❶ 按照網路的拓撲結構,計算機網路可以劃分為哪幾類
按照網路的拓撲結構,計算機網路可以劃分為匯流排型拓撲、星型拓撲、環型拓撲、樹型拓撲、網狀拓撲和混合型拓撲。
1、星型拓撲
星型拓撲結構的優點
(1)結構簡單,連接方便,管理和維護都相對容易,而且擴展性強。
(2)網路延遲時間較小,傳輸誤差低。
(3)在同一網段內支持多種傳輸介質,除非中央節點故障,否則網路不會輕易癱瘓。
(4)每個節點直接連到中央節點,故障容易檢測和隔離,可以很方便地排除有故障的節點。
2、匯流排拓撲
匯流排拓撲結構的優點
(1)匯流排結構所需要的電纜數量少,線纜長度短,易於布線和維護。
(2)匯流排結構簡單,又是元源工作,有較高的可靠性。傳輸速率高,可達1~100Mbps。
(3)易於擴充,增加或減少用戶比較方便,結構簡單,組網容易,網路擴展方便
(4)多個節點共用一條傳輸信道,信道利用率高。
3、環型拓撲
環型拓撲的優點
(1)電纜長度短。
(2)增加或減少工作站時,僅需簡單的連接操作。
(3)可使用光纖。
4、樹型拓撲
樹型拓撲的優點
(1)易於擴展。
(2)故障隔離較容易。
5、混合型拓撲
混合型拓撲的優點
(1)故障診斷和隔離較為方便。
(2)易於擴展。
(3)安裝方便。
6、網型拓撲
網型拓撲的優點
(1)節點間路徑多,碰撞和阻塞減少。
(2)局部故障不影響整個網路,可靠性高。
7、開關電源拓撲
樹型拓撲的缺點:
各個節點對根的依賴性太大。
(1)目前計算機網路體系結構有哪幾種擴展閱讀
發展歷程
1、誕生階段
20世紀60年代中期之前的第一代計算機網路是以單個計算機為中心的遠程聯機系統,典型應用是由一台計算機和全美范圍內2000多個終端組成的飛機訂票系統,終端是一台計算機的外圍設備,包括顯示器和鍵盤,無CPU和內存
2、形成階段
20世紀60年代中期至70年代的第二代計算機網路是以多個主機通過通信線路互聯起來,為用戶提供服務,興起於60年代後期,典型代表是美國國防部高級研究計劃局協助開發的ARPANET。
3、互聯互通階段
20世紀70年代末至90年代的第三代計算機網路是具有統一的網路體系結構並遵守國際標準的開放式和標准化的網路。ARPANET興起後,計算機網路發展迅猛,各大計算機公司相繼推出自己的網路體系結構及實現這些結構的軟硬體產品。
4、高速網路技術階段
20世紀90年代至今的第四代計算機網路,由於區域網技術發展成熟,出現光纖及高速網路技術,整個網路就像一個對用戶透明的大的計算機系統,發展為以網際網路( Internet)為代表的互聯網。
❷ 計算機網路體系分為哪四層
1.、應用層
應用層對應於OSI參考模型的高層,為用戶提供所需要的各種服務,例如:FTP、Telnet、DNS、SMTP等.
2.、傳輸層
傳輸層對應於OSI參考模型的傳輸層,為應用層實體提供端到端的通信功能,保證了數據包的順序傳送及數據的完整性。該層定義了兩個主要的協議:傳輸控制協議(TCP)和用戶數據報協議(UDP).
TCP協議提供的是一種可靠的、通過「三次握手」來連接的數據傳輸服務;而UDP協議提供的則是不保證可靠的(並不是不可靠)、無連接的數據傳輸服務.
