當前位置:首頁 » 無線網路 » 神經網路信號分離
擴展閱讀
泉州無線網路資費 2025-07-25 20:24:36

神經網路信號分離

發布時間: 2022-09-19 21:39:14

⑴ 盲源分離的盲源分離的發展及發展趨勢

目前國際國內對盲源分離問題的研究工作仍處於不斷發展階段,新理論、新方法還在源源不斷地涌現。 1986年,法國學者Jeanny Herault和Christian Jutten提出了遞歸神經網路模型和基於Hebb學習律的學習演算法,以實現2個獨立源信號混合的分離。這一開創性的論文在信號處理領域中揭開了新的一章,即盲源分離問題的研究。
其後二十幾年來,對於盲信號分離問題,學者們提出了很多的演算法,每種演算法都在一定程度上取得了成功。從演算法的角度而言,BSS演算法可分為批處理演算法和自適應演算法;從代數函數和准則而言,又分為基於神經網路的方法、基於高階統計量的方法、基於互信息量的方法、基於非線性函數的方法等。
盡管國內對盲信號分離問題的研究相對較晚,但在理論和應用方面也取得很大的進展。清華大學的張賢達教授在其1996年出版的《時間序列分析——高階統計量方法》一書中,介紹了有關盲分離的理論基礎,其後關於盲分離的研究才逐漸多起來。近年來國內各類基金支持了盲信號處理理論和應用的項目,也成立了一些研究小組。 雖然盲源分離理論方法在最近20年已經取得了長足的發展,但是還有許多問題有待進一步研究和解決。首先是理論體系有待完善。實際採用的處理演算法或多或少都帶有一些經驗知識,對於演算法的穩定性和收斂性的證明不夠充分。盲源分離尚有大量的理論和實際問題有待解決,例如多維ICA問題、帶雜訊信號的有效分離方法、如何更有效地利用各種先驗知識成功分離或提取出源信號、一般性的非線性混合信號的盲分離、如何與神經網路有效地結合、源信號的數目大於觀察信號的數目時ICA方法等。另外,盲源分離可同其他學科有機結合,如模糊系統理論在盲分離技術中的應用可能是一個有前途的研究方向;盲源分離技術與遺傳演算法相結合,可以減少計算復雜度,提高收斂速度。如何有效提高演算法對源信號統計特性的學習和利用也需要進行深入研究。在硬體實現方面,盲分離問題也存在著極大的發展空間,例如用FPGA實現等。
經過人們將近20年的共同努力,有關盲分離的理論和演算法得到了較快發展,包括盲分離問題本身的可解性以及求解原理等方面的基本理論問題在一定程度上得到了解決,並提出了一些在分離能力、內存需求、計算速度等方面性能各異的演算法。由於該問題的理論研究深度和演算法實現難度都較大,目前對於盲分離的研究仍然很不成熟,難以滿足許多實際應用需求,許多理論問題和演算法實現的相應技術也有待進一步探索。

⑵ 人工神經網路評價法

人工神經元是人工神經網路的基本處理單元,而人工智慧的一個重要組成部分又是人工神經網路。人工神經網路是模擬生物神經元系統的數學模型,接受信息主要是通過神經元來進行的。首先,人工神經元利用連接強度將產生的信號擴大;然後,接收到所有與之相連的神經元輸出的加權累積;最後,將神經元與加權總和一一比較,當比閾值大時,則激活人工神經元,信號被輸送至與它連接的上一層的神經元,反之則不行。

人工神經網路的一個重要模型就是反向傳播模型(Back-Propagation Model)(簡稱BP模型)。對於一個擁有n個輸入節點、m個輸出節點的反向傳播網路,可將輸入到輸出的關系看作n維空間到m維空間的映射。由於網路中含有大量非線性節點,所以可具有高度非線性。

(一)神經網路評價法的步驟

利用神經網路對復墾潛力進行評價的目的就是對某個指標的輸入產生一個預期的評價結果,在此過程中需要對網路的連接弧權值進行不斷的調整。

(1)初始化所有連接弧的權值。為了保證網路不會出現飽和及反常的情況,一般將其設置為較小的隨機數。

(2)在網路中輸入一組訓練數據,並對網路的輸出值進行計算。

(3)對期望值與輸出值之間的偏差進行計算,再從輸出層逆向計算到第一隱含層,調整各條弧的權值,使其往減少該偏差的方向發展。

(4)重復以上幾個步驟,對訓練集中的各組訓練數據反復計算,直至二者的偏差達到能夠被認可的程度為止。

(二)人工神經網路模型的建立

(1)確定輸入層個數。根據評價對象的實際情況,輸入層的個數就是所選擇的評價指標數。

(2)確定隱含層數。通常最為理想的神經網路只具有一個隱含層,輸入的信號能夠被隱含節點分離,然後組合成新的向量,其運算快速,可讓復雜的事物簡單化,減少不必要的麻煩。

