認報文段中的確認號仍然是31 (即期望收到的序號)。

現在假定B 收到了序號為31 的數據,並把序號為31~33的數據交付給主機,然後B刪除這些數據。接著把接收窗口向前移動3個序號,同時給A 發送確認,其中窗口值仍為20,但確認號是34,這表明B 已經收到了到序號33 為止的數據。我們注意到,B還收到了序號為37, 38 和40 的數據,但這些都沒有按序到達,只能先存在接收窗口。A收到B的確認後,就可以把發送窗口向前滑動3個序號,指針P2 不動。可以看出,現在A 的可用窗口增大了,可發送的序號范圍是42~53。整個過程如下圖:

A 在繼續發送完序號42-53的數據後,指針P2向前移動和P3重合。發送窗口內的序號都已用完,但還沒有再收到確認。由於A 的發送窗口己滿,可用窗口己減小到0,因此必須停止發送。

上面已經講到, TCP 的發送方在規定的時間內沒有收到確認就要重傳已發送的報文段。這種重傳的概念是很簡單的,但重傳時間的選擇卻是TCP 最復雜的問題之一。

TCP採用了一種自適應演算法 ,它記錄一個報文段發出的時間,以及收到相應的確認的時間。這兩個時間之差就是報文段的往返時間RTT,TCP 保留了RTT的一個加權平均往返時間RTTs (這又稱為平滑的往返時間, S 表示Smoothed 。因為進行的是加權平均,因此得出的結果更加平滑)。每當第一次測量到RTT樣本時, RTTs值就取為所測量到的RTT樣本值。但以後每測量到一個新的RTT樣本,就按下式重新計算一次RTTs:

新的RTTs = (1 - α)×(舊的RTTs) + α ×(新的RTT樣本)

α 越大表示新的RTTs受新的RTT樣本的影響越大。推薦的α 值為0.125,用這種方法得出的加權平均往返時間RTTs 就比測量出的RTT值更加平滑。

顯然,超時計時器設置的超時重傳時間RTO (RetransmissionTime-Out)應略大於上面得出的加權平均往返時間RTTs。RFC 2988 建議使用下式計算RTO:

RTO = RTTs + 4 × RTTd

RTTd是RTT 的偏差的加權平均值,它與RTTs和新的RTT樣本之差有關。計算公式如下:

新的RTTd= (1- β)×(舊的RTTd) + β × |RTTs-新的RTT樣本|

發現問題: 如圖所示,發送出一個報文段。設定的重傳時間到了,還沒有收到確認。於是重
傳報文段。經過了一段時間後,收到了確認報文段。現在的問題是:如何判定此確認報文段是對先發送的報文段的確認,還是對後來重傳的報文段的確認?

若收到的確認是對重傳報文段的確認,但卻被源主機當成是對原來的報文段的確認,則這樣計算出的RTTs 和超時重傳時間RTO 就會偏大。若後面再發送的報文段又是經過重傳後才收到確認報文段,則按此方法得出的超時重傳時間RTO 就越來越長。

若收到的確認是對原來的報文段的確認,但被當成是對重傳報文段的確認,則由此計算出的RTTs 和RTO 都會偏小。這就必然導致報文段過多地重傳。這樣就有可能使RTO 越來越短。

Kam 提出了一個演算法:在計算加權平均RTTs 時,只要報文段重傳了就不採用其往返時間樣本。這樣得出的加權平均RTTs 和RTO 就較准確。

新問題: 設想出現這樣的情況:報文段的時延突然增大了很多。因此在原來得出的重傳時間內,不會收到確認報文段。於是就重傳報文段。但根據Kam 演算法,不考慮重傳的報文段的往返時間樣本。這樣,超時重傳時間就無法更新。

解決方案: 對Kam 演算法進行修正,方法是z報文段每重傳一次,就把超時重傳時間RTO 增大一些。典型的做法是取新的重傳時間為2 倍的舊的重傳時間。當不再發生報文段的重傳時,才根據上面給出的公式計算超時重傳時間。

流量控制(flow control)就是讓發送方的發送速率不要太快,要讓接收方來得及接收。

利用滑動窗口機制可以很方便地在TCP 連接上實現對發送方的流量控制。

接收方的主機B 進行了三次流量控制。第一次把窗口減小到rwnd =300,第二次又減到rwnd = 100 ,最後減到rwnd = 0 ,即不允許發送方再發送數據了。這種使發送方暫停發送的狀態將持續到主機B 重新發出一個新的窗口值為止。我們還應注意到,B 向A 發送的三個報文段都設置了ACK=1,只有在ACK=1 時確認號欄位才有意義。