3.、網際互聯層
網際互聯層對應於OSI參考模型的網路層,主要解決主機到主機的通信問題。它所包含的協議設計數據包在整個網路上的邏輯傳輸。注重重新賦予主機一個IP地址來完成對主機的定址,它還負責數據包在多種網路中的路由。
該層有三個主要協議:網際協議(IP)、互聯網組管理協議(IGMP)和互聯網控制報文協議(ICMP)。
IP協議是網際互聯層最重要的協議,它提供的是一個可靠、無連接的數據報傳遞服務。
4.、網路接入層(即主機-網路層)
網路接入層與OSI參考模型中的物理層和數據鏈路層相對應。它負責監視數據在主機和網路之間的交換。事實上,TCP/IP本身並未定義該層的協議,而由參與互連的各網路使用自己的物理層和數據鏈路層協議,然後與TCP/IP的網路接入層進行連接。地址解析協議(ARP)工作在此層,即OSI參考模型的數據鏈路層。
(2)目前計算機網路體系結構有哪幾種擴展閱讀:
OSI將計算機網路體系結構(architecture)劃分為以下七層:
物理層: 將數據轉換為可通過物理介質傳送的電子信號相當於郵局中的搬運工人。
數據鏈路層: 決定訪問網路介質的方式。
在此層將數據分幀,並處理流控制。本層指定拓撲結構並提供硬體定址,相當於郵局中的裝拆箱工人。
網路層: 使用權數據路由經過大型網路 相當於郵局中的排序工人。
傳輸層: 提供終端到終端的可靠連接 相當於公司中跑郵局的送信職員。
會話層: 允許用戶使用簡單易記的名稱建立連接 相當於公司中收寄信、寫信封與拆信封的秘書。
表示層: 協商數據交換格式 相當公司中簡報老闆、替老闆寫信的助理。
應用層: 用戶的應用程序和網路之間的介面老闆。
❸ 計算機網路結構分幾種哪幾種
計算機網路的分類方式有很多種,可以按地理范圍、拓撲結構、傳輸速率和傳輸介質等分類。
⑴按地理范圍分類
①區域網LAN(Local Area Network)
區域網地理范圍一般幾百米到10km之內,屬於小范圍內的連網。如一個建築物內、一個學校內、一個工廠的廠區內等。區域網的組建簡單、靈活,使用方便。
②城域網MAN(Metropolitan Area Network)
城域網地理范圍可從幾十公里到上百公里,可覆蓋一個城市或地區,是一種中等形式的網路。
③廣域網WAN(Wide Area Network)
廣域網地理范圍一般在幾千公里左右,屬於大范圍連網。如幾個城市,一個或幾個國家,是網路系統中的最大型的網路,能實現大范圍的資源共享,如國際性的Internet網路。
⑵按傳輸速率分類
網路的傳輸速率有快有慢,傳輸速率快的稱高速網,傳輸速率慢的稱低速網。傳輸速率的單位是b/s(每秒比特數,英文縮寫為bps)。一般將傳輸速率在Kb/s—Mb/s范圍的網路稱低速網,在Mb/s—Gb/s范圍的網稱高速網。也可以將Kb/s網稱低速網,將Mb/s網稱中速網,將Gb/s網稱高速網。
網路的傳輸速率與網路的帶寬有直接關系。帶寬是指傳輸信道的寬度,帶寬的單位是Hz(赫茲)。按照傳輸信道的寬度可分為窄帶網和寬頻網。一般將KHz—MHz帶寬的網稱為窄帶網,將MHz—GHz的網稱為寬頻網,也可以將kHz帶寬的網稱窄帶網,將MHz帶寬的網稱中帶網,將GHz帶寬的網稱寬頻網。通常情況下,高速網就是寬頻網,低速網就是窄帶網。
⑶按傳輸介質分類
傳輸介質是指數據傳輸系統中發送裝置和接受裝置間的物理媒體,按其物理形態可以劃分為有線和無線兩大類。
①有線網
傳輸介質採用有線介質連接的網路稱為有線網,常用的有線傳輸介質有雙絞線、同軸電纜和光導纖維。
●雙絞線是由兩根絕緣金屬線互相纏繞而成,這樣的一對線作為一條通信線路,由四對雙絞線構成雙絞線電纜。雙絞線點到點的通信距離一般不能超過100m。目前,計算機網路上使用的雙絞線按其傳輸速率分為三類線、五類線、六類線、七類線,傳輸速率在10Mbps到600Mbps之間,雙絞線電纜的連接器一般為RJ-45。
●同軸電纜由內、外兩個導體組成,內導體可以由單股或多股線組成,外導體一般由金屬編織網組成。內、外導體之間有絕緣材料,其阻抗為50Ω。同軸電纜分為粗纜和細纜,粗纜用DB-15連接器,細纜用BNC和T連接器。