(3)確定隱含層節點數。按照經驗公式:

災害損毀土地復墾

式中:j——隱含層的個數;

n——輸入層的個數;

m——輸出層的個數。

人工神經網路模型結構如圖5-2。

圖5-2人工神經網路結構圖(據周麗暉,2004)

(三)人工神經網路的計算

輸入被評價對象的指標信息(X1,X2,X3,…,Xn),計算實際輸出值Yj

災害損毀土地復墾

比較已知輸出與計算輸出,修改K層節點的權值和閾值。

災害損毀土地復墾

式中:wij——K-1層結點j的連接權值和閾值;

η——系數(0<η<1);

Xi——結點i的輸出。

輸出結果:

Cj=yj(1-yj)(dj-yj) (5-21)

式中:yj——結點j的實際輸出值;

dj——結點j的期望輸出值。因為無法對隱含結點的輸出進行比較,可推算出:

災害損毀土地復墾

式中:Xj——結點j的實際輸出值。

它是一個輪番代替的過程,每次的迭代都將W值調整,這樣經過反復更替,直到計算輸出值與期望輸出值的偏差在允許值范圍內才能停止。

利用人工神經網路法對復墾潛力進行評價,實際上就是將土地復墾影響評價因子與復墾潛力之間的映射關系建立起來。只要選擇的網路結構合適,利用人工神經網路函數的逼近性,就能無限接近上述映射關系,所以採用人工神經網路法進行災毀土地復墾潛力評價是適宜的。

(四)人工神經網路方法的優缺點

人工神經網路方法與其他方法相比具有如下優點:

(1)它是利用最優訓練原則進行重復計算,不停地調試神經網路結構,直至得到一個相對穩定的結果。所以,採取此方法進行復墾潛力評價可以消除很多人為主觀因素,保證了復墾潛力評價結果的真實性和客觀性。

(2)得到的評價結果誤差相對較小,通過反復迭代減少系統誤差,可滿足任何精度要求。

(3)動態性好,通過增加參比樣本的數量和隨著時間不斷推移,能夠實現動態追蹤比較和更深層次的學習。

(4)它以非線性函數為基礎,與復雜的非線性動態經濟系統更貼近,能夠更加真實、更為准確地反映出災毀土地復墾潛力,比傳統評價方法更適用。

但是人工神經網路也存在一定的不足:

(1)人工神經網路演算法是採取最優化演算法,通過迭代計算對連接各神經元之間的權值不斷地調整,直到達到全局最優化。但誤差曲面相當復雜,在計算過程中一不小心就會使神經網路陷入局部最小點。

(2)誤差通過輸出層逆向傳播,隱含層越多,逆向傳播偏差在接近輸入層時就越不準確,評價效率在一定程度上也受到影響,收斂速度不及時的情況就容易出現,從而造成個別區域的復墾潛力評價結果出現偏離。

⑶ 神經網路的主要內容特點

(1) 神經網路的一般特點
作為一種正在興起的新型技術神經網路有著自己的優勢,他的主要特點如下:
① 由於神經網路模仿人的大腦,採用自適應演算法。使它較之專家系統的固定的推理方式及傳統計算機的指令程序方式更能夠適應化環境的變化。總結規律,完成某種運算、推理、識別及控制任務。因而它具有更高的智能水平,更接近人的大腦。
② 較強的容錯能力,使神經網路能夠和人工視覺系統一樣,根據對象的主要特徵去識別對象。
③ 自學習、自組織功能及歸納能力。
以上三個特點是神經網路能夠對不確定的、非結構化的信息及圖像進行識別處理。石油勘探中的大量信息就具有這種性質。因而,人工神經網路是十分適合石油勘探的信息處理的。
(2) 自組織神經網路的特點
自組織特徵映射神經網路作為神經網路的一種,既有神經網路的通用的上面所述的三個主要的特點又有自己的特色。
① 自組織神經網路共分兩層即輸入層和輸出層。
② 採用競爭學記機制,勝者為王,但是同時近鄰也享有特權,可以跟著競爭獲勝的神經元一起調整權值,從而使得結果更加光滑,不想前面的那樣粗糙。
③ 這一網路同時考慮拓撲結構的問題,即他不僅僅是對輸入數據本身的分析,更考慮到數據的拓撲機構。
權值調整的過程中和最後的結果輸出都考慮了這些,使得相似的神經元在相鄰的位置,從而實現了與人腦類似的大腦分區響應處理不同類型的信號的功能。
④ 採用無導師學記機制,不需要教師信號,直接進行分類操作,使得網路的適應性更強,應用更加的廣泛,尤其是那些對於現在的人來說結果還是未知的數據的分類。頑強的生命力使得神經網路的應用范圍大大加大。