發生死鎖: 現在我們考慮一種情況。上圖中, B 向A 發送了零窗口的報文段後不久, B 的接收緩存又有了一些存儲空間。於是B 向A 發送了rwnd = 400 的報文段。然而這個報文段在傳送過程中丟失了。A 一直等待收到B 發送的非零窗口的通知,而B 也一直等待A 發送的數據。如果沒有其他措施,這種互相等待的死鎖局面將一直延續下去。

解決方案: TCP 為每一個連接設有一個 持續計時器(persistence timer) 。只要TCP 連接的一方收到對方的零窗口通知,就啟動持續計時器。若持續計時器設置的時間到期,就發送一個 零窗口探測報文段 (僅攜帶1 宇節的數據),而對方就在確認這個探測報文段時給出了現在的窗口值。

1 TCP連接時是三次握手,那麼兩次握手可行嗎?

在《計算機網路》中是這樣解釋的:已失效的連接請求報文段」的產生在這樣一種情況下:client發出的第一個連接請求報文段並沒有丟失,而是在某個網路結點長時間的滯留了,以致延誤到連接釋放以後的某個時間才到達server。本來這是一個早已失效的報文段。但server收到此失效的連接請求報文段後,就誤認為是client再次發出的一個新的連接請求。於是就向client發出確認報文段,同意建立連接。假設不採用「三次握手」,那麼只要server發出確認,新的連接就建立了。由於現在client並沒有發出建立連接的請求,因此不會理睬server的確認,也不會向server發送ACK包。這樣就會白白浪費資源。而經過三次握手,客戶端和伺服器都有應有答,這樣可以確保TCP正確連接。

2 為什麼TCP連接是三次,揮手確是四次?

在TCP連接中,伺服器端的SYN和ACK向客戶端發送是一次性發送的,而在斷開連接的過程中,B端向A端發送的ACK和FIN是是分兩次發送的。因為在B端接收到A端的FIN後,B端可能還有數據要傳輸,所以先發送ACK,等B端處理完自己的事情後就可以發送FIN斷開連接了。

3 為什麼在第四次揮手後會有2個MSL的延時?

MSL是Maximum Segment Lifetime,最大報文段生存時間,2個MSL是報文段發送和接收的最長時間。假定網路不可靠,那麼第四次發送的ACK可能丟失,即B端無法收到這個ACK,如果B端收不到這個確認ACK,B端會定時向A端重復發送FIN,直到B端收到A的確認ACK。所以這個2MSL就是用來處理這個可能丟失的ACK的。

1 文件傳送協議

文件傳送協議FTP (File Transfer Protocol) [RFC 959]是網際網路上使用得最廣泛的文件傳送協議,底層採用TCP協議。

盯P 使用客戶伺服器方式。一個FTP 伺服器進程可同時為多個客戶進程提供服務。FTP的伺服器進程由兩大部分組成:一個主進程,負責接受新的請求:另外有若干個從屬進程,負責處理單個請求。

在進行文件傳輸時,客戶和伺服器之間要建立兩個並行的TCP 連接:「控制連接」(21埠)和「數據連接」(22埠)。控制連接在整個會話期間一直保持打開, FTP 客戶所發出的傳送請求,通過控制連接發送給伺服器端的控制進程,但控制連接並不用來傳送文件。實際用於傳輸文件的是「數據連接」。伺服器端的控制進程在接收到FTP 客戶發送來的文件傳輸請求後就創建「數據傳送進程」和「數據連接」,用來連接客戶端和伺服器端的數據傳送進程。

2 簡單文件傳送協議TFTP

TCP/IP 協議族中還有一個簡單文件傳送協議TFfP (Trivial File Transfer Protocol),它是一個很小且易於實現的文件傳送協議,埠號69。

TFfP 也使用客戶伺服器方式,但它使用UDP 數據報,因此TFfP 需要有自己的差錯改正措施。TFfP 只支持文件傳輸而不支持交耳。

3 TELNET

TELNET 是一個簡單的遠程終端協議,底層採用TCP協議。TELNET 也使用客戶伺服器方式。在本地系統運行TELNET 客戶進程,而在遠地主機則運行TELNET 伺服器進程,佔用埠23。

4 郵件傳輸協議

一個電子郵件系統應具如圖所示的三個主要組成構件,這就是用戶代理、郵件伺服器,以及郵件發送協議(如SMTP )和郵件讀取協議(如POP3), POP3 是郵局協議(Post Office Protocol)的版本3 。