●光纜由兩層折射率不同的材料組成。內層是具有高折射率的玻璃單根纖維體組成,外層包一層折射率較低的材料。光纜的傳輸形式分為單模傳輸和多模傳輸,單模傳輸性能優於多模傳輸。所以,光纜分為單模光纜和多模光纜,單模光纜傳送距離為幾十公里,多模光纜為幾公里。光纜的傳輸速率可達到每秒幾百兆位。光纜用ST或SC連接器。光纜的優點是不會受到電磁的干擾,傳輸的距離也比電纜遠,傳輸速率高。光纜的安裝和維護比較困難,需要專用的設備。
②無線網
採用無線介質連接的網路稱為無線網。目前無線網主要採用三種技術:微波通信,紅外線通信和激光通信。這三種技術都是以大氣為介質的。其中微波通信用途最廣,目前的衛星網就是一種特殊形式的微波通信,它利用地球同步衛星作中繼站來轉發微波信號,一個同步衛星可以覆蓋地球的三分之一以上表面,三個同步衛星就可以覆蓋地球上全部通信區域。
⑷按拓撲結構分類
計算機網路的物理連接形式叫做網路的物理拓撲結構。連接在網路上的計算機、大容量的外存、高速列印機等設備均可看作是網路上的一個節點,也稱為工作站。計算機網路中常用的拓撲結構有匯流排型、星型、環型等。
①匯流排拓撲結構
匯流排拓撲結構是一種共享通路的物理結構。這種結構中匯流排具有信息的雙向傳輸功能,普遍用於區域網的連接,匯流排一般採用同軸電纜或雙絞線。
匯流排拓撲結構的優點是:安裝容易,擴充或刪除一個節點很容易,不需停止網路的正常工作,節點的故障不會殃及系統。由於各個節點共用一個匯流排作為數據通路,信道的利用率高。但匯流排結構也有其缺點:由於信道共享,連接的節點不宜過多,並且匯流排自身的故障可以導致系統的崩潰。
②星型拓撲結構
星型拓撲結構是一種以中央節點為中心,把若干外圍節點連接起來的輻射式互聯結構。這種結構適用於區域網,特別是近年來連接的區域網大都採用這種連接方式。這種連接方式以雙絞線或同軸電纜作連接線路。
星型拓撲結構的特點是:安裝容易,結構簡單,費用低,通常以集線器(Hub)作為中央節點,便於維護和管理。中央節點的正常運行對網路系統來說是至關重要的。
③環型拓撲結構
環型拓撲結構是將網路節點連接成閉合結構。信號順著一個方向從一台設備傳到另一台設備,每一台設備都配有一個收發器,信息在每台設備上的延時時間是固定的。
這種結構特別適用於實時控制的區域網系統。
環型拓撲結構的特點是:安裝容易,費用較低,電纜故障容易查找和排除。有些網路系統為了提高通信效率和可靠性,採用了雙環結構,即在原有的單環上再套一個環,使每個節點都具有兩個接收通道。環型網路的弱點是,當節點發生故障時,整個網路就不能正常工作。
④樹型拓撲結構
樹型拓撲結構就像一棵「根」朝上的樹,與匯流排拓撲結構相比,主要區別在於匯流排拓撲結構中沒有「根」。這種拓撲結構的網路一般採用同軸電纜,用於軍事單位、政府部門等上、下界限相當嚴格和層次分明的部門。
樹型拓撲結構的特點:優點是容易擴展、故障也容易分離處理,缺點是整個網路對根的依賴性很大,一旦網路的根發生故障,整個系統就不能正常工作。
❹ 計算機網路的結構有那些
網路的拓撲結構是拋開網路物理連接來討論網路系統的連接形式,網路中各站點相互連接的方法和形式稱為網路拓撲。拓撲圖給出網路伺服器、工作站的網路配置和相互間的連接,它的結構主要有星型結構、匯流排結構、樹型結構、網狀結構、蜂窩狀結構、分布式結構等。
星型結構
星型結構是指各工作站以星型方式連接成網。網路有中央節點,其他節點(工作站、伺服器)都與中央節點直接相連,這種結構以中央節點為中心,因此又稱為集中式網路。它具有如下特點:結構簡單,便於管理;控制簡單,便於建網;網路延遲時間較小,傳輸誤差較低。但缺點也是明顯的:成本高、可靠性較低、資源共享能力也較差。
環型結構
環型結構由網路中若干節點通過點到點的鏈路首尾相連形成一個閉合的環,這種結構使公共傳輸電纜組成環型連接,數據在環路中沿著一個方向在各個節點間傳輸,信息從一個節點傳到另一個節點。
環型結構具有如下特點:信息流在網中是沿著固定方向流動的,兩個節點僅有一條道路,故簡化了路徑選擇的控制;環路上各節點都是自舉控制,故控制軟體簡單;由於信息源在環路中是串列地穿過各個節點,當環中節點過多時,勢必影響信息傳輸速率,使網路的響應時間延長;環路是封閉的,不便於擴充;可靠性低,一個節點故障,將會造成全網癱瘓;維護難,對分支節點故障定位較難。
匯流排型結構