⑷ 關於神經網路信號處理

神經元網路應用面很廣,理論上說它可以應用到你能想到的各個領域,神經元網路在信號處理方面的應用我接觸過的有數據壓縮,模式識別,還有很多,前景不錯。

⑸ 神經網路模型的信息處理

人工神經網路對神經元的興奮與抑制進行模擬,故而首先應了解神經元的興奮與抑制狀態。
一個神經元的興奮和抑制兩種狀態是由細胞膜內外之間不同的電位差來表徵的。在抑制狀態,細胞膜內外之間有內負外正的電位差,這個電位差大約在-50— -100mv之間。在興奮狀態,則產生內正外負的相反電位差,這時表現為約60—100mv的電脈沖。細胞膜內外的電位差是由膜內外的離子濃度不同導致的。細胞的興奮電脈沖寬度一般大約為1ms。神經元的興奮過程電位變化如圖1—3所示。
圖1-3.神經元的興奮過程電位變化 對神經細胞的研究結果表明:神經元的電脈沖幾乎可以不衰減地沿著軸突傳送到其它神經元去。
由神經元傳出的電脈沖信號通過軸突,首先到達軸突末梢,這時則使其中的囊泡產生變化從而釋放神經遞質,這種神經遞質通過突觸的間隙而進入到另一個神經元的樹突中。樹突上的受體能夠接受神經遞質從而去改變膜向離子的通透性.使膜外內離子濃度差產生變化;進而使電位產生變化。顯然,信息就從一個神經元傳送到另一個神經元中。
當神經元接受來自其它神經元的信息時,膜電位在開始時是按時間連續漸漸變化的。當膜電位變化經超出一個定值時,才產生突變上升的脈沖,這個脈沖接著沿軸突進行傳遞。神經元這種膜電位高達一定閥值才產生脈沖傳送的特性稱閥值特性。
這種閥值特性從圖1—3中也可以看出。
神經元的信息傳遞除了有閥值特性之外,還有兩個特點。一個是單向性傳遞,即只能從前一級神經元的軸突末梢傳向後一級神經元的樹突或細胞體,不能反之。另一個是延時性傳遞.信息通過突觸傳遞,通常會產生0.5-1ms的延時。 神經元對來自其它神經元的信息有時空綜合特性。
在神經網路結構上,大量不同的神經元的軸突末梢可以到達同一個神經元的樹突並形成大量突觸。來源不同的突觸所釋放的神經遞質都可以對同一個神經元的膜電位變化產生作用。因此,在樹突上,神經元可以對不同來源的輸入信息進行綜合。這就是神經元對信息的空間綜合特性。
對於來自同一個突觸的信息,神經元可以對於不同時間傳入的信息進行綜合。故神經元對信息有時間綜合特性。 從神經元軸突上傳遞的信息是等幅、恆寬、編碼的離散電脈沖信號,故而是一個數字量。但在突觸中神經遞質的釋放和樹突中膜電位的變化是連續的。故而,這時說明突觸有D/A功能。在神經元的樹突膜電位高過一定閥值時,則又變成電脈沖方式由軸突傳送出去。故而,這個過程說明神經元有A/D功能。
很明顯,信息通過一個神經元傳遞時,神經元對信息執行了D/A、A/D轉換過程。
從上面可知,神經元對信息的處理和傳遞有閥值,D/A、A/D和綜合等一系列特性和功能。

