1. 網線是怎麼傳輸數據的
一般情況下,網路從上至下分為五層:應用層、傳輸層、網路層、數據鏈路層、物理層。每一層都有各自需要遵守的規則,稱之為「協議」。TCP/IP協議就是一組最常用的網路協議。
網線在網路中屬於物理層,計算機中所需要傳輸的數據根據這些協議被分解成一個一個數據包(其中包括本地機和目的機的地址)後,按照一定的原則最後通過網線傳輸給目的機。通俗講,和我們去寄信的道理一樣,先寫好信的內容(計算機上的數據)、裝信封然後在封面上寫地址(打包成數據包,裡麵包含本地機和目的機的地址)、寄出(傳輸),那麼網線就相當於你的地址和你要寄到的地址之間的路。
(1)如上所述,和電線傳輸電的原理一樣,只不過網線上傳輸的就是脈沖電信號,而且遵守一定的電氣規則。
(2)計算機上的數據都是用0和1來保存的,所以在網線上傳輸時就要用一個電壓表示數據0,用另一個電壓表示數據1。
(3)網線上傳輸的是數字信號
(4)網線在傳輸數據就是傳輸電信號,就會有電流通過,那麼就會產生電磁場,幾根線之間的電磁場就會互相干擾,會影響電壓,使得數據失真,所以把絞在一起就可以有效的抵消掉這種線之間的互相電磁干擾。
網線中傳輸的是數字信號,網卡工作在物理層,是將數據根據OSI的七層協議,從要傳輸的數據一級一級的轉換成幀數據,用電信號的方式傳輸出去,接收方依同樣的原理,轉換成對方的原始數據。
RJ-45的接頭實現了網卡和網線的連接。它裡面有8個銅片可以和網線中的4對雙絞(8根)線對應連接。其中100M的網路中1、2是傳送數據的,3、6是接收數據的。1、2之間是一對差分信號,也就是說它們的波形一樣,但是相位相差180度,同一時刻的電壓幅度互為正負。這樣的信號可以傳遞的更遠,抗干擾能力強。同樣的,3、6也一樣是差分信號。
網線中的8根線,每兩根扭在一起成為一對。我們製作網線的時候,一定要注意要讓1、2在其中的一對,3、6在一對。否則長距離情況下使用這根網線的時候會導致無法連接或連接很不穩定。
首先說一下差分方式傳輸。所謂差分方式傳輸,就是發送端在兩條信號線上傳輸幅值相等相位相反的電信號,接收端對接受的兩條線信號作減法運算,這樣獲得幅值翻倍的信號。其抗干擾的原理是:假如兩條信號線都受到了同樣(同相、等幅)的干擾信號,由於接受端對接受的兩條線的信號作減法運算,因此干擾信號被 基本抵消,那麼怎樣才能保證兩條信號線受到的干擾信號盡量是同相、等幅的呢?辦法之一那就要將兩根線扭在一起,按照電磁學的原理分析出:可以近似地認為兩條信號線受到的干擾信號是同相、等幅的。 兩條線交在一起後,既會抵抗外界的干擾也會防止自己去干擾別人。一般常用的就是雙絞線。
大多數區域網使用非屏蔽雙絞線(UTP—Unshielded Twisted Pair)作為布線的傳輸介質來組網,網線由一定距離長的雙絞線與RJ45頭組成。雙絞線由8根不同顏色的線分成4對絞合在一起,成隊扭絞的作用是盡可能減少電磁輻射與外部電磁干擾的影響,雙絞線可按其是否外加金屬網絲套的屏蔽層而區分為屏蔽雙絞線(STP)和非屏蔽雙絞線(UTP)。在EIA/TIA-568A標准中,將雙絞線按電氣特性區分有:三類、四類、五類線。網路中最常用的是三類線和五類線,超五類,目前已有六類以上線。第三類雙絞線在LAN中常用作為10Mbps乙太網的數據與話音傳輸,符合IEEE802.3 10Base-T的標准。第五類雙絞線目前佔有最大的LAN市場,最高速率可達100Mbps,符合IEEE802.3 100Base-T的標准。做好的網線要將RJ45水晶頭接入網卡或HUB等網路設備的RJ45插座內。相應地RJ45插頭座也區分為三類或五類電氣特性。RJ45水晶頭由金屬片和塑料構成,特別需要注意的是引腳序號,當金屬片面對我們的時候從左至右引腳序號是1-8, 這序號做網路聯線時非常重要,不能搞錯。雙絞線的最大傳輸距離為100米。 EIA/TIA的布線標准中規定了兩種雙絞線的線序568B與568A。
標准568B:橙白--1,橙--2,綠白--3,藍--4,藍白--5,綠--6,棕白--7,棕--8
標准568A:綠白--1,綠--2,橙白--3,藍--4,藍白--5,橙--6,棕白--7,棕--8