匯流排結構是指各工作站和伺服器均掛在一條匯流排上,各工作站地位平等,無中心節點控制,公用匯流排上的信息多以基帶形式串列傳遞,其傳遞方向總是從發送信息的節點開始向兩端擴散,如同廣播電台發射的信息一樣,因此又稱廣播式計算機網路。各節點在接受信息時都進行地址檢查,看是否與自己的工作站地址相符,相符則接收網上的信息。
匯流排型結構的網路特點如下:結構簡單,可擴充性好。當需要增加節點時,只需要在匯流排上增加一個分支介面便可與分支節點相連,當匯流排負載不允許時還可以擴充匯流排;使用的電纜少,且安裝容易;使用的設備相對簡單,可靠性高;維護難,分支節點故障查找難。
分布式結構
分布式結構的網路是將分布在不同地點的計算機通過線路互連起來的一種網路形式,分布式結構的網路具有如下特點:由於採用分散控制,即使整個網路中的某個局部出現故障,也不會影響全網的操作,因而具有很高的可靠性;網中的路徑選擇最短路徑演算法,故網上延遲時間少,傳輸速率高,但控制復雜;各個節點間均可以直接建立數據鏈路,信息流程最短;便於全網范圍內的資源共享。缺點為連接線路用電纜長,造價高;網路管理軟體復雜;報文分組交換、路徑選擇、流向控制復雜;在一般區域網中不採用這種結構。
樹型結構
樹型結構是分級的集中控制式網路,與星型相比,它的通信線路總長度短,成本較低,節點易於擴充,尋找路徑比較方便,但除了葉節點及其相連的線路外,任一節點或其相連的線路故障都會使系統受到影響。
網狀拓撲結構
在網狀拓撲結構中,網路的每台設備之間均有點到點的鏈路連接,這種連接不經濟,只有每個站點都要頻繁發送信息時才使用這種方法。它的安裝也復雜,但系統可靠性高,容錯能力強。有時也稱為分布式結構。
蜂窩拓撲結構
蜂窩拓撲結構是無線區域網中常用的結構。它以無線傳輸介質(微波、衛星、紅外等)點到點和多點傳輸為特徵,是一種無線網,適用於城市網、校園網、企業網。
在計算機網路中還有其他類型的拓撲結構,如匯流排型與星型混合。匯流排型與環型混合連接的網路。在區域網中,使用最多的是匯流排型和星型結構。
❺ 計算機網路的組成和體系結構
一、計算機網路的基本組成
計算機網路是一個很復雜的系統,它由許多計算機軟體、硬體和通信設備組合而成。下面對一個計算機網路所需的主要部分,即伺服器、工作站、外圍設備、網路軟體作簡要介紹。
1.伺服器(Server)
在計算機網路中,伺服器是整個網路系統的核心,一般是指分散在不同地點擔負一定數據處理任務和提供資源的計算機,它為網路用戶提供服務並管理整個網路,它影響著網路的整體性能。一般在大型網路中採用大型機、中型機和小型機作為網路伺服器,可保證網路的可靠性。對於網點不多,網路通信量不大,數據安全性要求不太高的網路,可以選用高檔微機作網路伺服器。根據伺服器在網路中擔負的網路功能的不同,又可分為文件伺服器、通信伺服器和列印伺服器等。在小型區域網中,最常用的是文件伺服器。一般來說網路越大、用戶越多、伺服器負荷越大,對伺服器性能要求越高。
2.工作站(Workstation)
工作站有時也稱為「節點」或「客戶機(Client)」,是指通過網路適配器和線纜連接到網路上的計算機,是網路用戶進行信息處理的個人計算機。它和伺服器不同,伺服器是為整個網路提供服務並管理整個網路,而工作站只是一個接入網路的設備,它保持原有計算機的功能,作為獨立的計算機為用戶服務,同時又可按一定的許可權訪問伺服器,享用網路資源。
工作站通常都是普通的個人計算機,有時為了節約經費,不配軟、硬碟,稱為「無盤工作站」。
3.網路外圍設備
是指連接伺服器和工作站的一些連線或連接設備,如同軸電纜、雙絞線、光纖等傳輸介質,網卡(NIC)、中繼器(Repeater)、集線器(Hub)、交換機(Switch)、網橋(Bridge)等,又如用於廣域網的設備:數據機(Modem)、路由器(Router)、網關(Gateway)等,介面設備:T型頭、BNC連接器、終端匹配器、RJ45頭、ST頭、SC頭、FC頭等。
4.網路軟體
前面介紹的都是網路硬體設備。要想網路能很好地運行,還必須有網路軟體。
通常網路軟體包括網路操作系統(NOS)、網路協議軟體和網路通信軟體等。其中,網路操作系統是為了使計算機具備正常運行和連接上網的能力,常見的網路操作系統有UNIX、Linux、Novell Netware、Windows NT、Windows 2000 Server、Windows XP等;網路協議軟體是為了各台計算能使用統一的協議,可以看成是計算機之間相互會話使用的語言;而運用協議進行實際的通信則是由通信軟體完成的。
