難道你不知道花在這里的時間網路一下嗎?看一下書嗎!
『貳』 計算機網路系統分層結構的優點是什麼
1、分層結構將應用系統正交地劃分為若干層,每一層只解決問題的一部分,通過各層的協作提供整體解決方案。大的問題被分解為一系列相對獨立的子問題,局部化在每一層中,這樣就有效的降低了單個問題的規模和復雜度,實現了復雜系統的第一步也是最為關鍵的一步分解。
2、分層結構具有良好的可擴展性,為應用系統的演化增長提供了一個靈活的框架,具有良好的可擴展性。增加新的功能時,無須對現有的代碼做修改,業務邏輯可以得到最大限度的重用。同時,層與層之間可以方便地插入新的層來擴展應用。
3、分層架構易於維護。在對系統進行分解後,不同的功能被封裝在不同的層中,層與層之間的耦合顯著降低。因此在修改某個層的代碼時,只要不涉及層與層之間的介面,就不會對其他層造成嚴重影響。
(2)簡述計算機網路體系結構分層的好處擴展閱讀:
體系結構:
計算機網路是一個復雜的具有綜合性技術的系統,為了允許不同系統實體互連和互操作,不同系統的實體在通信時都必須遵從相互均能接受的規則,這些規則的集合稱為協議(Protocol)。
系統指計算機、終端和各種設備。實體指各種應用程序,文件傳輸軟體,資料庫管理系統,電子郵件系統等。互連指不同計算機能夠通過通信子網互相連接起來進行數據通信。
互操作指不同的用戶能夠在通過通信子網連接的計算機上,使用相同的命令或操作,使用其它計算機中的資源與信息,就如同使用本地資源與信息一樣。計算機網路體系結構為不同的計算機之間互連和互操作提供相應的規范和標准。
『叄』 網路體系結構中採用層次化結構的優點有哪些
1、各層之間是獨立的。某一層並不需要知道它的下一層是如何實現的,而僅僅需要知道該層通過層間的介面所提供的服務。由於每一層只實現一種相對獨立的功能,因而可將一個難以處理的復雜問題分解為若干個較容易處理的更小一些的問題。這樣,整個問題的復雜程度就下降了。
2、靈活性好。當任何一層發生變化時,只要層間介面關系保持不變,則在這層以上或以下各層均不受影響。此外,對某一層提供的服務還可進行修改。
3、易於實現和維護。這種結構使得實現和調試一個龐大而又復雜的系統變得易於處理,因為整個的系統已被分解為若干個相對獨立的子系統。
層次化結構的特點:
1、將一個大型復雜的系統分解成若干單向依賴的層次,即每一層都提供一組功能且這些功能只依賴該層以內的的各層。其最內部的一層為系統核,具有初級中斷處理、外部設備驅動、在進程之間切換處理機以及實施進程式控制制和通信的功能,其目的為提供一種進程可以存在和活動的環境。
2、系統核以外依次為儲存管理層、I/O處理層,文件存取層、作業調度層和資源分配層。他們具有各種資源管理功能並為用戶提供各種服務。
『肆』 計算機網路體系結構採用分層模型有哪些優點
(1)人們可以很容易的討論和學習協議的規范細節。
(2)層間的標准介面方便了工程模塊化。
(3)創建了一個更好的互連環境。
(4)降低了復雜度,使程序更容易修改,產品開發的速度更快。
(5)每層利用緊鄰的下層服務,更容易記住各層的功能。
減輕問題的復雜程度,一旦網路發生故障,可迅速定位故障所處層次,便於查找和糾錯;
在各層分別定義標准介面,使具備相同對等層的不同網路設備能實現互操作,各層之間則相對獨立,一種高層協議可放在多種低層協議上運行;
能有效刺激網路技術革新,因為每次更新都可以在小范圍內進行,不需對整個網路動大手術; 便於研究和教學。