568A和568B兩者有何區別呢?後者是前者的升級和完善,但是後者還處於草案階段,包含永久鏈路的定義和六類標准。另外在綜合布線的施工中,有著568A和568B兩種不同的打線方式,兩種方式對性能沒有影響,但是必須強調的是在一個工程中只能使用一種打線方式。
至於5類和超5類的不同主要是應用的不同。5類系統在使用過程中只是使用其中的兩對線纜,採用的是半雙工,而超5類為了滿足千兆乙太網的應用,採用四對全雙工傳輸。因而遠端串擾(FEXT),回波損耗(RL)、綜合近端串擾(PSNEXT)、綜合ACR和傳輸延遲也成為必須考慮的參數。所以超5類比5類有著更高的性能要求。6類和5類實質的區別在於它們的帶寬不同,5類只有100MHz,六類是250MHz。它們支持的應用也因為性能的不同而不同,6類支持更高級別的應用。在性能上6類也比5類有更高的要求,為了提高性能,在結構上6類比5類也要復雜一些RJ45接頭的8個接腳的識別方法是,銅接點朝自己,頭朝右,從上往下數,分別是1、2、3、4、5、6、7、8。
在整個網路布線中應用一種布線方式,但兩端都有RJ-45 的網路聯線無論是採用568A,還是568B, 在網路中都是通用的。規定雙工方式下本地的1、2兩腳為信號發送端,3、6兩腳為信號接收端,所以講,這兩對信號必須分別使用一對雙絞線進行信號傳輸。在做線時要特別注意。現在100M網一般使用568B方式,1、2兩腳使用橙色的那對線,其中白橙線接1腳;3、6兩腳使用綠色的那對線,其中白綠線接3腳,綠線接6腳,剩下的兩對線在10M、100M快速乙太網中一般不用,通常將兩個接頭的4、5和7、8兩接頭分別使用 一對雙絞線直連,4、5用藍色的那對線,4為藍色,5為白藍色;7、8用棕色的那對線,7為白棕色、8為棕色。如果網線兩頭都按一種方式這么做的話就叫做直連纜方式或直通線方式。
如果網線的兩頭不按一種方式,一頭是568B,另一頭是568A,那麼這種做法叫交*纜,其實就是只須將其中一個 頭在568B的基礎上1、2和3、6對調一下就行。不同的做法用在不同的環境,後面會討論。
很多人以為做直連纜時將線排成,這是錯誤的。這既不是568A也不是568B。這種做法3、6信號線未絞在一起,失去了雙絞線的屏蔽作用。雖然在傳輸距離近時能正常使用不容易被發現,當傳輸距離遠時會出現丟包,或者導致區域網速度慢,很多人會懷疑網卡質量和網線質量,往往不會想到是線做的有問題。
當網線作為區域網線路時,電壓不超過3伏
作為電話線路時,電話在待機狀態(即沒拿起來時)供電電壓為-48V(反向電位) 當電話被打通需要震鈴時,供電電壓為+48V(正向電位)並且疊加24V 25HZ交流,使其成為72V交流25HZ震盪信號。這樣就會震鈴了。 當拿起電話後(無論是對方打來還是你自己拿起)電壓從-48V下降並轉換為+8—+18V(這個由你線路距離局端設備遠近而不同) 電話是以恆流方式供電。也就是,電流一定,功率越大,電壓越高。並且除了震鈴之外,其他的全部為直流送電,包括脈沖直流 並且,如果是之後新裝的線路中,大多地區已經使用數字模擬混合接入,即若你的電話為06年之後購買並符合標準的,則為數字信號,用載波模式裝載到線路中傳輸,若為之前的或者局端設備還沒有更新,那麼則是模擬信號,用電流高低震盪的方式傳送。
作為電口出來的網線時,網線供電器的輸出電壓一般是24V或者48V,INTEL的設備就是24V,CISCO和神腦的設備就是48V,這樣經過100米的網線傳輸後,電壓還是足夠的,而這些網路設備內部還有一個轉換電路,將這些可能高於要求的電壓降到正常范圍內。
數字信號從Internet上下載下來,通過ISP接入你所在區域的交換機,通過D/A變換變成模擬信號,經過4線至2線的變換後,傳到你的數據機,再經過一次A/D變換,還原成計算機可接受的數字信號。
評論
2. 網路中的信號是如何傳輸的
在物理層靠電信號,也就是0 1 代碼編碼通過一定的協議進行傳輸,在第二層,是以幀格式進行傳輸,第三層是報文形式。都是要轉化成第一層物理層的0 1 代碼進行傳輸。
3. 寬頻信號是怎麼傳輸的