網路軟體功能的強弱直接影響到網路的性能,因為網路中的資源共享、相互通信、訪問控制和文件管理等都是通過網路軟體實現的。
二、計算機網路的拓撲結構
所謂計算機網路的拓撲結構是指網路中各結點(包括連接到網路中的設備、計算機)的地理分布和互連關系的幾何構形,即網路中結點的互連模式。
網路的拓撲結構影響著整個網路的設計、功能、可靠性和通信費用等指標,常見的網路拓撲結構有匯流排型、星型、環型等,通過使用路由器和交換機等互連設備,可在此基礎上構建一個更大網路。
1.匯流排型
在匯流排型結構中,將所有的入網計算機接入到一條通信傳輸線上,為防止信號反射,一般在匯流排兩端連有終端匹配器如圖6-1(a)。匯流排型結構的優點是信道利用率高,可擴充性好,結構簡單,價格便宜。當數據在匯流排上傳遞時,會不斷地「廣播」,第一節點均可收到此信息,各節點會對比數據送達的地址與自己的地址是否相同,若相同,則接收該數據,否則不必理會該數據。缺點是同一時刻只能有兩個網路結點在相互通信,網路延伸距離有限,網路容納的節點數有限。在匯流排上只要有一個結點連接出現問題,會影響整個網路運行,且不易找到故障點。
圖6-1 網路拓撲結構
2.星型
在星型結構中,以中央結點為中心,其他結點都與中央結點相連。每台計算機通過單獨的通信線路連接到中央結點,由該中央結點向目的結點傳送信息,如圖6-1(b),因此,中央結點必須有較強的功能和較高的可靠性。
在已實現的網路拓撲結構中,這是最流行的一種。跟匯流排型拓撲結構相比,它的主要的優勢是一旦某一個電纜線段被損壞了,只有連接到那個電纜段的主機才會受到影響,結構簡單,建網容易,便於管理。缺點是該拓撲是以點對點方式布線的,故所需線材較多,成本相對較高,此外中央結點易成為系統的「瓶頸」,且一旦發生故障,將導致全網癱瘓。
3.環型
在環型結構中,如圖6-1(c)所示,各網路結點連成封閉環路,數據只能是單向傳遞,每個收到數據包的結點都向它的下一結點轉發該數據包,環游一圈後由發送結點回收。當數據包經過目標結點時,目標結點根據數據包中的目標地址判斷出是自己接收,並把該數據包拷貝到自己的接收緩沖中。
環型拓撲結構的優點是:結構簡單,網路管理比較簡單,實時性強。缺點是:成本較高,可靠性差,網路擴充復雜,網路中若有任一結點發生故障都會使整個網路癱瘓。
三、計算機網路的體系結構
要弄清網路的體系結構,需先弄清網路協議是什麼。
網路協議是兩台網路上的計算機進行通信時使用的語言,是通信的規則和約定。為了在網路上傳輸數據,網路協議定義了數據應該如何被打成包、並且定義了在接收數據時接收計算機如何解包。在同一網路中的兩台計算機為了相互通信,必須運行同一協議,就如同兩個人交談時,必須採用對方聽得懂的語言和語速。
由於網路結點之間的連接可能是很復雜的,因此,為了減少協議設計的復雜性,在制定協議時,一般把復雜成分分解成一些簡單成分,再將它們復合起來,而大多數網路都按層來組織,並且規定:(1)一般是將用戶應用程序作為最高層,把物理通信線路作為最低層,將其間再分為若干層,規定每層處理的任務,也規定每層的介面標准;(2)每一層向上一層提供服務,而與再上一層不發生關系;(3)每一層可以調用下一層的服務傳輸信息,而與再下一層不發生關系。(4)相鄰兩層有明顯的介面。
除最低層可水平通信外,其他層只能垂直通信。
層和協議的集合被稱為網路的體系結構。為了幫助大家理解,我們從現實生活中的一個例子來理解網路的層次關系。假如一個只懂得法語的法國文學家和一個只懂得中文的中國文學家要進行學術交流,那麼他們可將論文翻譯成英語或某一種中間語言,然後交給各自的秘書選一種通信方式發給對方,如圖6-2所示。
圖6-2 中法文學家學術交流方式
下面介紹兩個重要的網路體系結構:OSI參考模型和TCP/IP參考模型。
1.OSI參考模型
由於世界各大型計算機廠商推出各自的網路體系結構,不同計算機廠商的設備相互通信困難。為建立更大范圍內的計算機網路,必然要解決異構網路的互連,因而國際標准化組織ISO於1977年提出「開放系統互連參考模型」,即著名的OSI(Open system interconnection/Reference Model)。它將計算機網路規定為物理層、數據鏈路層、網路層、傳輸層、會話層、表示層、應用層等七層,受到計算機界和通信界的極大關注。