⑹ 神經網路的特點

不論何種類型的人工神經網路,它們共同的特點是,大規模並行處理,分布式存儲,彈性拓撲,高度冗餘和非線性運算。因而具有很髙的運算速度,很強的聯想能力,很強的適應性,很強的容錯能力和自組織能力。這些特點和能力構成了人工神經網路模擬智能活動的技術基礎,並在廣闊的領域獲得了重要的應用。例如,在通信領域,人工神經網路可以用於數據壓縮、圖像處理、矢量編碼、差錯控制(糾錯和檢錯編碼)、自適應信號處理、自適應均衡、信號檢測、模式識別、ATM流量控制、路由選擇、通信網優化和智能網管理等等。
人工神經網路的研究已與模糊邏輯的研究相結合,並在此基礎上與人工智慧的研究相補充,成為新一代智能系統的主要方向。這是因為人工神經網路主要模擬人類右腦的智能行為而人工智慧主要模擬人類左腦的智能機理,人工神經網路與人工智慧有機結合就能更好地模擬人類的各種智能活動。新一代智能系統將能更有力地幫助人類擴展他的智力與思維的功能,成為人類認識和改造世界的聰明的工具。因此,它將繼續成為當代科學研究重要的前沿。

怎麼理解信息幾何對方法論

是理解深度神經網路學習機制的重要工具。
Shun-ichi Amari是日本理化所的榮休教授,神經網路研究的教父級人物,一生做出了大量開拓性的成果,包括獨立發展了信息幾何(Information Geometry),首次提出了隨機梯度下降演算法(1967)、連續吸引子神經網路(1977)、Amari-Hopfield模型、nature gradient等。
信息幾何的理論在神經網路、熱力學系統、控制系統以及Birkhoff系統中應用。信息幾何是由日本學者Amari 提出的,其最初的基本思想是建立擁有黎曼度量和對偶聯絡的微分流形,並引入散度作為距離函數,建立了信息幾何框架,並成功地將這一理論應用於解決統計理論、控制理論、神經網路、盲源信號分離、密碼學, 熱動力、生物學、經濟學等領域的實際問題。
信息幾何是基於微分幾何發展出來的一套理論體系。主要應用於統計分析、控制理論、神經網路、量子力學、資訊理論等領域。

什麼是離散型神經網路

近年來離散型時滯神經網路的穩定性一直是人們研究的熱點問題。考慮到在網路中信號從一點傳送到另一點可能要經過很多網路段,而不同的網路段一般有不同的傳輸條件,這就導致多個加性時滯。研究多個加性時滯的離散型神經網路的穩定性具有重要的理論意義和實際價值。對於這類神經網路,本文以兩個加性時滯為例首先研究了確定參數情況下的全局指數穩定性問題。利用Lyapunov穩定性理論和線性矩陣不等式方法,得到了這類神經網路全局指數穩定性條件。該條件保守性小而易於檢驗。當參數不確定時,對於兩個加性時滯的離散神經網路研究了魯棒漸近穩定性問題,得到了這類不確定神經網路魯棒漸近穩定的新條件。最後,對於確定參數情況下的穩定性結果,本文進行了改進而得到了簡潔而保守性小的穩定性判據。論文按以下結構進行組織: 第一章介紹了多個加性時滯離散神經網路穩定性的研究背景,在此基礎上提出了本文的研究問題。 第二章介紹了本文所需的預備知識,包括李亞普諾夫穩定性理論和不等式定理等。 第三章研究了確定參數情況下的帶兩個加性時滯離散神經網路的全局指數穩定性問題。通過構造Lyapunov-Krasovskii泛函,利用自由權值矩陣方法處理該Lyapunov-Krasovskii泛函的差分,得到了這類神經網路全局指數穩定性結果。所得穩定性條件可方便地使用MATLAB中的LMI工具箱檢驗。 第四章對范數有界參數不確定情況下的帶兩個加性時滯離散神經網路,研究了魯棒漸近穩定性問題。採用李亞普諾夫函數方法,得到了這類不確定神經網路的魯棒漸近穩定性判據,進一步舉例說明了該判據的有效性。 第五章對於第三章所得結果進行了改進。通過構造新的Lyapunov-Krasovskii泛函,應用一種新技術計算該Lyapunov-Krasovskii泛函的差分,得到了新的穩定性結果。所得穩定性結果涉及的矩陣變數少,而且具有較小的保守性。 第六章是全文總結,並指出了下一步要研究的問題。