網路拷貝來的,很詳細。
『伍』 闡述計算機網路體系結構分層的優缺點,以及這種層次劃分的體系結構思想在工作生活中的應用。
計算機網路系統是獨立的計算機通過已有通信系統連接形成的,其功能是實現計算機的遠程訪問和資源共享。因此,計算機網路的問題主要是解決異地獨立工作的計算機之間如何實現正確、可靠的通信,計算機網路分層體系結構模型正是為解決計算機網路的這一關鍵問題而設計的。
分層的原則
計算機網路體系結構的分層思想主要遵循以下幾點原則:
1.功能分工的原則:即每一層的劃分都應有它自己明確的與其他層不同的基本 [被屏蔽廣告]功能。
2.隔離穩定的原則:即層與層的結構要相對獨立和相互隔離,從而使某一層內容或結構的變化對其他層的影響小,各層的功能、結構相對穩定。
3.分支擴張的原則:即公共部分與可分支部分劃分在不同層,這樣有利於分支部分的靈活擴充和公共部分的相對穩定,減少結構上的重復。
4.方便實現的原則:即方便標准化的技術實現。
層次的劃分
計算機網路是計算機的互連,它的基本功能是網路通信。網路通信根據網路系統不同的拓撲結構可歸納為兩種基本方式:第一種為相鄰結點之間通過直達通路的通信,稱為點到點通信;第二種為不相鄰結點之間通過中間結點鏈接起來形成間接可達通路的通信,稱為端到端通信。很顯然,點到點通信是端到端通信的基礎,端到端通信是點到點通信的延伸。
點到點通信時,在兩台計算機上必須要有相應的通信軟體。這種通信軟體除了與各自操作管理系統介面外,還應有兩個介面界面:一個向上,也就是向用戶應用的界面;一個向下,也就是向通信的界面。這樣通信軟體的設計就自然劃分為兩個相對獨立的模塊,形成用戶服務層US和通信服務層CS兩個基本層次體系。
端到端通信鏈路是把若干點到點的通信線路通過中間結點鏈接起來而形成的,因此,要實現端到端的通信,除了要依靠各自相鄰結點間點到點通信聯接的正確可靠外,還要解決兩個問題:第一,在中間結點上要具有路由轉接功能,即源結點的報文可通過中間結點的路由轉發,形成一條到達目標結點的端到端的鏈路;第二,在端結點上要具有啟動、建立和維護這條端到端鏈路的功能。啟動和建立鏈路是指發送端結點與接收端結點在正式通信前雙方進行的通信,以建立端到端鏈路的過程。維護鏈路是指在端到端鏈路通信過程中對差錯或流量控制等問題的處理。
因此在網路端到端通信的環境中,需要在通信服務層與應用服務層之間增加一個新的層次來專門處理網路端到端的正確可靠的通信問題,稱為網路服務層NS。
對於通信服務層,它的基本功能是實現相鄰計算機結點之間的點到點通信,它一般要經過兩個步驟:第一步,發送端把幀大小的數據塊從內存發送到網卡上去;第二步,由網卡將數據以位串形式發送到物理通信線路上去。在接收端執行相反的過程。對應這兩步不同的操作過程,通信服務層進一步劃分為數據鏈路層和物理層。
對於網路服務層,它的功能也由兩部分組成:一是建立、維護和管理端到端鏈路的功能;二是進行路由選擇的功能。端到端通信鏈路的建立、維護和管理功能又可分為兩個側面,一是與它下面網路層有關的鏈路建立管理功能,另一是與它上面端用戶啟動鏈路並建立與使用鏈路通信的有關管理功能。對應這三部分功能,網路服務層劃分為三個層次:會晤層、傳輸層和網路層,分別處理端到端鏈路中與高層用戶有關的問題,端到端鏈路通信中網路層以下實際鏈路聯接過程有關的問題,以及路由選擇的問題。