2.TCP/IP參考模型
TCP/IP(Transmission Control Protocol/Internet protocol)協議是Internet使用的通信協議,由ARPANET研究中心開發。TCP/IP是一組協議集(Internet protocol suite),而TCP、IP是該協議中最重要最普遍使用的兩個協議,所以用TCP/IP來泛指該組協議。
TCP/IP協議的體系結構被分為四層:
(1)網路介面層 是該模型的最低層,其作用是負責接收IP數據報,並通過網路發送出去,或者從網路上接收網路幀,分離IP數據報。
(2)網路層 IP協議被定義駐留在這一層中,它負責將信息從一台主機傳到指定接收的另一台主機。主要功能是:定址、打包和路由選擇。
(3)傳輸層 提供了兩個協議用於數據傳輸,即傳輸控制協議TCP和通用數據協議UDP,負責提供准確可靠和高效的數據傳送服務。
(4)應用層 位於TCP/IP最高層,為用戶提供一組常用的應用程序協議。例如:簡單郵件傳輸協議SMTP、文件傳協議FTP、遠程登錄協議Telnet、超文本傳輸協議HTTP(該協議是後來擴充的)等。隨著Internet的發展,又開發了許多實用的應用層協議。
圖6-3是TCP/IP模型和OSI模型的簡單比較:
圖6-3 TCP/IP模型和OSI模型的對比
❻ 計算機網路安全體系結構包括什麼
計算機網路安全體系結構是由硬體網路、通信軟體以及操作系統構成的。
對於一個系統而言,首先要以硬體電路等物理設備為載體,然後才能運 行載體上的功能程序。通過使用路由器、集線器、交換機、網線等網路設備,用戶可以搭建自己所需要的通信網路,對於小范圍的無線區域網而言,人們可以使用這 些設備搭建用戶需要的通信網路,最簡單的防護方式是對無線路由器設置相應的指令來防止非法用戶的入侵,這種防護措施可以作為一種通信協議保護。
計算機網路安全廣泛採用WPA2加密協議實現協議加密,用戶只有通過使用密匙才能對路由器進行訪問,通常可以講驅動程序看作為操作系統的一部分,經過注冊表注冊後,相應的網路 通信驅動介面才能被通信應用程序所調用。網路安全通常是指網路系統中的硬體、軟體要受到保護,不能被更改、泄露和破壞,能夠使整個網路得到可持續的穩定運 行,信息能夠完整的傳送,並得到很好的保密。因此計算機網路安全設計到網路硬體、通信協議、加密技術等領域。
(6)目前計算機網路體系結構有哪幾種擴展閱讀
計算機安全的啟示:
1、按先進國家的經驗,考慮不安全因素,網路介面設備選用本國的,不使用外國貨。
2、網路安全設施使用國產品。
3、自行開發。
網路的拓撲結構:重要的是確定信息安全邊界
1、一般結構:外部區、公共服務區、內部區。
2、考慮國家利益的結構:外部區、公共服務區、內部區及稽查系統和代理伺服器定位。
3、重點考慮撥號上網的安全問題:遠程訪問伺服器,放置在什麼位置上,能滿足安全的需求。
❼ 計算機網路由哪幾部分組成
計算機網路的組成基本上包括:計算機、網路操作系統、傳輸介質(可以是有形的,也可以是無形的,如無線網路的傳輸介質就是空間)以及相應的應用軟體四部分。
計算機網路的分類與一般的事物分類方法一樣,可以按事物所具有的不同性質特點(即事物的屬性)分類。計算機網路通俗地講就是由多台計算機(或其它計算機網路設備)通過傳輸介質和軟體物理(或邏輯)連接在一起組成的。
雖然網路類型的劃分標准各種各樣,但是從地理范圍劃分是一種大家都認可的通用網路劃分標准。按這種標准可以把各種網路類型劃分為區域網、城域網、廣域網和互聯網四種。區域網一般來說只
能是一個較小區域內,城域網是不同地區的網路互聯,不過在此要說明的一點就是這里的網路劃分並沒有嚴格意義上地理范圍的區分,只能是一個定性的概念。
(7)目前計算機網路體系結構有哪幾種擴展閱讀:
計算機網路按廣義分類:
計算機網路也稱計算機通信網。關於計算機網路的最簡單定義是:一些相互連接的、以共享資源為目的的、自治的計算機的集合。若按此定義,則早期的面向終端的網路都不能算是計算機網路,而