⑼ 什麼是神經網路

神經網路是機器學習的一個流派。這是現今最火的一個學派。我們在第一講中,已經知道人學習知識是通過神經元的連接,科學家通過模仿人腦機理發明了人工神經元。技術的進一步發展,多層神經元的連接,就形成了神經網路。那麼神經網路是怎麼搭建起來的呢?神經元是構建神經網路的最基本單位, 這張圖就是一個人工神經元的原理圖,非常簡單,一個神經元由一個加法器和一個門限器組成。加法器有一些輸入,代表從其他神經元來的信號,這些信號分別被乘上一個系數後在加法器里相加,如果相加的結果大於某個值,就「激活」這個神經元,接通到下個神經元,否則就不激活。原理就這么簡單,做起來也很簡單。今天所有的神經網路的基本單元都是這個。輸入信號乘上的系數,我們也叫「權重」,就是網路的參數,玩神經網路就是調整權重,讓它做你想讓它做的事。 一個神經元只能識別一個東西,比如,當你訓練給感知器會「認」數字「8」,你給它看任何一個數字,它就會告訴你,這是「8」還不是「8」。為了讓機器識別更多更復雜的圖像,我們就需要用更多的神經元。人的大腦由 1000 億個神經元構成,人腦神經元組成了一個很復雜的三維立體結構。

⑽ 神經網路的工作原理

「人腦是如何工作的?」
「人類能否製作模擬人腦的人工神經元?」
多少年以來,人們從醫學、生物學、生理學、哲學、信息學、計算機科學、認知學、組織協同學等各個角度企圖認識並解答上述問題。在尋找上述問題答案的研究過程中,逐漸形成了一個新興的多學科交叉技術領域,稱之為「神經網路」。神經網路的研究涉及眾多學科領域,這些領域互相結合、相互滲透並相互推動。不同領域的科學家又從各自學科的興趣與特色出發,提出不同的問題,從不同的角度進行研究。
人工神經網路首先要以一定的學習准則進行學習,然後才能工作。現以人工神經網路對於寫「A」、「B」兩個字母的識別為例進行說明,規定當「A」輸入網路時,應該輸出「1」,而當輸入為「B」時,輸出為「0」。
所以網路學習的准則應該是:如果網路作出錯誤的判決,則通過網路的學習,應使得網路減少下次犯同樣錯誤的可能性。首先,給網路的各連接權值賦予(0,1)區間內的隨機值,將「A」所對應的圖象模式輸入給網路,網路將輸入模式加權求和、與門限比較、再進行非線性運算,得到網路的輸出。在此情況下,網路輸出為「1」和「0」的概率各為50%,也就是說是完全隨機的。這時如果輸出為「1」(結果正確),則使連接權值增大,以便使網路再次遇到「A」模式輸入時,仍然能作出正確的判斷。
普通計算機的功能取決於程序中給出的知識和能力。顯然,對於智能活動要通過總結編製程序將十分困難。
人工神經網路也具有初步的自適應與自組織能力。在學習或訓練過程中改變突觸權重值,以適應周圍環境的要求。同一網路因學習方式及內容不同可具有不同的功能。人工神經網路是一個具有學習能力的系統,可以發展知識,以致超過設計者原有的知識水平。通常,它的學習訓練方式可分為兩種,一種是有監督或稱有導師的學習,這時利用給定的樣本標准進行分類或模仿;另一種是無監督學習或稱無為導師學習,這時,只規定學習方式或某些規則,則具體的學習內容隨系統所處環境 (即輸入信號情況)而異,系統可以自動發現環境特徵和規律性,具有更近似人腦的功能。
神經網路就像是一個愛學習的孩子,您教她的知識她是不會忘記而且會學以致用的。我們把學習集(Learning Set)中的每個輸入加到神經網路中,並告訴神經網路輸出應該是什麼分類。在全部學習集都運行完成之後,神經網路就根據這些例子總結出她自己的想法,到底她是怎麼歸納的就是一個黑盒了。之後我們就可以把測試集(Testing Set)中的測試例子用神經網路來分別作測試,如果測試通過(比如80%或90%的正確率),那麼神經網路就構建成功了。我們之後就可以用這個神經網路來判斷事務的分類了。
神經網路是通過對人腦的基本單元——神經元的建模和聯接,探索模擬人腦神經系統功能的模型,並研製一種具有學習、聯想、記憶和模式識別等智能信息處理功能的人工系統。神經網路的一個重要特性是它能夠從環境中學習,並把學習的結果分布存儲於網路的突觸連接中。神經網路的學習是一個過程,在其所處環境的激勵下,相繼給網路輸入一些樣本模式,並按照一定的規則(學習演算法)調整網路各層的權值矩陣,待網路各層權值都收斂到一定值,學習過程結束。然後我們就可以用生成的神經網路來對真實數據做分類。
人工神經網路早期的研究工作應追溯至20世紀40年代。下面以時間順序,以著名的人物或某一方面突出的研究成果為線索,簡要介紹