對於用戶服務層,它的功能主要是處理網路用戶介面的應用請求和服務。考慮到高層用戶介面要求支持多用戶、多種應用功能,以及可能是異種機、異種OS應用環境的實際情況,分出一層作為支持不同網路具體應用的用戶服務,取名為應用層。分出另一層用以實現為所有應用或多種應用都需要解決的某些共同的用戶服務要求,取名為表示層。
結論
綜上所述,計算機網路體系結構分為相對獨立的七層:應用層、表示層、會晤層、傳輸層、網路層、鏈路層、物理層。這樣,一個復雜而龐大的問題就簡化為了幾個易研究、處理的相對獨立的局部問題。
『陸』 計算機網路採用分層結構體系的好處是什麼
(1)人們可以很容易的討論和學習協議的規范細節。
(2)層間的標准介面方便了工程模塊化。
(3)創建了一個更好的互連環境。
(4)降低了復雜度,使程序更容易修改,產品開發的速度更快。
(5)每層利用緊鄰的下層服務,更容易記住各層的功能。
減輕問題的復雜程度,一旦網路發生故障,可迅速定位故障所處層次,便於查找和糾錯;
在各層分別定義標准介面,使具備相同對等層的不同網路設備能實現互操作,各層之間則相對獨立,一種高層協議可放在多種低層協議上運行;
能有效刺激網路技術革新,因為每次更新都可以在小范圍內進行,不需對整個網路動大手術; 便於研究和教學。
網路拷貝來的,很詳細。
另外附上個人理解:
分層結構體系就像流水線作業一樣,每個環節由專門的工作點負責,遇見錯誤可以馬上定位錯誤,流水作業的本質就是加速生產力,網路這樣分層結構同理,加速網路的傳輸效率。
『柒』 計算機網路層次體系結構優缺點
OSI參考模型分為:應用層、表示層、會話層、傳輸層、網路層、數據鏈路層和物理層;TCP/IP參考模型分為:應用層、傳輸層、互聯層和主機-網路層。
層次是人們處理復雜問題的基本方法。人們對於一些難以處理的復雜問題,通常是分解為若干個容易處理的小問題。如,在郵政通信系統中,全國乃至世界各地億萬人民之間的信件需要傳送,解決這個復雜問題的基本方法是:將總體要實現的功能分配在不同的層次,每個層次要完成的服務以及要實現的過程都有明確的規定;不同地區的系統分為相同的層次,不同系統的同層次具有相同的功能。
計算機網路的層次與此相似,這樣大大降低了處理復雜問題的難度,對復雜問題「分而治之」。
『捌』 1計算機網路採用層次結構有什麼好處
網路協議分層示意圖為了減少網路設計的復雜性,絕大多數網路採用分層設計方法。
所謂分層設計方法,就是按照信息的流動過程將網路的整體功能分解為一個個的功能層,不同機器上的同等功能層之間採用相同的協議,同一機器上的相鄰功能層之間通過介面進行信息傳遞。
『玖』 計算機網路的體系結構為什麼採用分層結構1:,分層可以帶來哪些好處
1、如果不採用分層次分解處理,則會產生由於任何錯誤或性能修改而影響整體設計的弊端。層次化的網路體系的優點在於每層實現相對獨立的功能,層與層之間通過介面來提供服務,每一層都對上層屏蔽如何實現協議的具體細節,使網路體系結構作到與具體物理實現無關。層次結構便於系統的實現和便於系統的維護。
2、B
3、Internet是在美國較早的軍用計算機網ARPAnet的基礎上經過不斷發展變化而形成的。Internet的雛形形成階段1969年,美國國防部研究計劃管理局(ARPA--Advanced Resarch Projects Agency)開始建立一個命名為ARPANET的網路,當時建立這個網路的目的只是為了將美國的幾個軍事及研究用電腦主機連接起來,人們普遍認為這就是 Internet的雛形。
4、PING命令