只能稱為聯機系統(因為那時的許多終端不能算是自治的計算機)。但隨著硬體價格的下降,許多終端都具有一定的智能,因而「終端」和「自治的計算機」逐漸失去了嚴格的界限。若用微型計算
機作為終端使用,按上述定義,則早期的那種面向終端的網路也可稱為計算機網路。
另外,從邏輯功能上看,計算機網路是以傳輸信息為基礎目的,用通信線路將多個計算機連接起來的計算機系統的集合,一個計算機網路組成包括傳輸介質和通信設備。
從用戶角度看,計算機網路是這樣定義的:存在著一個能為用戶自動管理的網路操作系統。由它調用完成用戶所調用的資源,而整個網路像一個大的計算機系統一樣,對用戶是透明的。
一個比較通用的定義是:利用通信線路將地理上分散的、具有獨立功能的計算機系統和通信設備按不同的形式連接起來,以功能完善的網路軟體及協議實現資源共享和信息傳遞的系統。
從整體上來說計算機網路就是把分布在不同地理區域的計算機與專門的外部設備用通信線路互聯成一個規模大、功能強的系統,從而使眾多的計算機可以方便地互相傳遞信息,共享硬體、軟體、數
據信息等資源。簡單來說,計算機網路就是由通信線路互相連接的許多自主工作的計算機構成的集合體。
最簡單的計算機網路就只有兩台計算機和連接它們的一條鏈路,即兩個節點和一條鏈路。
參考資料:網路--計算機網路
❽ 計算機網路結構體系有哪些
計算機網路體系結構:是指計算機網路層次結構模型和各層協議的集合。它廣泛採用的是國際標准化組織(ISO)在1979年提出的開放系統互連(OSI-Open System Interconnection)的參考模型。OSI參考模型用物理層、數據鏈路層、網路層、傳送層、對話層、表示層和應用層七個層次描述網路的結構,它的規范對所有的廠商是開放的,具有知道國際網路結構和開放系統走向的作用。它直接影響匯流排、介面和網路的性能。目前常見的網路體系結構有FDDI、乙太網、令牌環網和快速乙太網等。從網路互連的角度看,網路體系結構的關鍵要素是協議和拓撲。
❾ 究竟網路有幾個層次
為了使不同計算機廠家生產的計算機能夠相互通信,以便在更大的范圍內建立計算機網路,國際標准化組織(ISO)在1978年提出了「開放系統互聯參考模型」,即著名的OSI/RM模型(Open System Interconnection/Reference Model)。它將計算機網路體系結構的通信協議劃分為七層,自下而上依次為:物理層(Physics Layer)、數據鏈路層(Data Link Layer)、網路層(Network Layer)、傳輸層(Transport Layer)、會話層(Session Layer)、表示層(Presentation Layer)、應用層(Application Layer)。其中第四層完成數據傳送服務,上面三層面向用戶。
除了標準的OSI七層模型以外,常見的網路層次劃分還有TCP/IP四層協議以及TCP/IP五層協議
1)物理層(Physical Layer)
激活、維持、關閉通信端點之間的機械特性、電氣特性、功能特性以及過程特性。該層為上層協議提供了一個傳輸數據的可靠的物理媒體。簡單的說,物理層確保原始的數據可在各種物理媒體上傳輸。物理層記住兩個重要的設備名稱,中繼器(Repeater,也叫放大器)和集線器。
2)數據鏈路層(Data Link Layer)
數據鏈路層在物理層提供的服務的基礎上向網路層提供服務,其最基本的服務是將源自網路層來的數據可靠地傳輸到相鄰節點的目標機網路層。為達到這一目的,數據鏈路必須具備一系列相應的功能,主要有:如何將數據組合成數據塊,在數據鏈路層中稱這種數據塊為幀(frame),幀是數據鏈路層的傳送單位;如何控制幀在物理信道上的傳輸,包括如何處理傳輸差錯,如何調節發送速率以使與接收方相匹配;以及在兩個網路實體之間提供數據鏈路通路的建立、維持和釋放的管理。數據鏈路層在不可靠的物理介質上提供可靠的傳輸。該層的作用包括:物理地址定址、數據的成幀、流量控制、數據的檢錯、重發等。
有關數據鏈路層的重要知識點:
1>數據鏈路層為網路層提供可靠的數據傳輸;
2>基本數據單位為幀;
3> 主要的協議:乙太網協議;
4> 兩個重要設備名稱:網橋和交換機。
3)網路層(Network Layer)