SMTP 和POP3 (或IMAP )都是在TCP 連接的上面傳送郵件,使用TCP 的目的是為了使郵件的傳送成為可靠的。

B. 計算機網路主要是要學習什麼

計算機網路比較偏硬體。 學的是一些實際的操作! 比如:創建小型區域網! 什麼是對等網,區域網! 還有就是網路建組一些!我這里有一些資料! 有關學習計算機網路基礎的!可以拿去看!這些是學習計算機網路的基礎! 初步學習的計算機網路就是這些題的精髓! 1.什麼叫計算機網路系統? 答:為了實現計算機之間的通信交往、資源共享和協同工作,利用通信設備和線路將地理位置分散的、各自具備自主功能的一組計算機有機地聯系起來,並且由功能完善的網路操作系統和通信協議進行管理的計算機復合系統。 2.什麼叫「信道」? 答:是數據信號傳輸的必經之路,一般由傳輸線路和傳輸設備組成。物理信道是指用來傳送信號或數據的物理通路,它由傳輸介質及有關通信設備組成,而邏輯信道在物理信道的基礎上,使節點內部實現了其他「連接」。同一物理信道上可以提供多條邏輯信道。按傳輸不同類型的數據信號物理信道又可以分為模擬信道和數字信道。在模擬信道兩邊分別安裝數據機。還可分為專用信道和公共交換信道。 3.什麼叫「傳輸差錯」? 答:由於來自信道內外的干擾與雜訊,數據在傳輸與接收的過程中,難免會發生錯誤。通常,把通過通信信道接收到的數據與原來發送的數據不一致的現象稱為傳輸差錯,簡稱差錯。 4.什麼叫「通信協議」? 答:在計算機網路通信過程中,為了保證計算機之間能夠准確地進行數據通信,必須使用一套通信規則,這套規則就是通信協議。 5.簡答區域網的基本組成。 答:軟體系統:網路操作系統、網管軟體和網路應用軟體。 硬體系統:1)網路伺服器(server,通常由一台或多台規模大、功能強的計算機擔任,有較高處理能力或大容量的存儲空間);2)網路工作站(workstation,用戶使用的終端計算機);3)網路適配器(網卡,網路連接的介面電路板,屬於通信子網設備);4)網路傳輸介質(物理連接線路);5)網路連接與互聯設備(收發器、中繼器、集線器、網橋、交換機、路由器和網關等)。 其他組件:網路資源、用戶、協議。 6.網路互聯設備主要有哪些?其主要作用各是什麼? 答:中繼器、集線器,主要作用:不同電纜段之間信號的復制、整形、再生和轉發;網橋、交換機,主要作用:數據存儲、接收,根據物理地址進行過濾和有目的的轉發數據幀;路由器,主要作用:路徑選擇、擁塞控制和控制廣播信息;網關,主要作用:傳輸層及以上各層。 7.對三種使用共享資源的方法簡要概括。 答:直接利用「網上鄰居」瀏覽工作組中各計算機已經開放的共享資源; 直接在「我的電腦」地址欄或「開始」-「運行」中輸入「\\被訪問的電腦名(或IP地址)」; 映射驅動器:將共享資源映射為本機磁碟。 8.請解釋下圖中各參數意義。 答:分別是「物理地址」、「開起DHCP功能」、「自動配置IP地址」、「IP地址」、「子網掩碼」、「默認網關」、「DHCP伺服器IP地址」、「DNS伺服器IP地址」、「IP地址租用開始日期」、和「IP地址租用結束日期」 9.什麼叫活動目錄?有哪些特徵? 答:活動目錄(Active Directory,簡稱AD):在Windows2000中,各種目錄對象的數據被存儲在目錄資料庫中,而負責提供目錄服務的組件就是活動目錄。 活動目錄的特徵:1)層次化的目錄結構。2)面向對象的存儲結構。3)域、域樹和森林的組織結構。 10.簡述AD與DNS的關系? 答:DNS與AD具有不同的用途,並分別獨立地運行。DNS不需要AD能單獨運行。在Windows2000 SERVER中,無論是否建立了域控制器或活動目錄,都可以建立DNS服務。DNS的單位名稱空間和AD卻具有相同的結構,如xinxi.buu.e.cn,既是DNS的域,也是活動目錄的域。DNS服務的主區域文件可以在建立活動目錄是直接生成,並存儲在AD中,這樣方便地復制到其他域控制器的活動目錄中。AD的客戶使用LDAP(輕量級目錄訪問協議)向AD伺服器發送查詢請求時,需要DNS服務來定位AD伺服器,因此,活動目錄的服務需要DNS支持(也就是說,AD安裝之後,DNS服務應當啟用)。