網路層的目的是實現兩個端系統之間的數據透明傳送,具體功能包括定址和路由選擇、連接的建立、保持和終止等。它提供的服務使傳輸層不需要了解網路中的數據傳輸和交換技術。如果您想用盡量少的詞來記住網路層,那就是「路徑選擇、路由及邏輯定址」。
網路層中涉及眾多的協議,其中包括最重要的協議,也是TCP/IP的核心協議——IP協議。IP協議非常簡單,僅僅提供不可靠、無連接的傳送服務。IP協議的主要功能有:無連接數據報傳輸、數據報路由選擇和差錯控制。與IP協議配套使用實現其功能的還有地址解析協議ARP、逆地址解析協議RARP、網際網路報文協議ICMP、網際網路組管理協議IGMP。具體的協議我們會在接下來的部分進行總結,有關網路層的重點為:
1> 網路層負責對子網間的數據包進行路由選擇。此外,網路層還可以實現擁塞控制、網際互連等功能;
2> 基本數據單位為IP數據報;
3> 包含的主要協議:
IP協議(Internet Protocol,網際網路互聯協議);
ICMP協議(Internet Control Message Protocol,網際網路控制報文協議);
ARP協議(Address Resolution Protocol,地址解析協議);
RARP協議(Reverse Address Resolution Protocol,逆地址解析協議)。
4> 重要的設備:路由器。
4)傳輸層(Transport Layer)
第一個端到端,即主機到主機的層次。傳輸層負責將上層數據分段並提供端到端的、可靠的或不可靠的傳輸。此外,傳輸層還要處理端到端的差錯控制和流量控制問題。
傳輸層的任務是根據通信子網的特性,最佳的利用網路資源,為兩個端系統的會話層之間,提供建立、維護和取消傳輸連接的功能,負責端到端的可靠數據傳輸。在這一層,信息傳送的協議數據單元稱為段或報文。
網路層只是根據網路地址將源結點發出的數據包傳送到目的結點,而傳輸層則負責將數據可靠地傳送到相應的埠。
有關網路層的重點:
1>傳輸層負責將上層數據分段並提供端到端的、可靠的或不可靠的傳輸以及端到端的差錯控制和流量控制問題;
2> 包含的主要協議:TCP協議(Transmission Control Protocol,傳輸控制協議)、UDP協議(User Datagram Protocol,用戶數據報協議);
3> 重要設備:網關。
5)會話層
會話層管理主機之間的會話進程,即負責建立、管理、終止進程之間的會話。會話層還利用在數據中插入校驗點來實現數據的同步。
6)表示層
表示層對上層數據或信息進行變換以保證一個主機應用層信息可以被另一個主機的應用程序理解。表示層的數據轉換包括數據的加密、壓縮、格式轉換等。
7)應用層
為操作系統或網路應用程序提供訪問網路服務的介面。
會話層、表示層和應用層重點:
1> 數據傳輸基本單位為報文;
2> 包含的主要協議:FTP(文件傳送協議)、Telnet(遠程登錄協議)、DNS(域名解析協議)、SMTP(郵件傳送協議),POP3協議(郵局協議),HTTP協議(Hyper Text Transfer Protocol)。
摘抄
❿ 什麼是計算機網路體系結構 包括哪些內容
計算機網路體系結構可以從網路體系結構、網路組織、網路配置三個方面來描述,網路組織是從網路的物理結構和網路的實現兩方面來描述計算機網路,網路配置是從網路應用方面來描述計算機網路的布局,硬體、軟體和通信線路來描述計算機網路,網路體系結構是從功能上來描述計算機網路結構。
它是一個分層次的模塊式結構。
從宏觀角度著重剖析了它們之間的聯系,數據通信原理,各層的數據傳輸單元,各層數據封裝原理,以及共同的各層主要功能,各層主要功能實現原理、主要通信協議,以及相關的計算機網路基礎知識。
相互通信的兩個計算機系統必須高度協調工作才行,而這種「協調」是相當復雜的。
「分層」可將龐大而復雜的問題,轉化為若干較小的局部問題,而這些較小的局部問題就比較易於研究和處理。
(10)目前計算機網路體系結構有哪幾種擴展閱讀:
網路體系結構的設計考慮:
層次之間的先後次序、任務是按照什麼先後順序來完成、層次之間的通信介面、任務的每個步驟之間如何協調
網路體系結構分層的好處:
促進標准化、各層相互獨立,技術升級和擴展靈活性好、便於方案設計和維護