基帶信號將數字1和0直接用兩種不同的電壓表示,然後送到線路上傳輸。寬頻信號是將基帶信號調制後形成的頻分復用模擬信號。採用基帶信號傳輸,一條電纜只能傳輸一路數字信號,而採用寬頻信號傳輸,一條電纜中可同時傳送多路的數字信號,提高了線路的利用率。
4. 怎樣實現遠距離傳送網路信號
有那種定向的無線橋接設備,在兩端一邊裝一個,注意角度,2公里沒問題的,不過中間不能有障礙物。。不要用光纖,光纖易碎,除非你用管子套起來,或者埋在地下。
5. 視頻信號如何在計算機網路中傳輸
目前,高清視頻信號有模擬、數字、網路三種傳輸方式。前兩種方式用於傳輸無損、無壓縮的模擬和數字高清信號。
模擬高清信號傳輸一般採用YPbPr分量傳輸,一路高清視頻信號需要三根同軸線纜同時傳輸,線纜使用量非常大。分量傳輸的距離雖然可以通過第三方設備延伸,但由於傳輸的是模擬信號,經遠距離傳輸後信號有損。因此,YPbPr分量傳輸不適合於高清監控。
數字高清信號傳輸一般採用DVI、HDMI或者HD-SDI傳輸,其中DVI或HDMI的傳輸距離只有幾米,不適合用於監控傳輸,HD-SDI雖可以傳輸百米左右,但對同軸電纜的要求很高,線纜的價格也非常昂貴,因此,對於系統中大規模的應用也只能望而卻步。
網路高清信號傳輸,顧名思義,是通過網路傳輸方式傳輸網路高清視頻信號,常採用星形架構的乙太網絡實現高清網路視頻信號的傳輸。傳輸距離根據選用的線路不同,從百米到幾十公里,與之前模擬、數字這兩種方式相比,傳輸的造價相對較低,且性能穩定,是目前在高清監控系統中應用范圍最廣的一種高性價比傳輸方式。
6. 寬頻數據是如何傳輸的
數據傳輸方式(data transmission mode) 數據在傳輸信道上傳遞的方式。若按被傳輸的數據信號的特點,可分為基帶傳輸、頻帶傳輸和數字數據傳輸;若按數據傳輸的順序可分為並行傳輸和串列傳輸;若按數據傳輸的同步方式可分為同步傳輸和非同步傳輸;若按數據傳輸的流向和時間可分為單工、半雙工和全雙工傳輸。
基帶、頻帶和數字數據傳輸 ①基帶傳輸是指由數據終端設備(DTE)送出的二進制「1」或「0」的電信號直接送到電路的傳輸方式。基帶信號未經調制,可以經過碼形變換(或波形變換)進行驅動後直接傳輸。基帶信號的特點是頻譜中含有直流、低頻和高頻分量,隨著頻率升高,其幅度相應減小,最後趨於零。基帶傳輸多用在短距離的數據傳輸中,如近程計算機間數據通信或區域網中用雙絞線或同軸電纜為介質的數據傳輸。②大多數傳輸信道是帶通型特性,基帶信號通不過。採用調制方法把基帶信號調制到信道帶寬范圍內進行傳輸,接收端通過解調方法再還原出基帶信號的方式,稱為頻帶傳輸。這種方式可實現遠距離的數據通信,例如利用電話網可實現全國或全球范圍的數據通信。③數字數據傳輸是利用數字話路傳輸數據信號的一種方式。例如,利用PCM(脈沖編碼調制)數字電話通路,每一個話路可以傳輸64kbit/s的數據信號,不需要調制,效率高,傳輸質量好,是數據通信很好的一種傳輸方式。
並行傳輸與串列傳輸 ①並行傳輸是構成字元的二進制代碼在並行信道上同時傳輸的方式。例如,8單位代碼字元要用8條信道並行同時傳輸,一次傳一個字元,收、發雙方不存在同步問題,速度快,但信道多、投資大,數據傳輸中很少採用。②串列傳輸是構成二進制代碼在一條信道上以位(碼 元)為單位,按時間順序逐位傳輸的方式。按位發送,逐位接收,同時還要確認字元,所以要採取同步措施。速度雖慢,但只需一條傳輸信道,投資小,易於實現,是數據傳輸採用的主要傳輸方式。
非同步傳輸和同步傳輸 ①非同步傳輸是字元同步傳輸的方式,又稱起止式同步。當發送一個字元代碼時,字元前面要加一個「起」信號,長度為1個碼元寬,極性為「0」,即空號極性;而在發完一個字元後面加一個「止」信號,長度為1,1.5(國際2號代碼時用)或2個碼元寬,極性為「1」,即傳號極性。接收端通過檢測起、止信號,即可區分出所傳輸的字元。字元可以連續發送,也可單獨發送,不發送字元時,連續發送止信號。每一個字元起始時刻可以是任意的,一個字元內碼元長度是相等的,接收端通過止信號到起信號的跳變(「1」 「0」) 來檢測一個新字元的開始。該方式簡單,收、發雙方時鍾信號不需要精確同步。缺點是增加起、止信號,效率低,使用於低速數據傳輸中。②同步傳輸是位(碼元)同步傳輸方式。該方式必須在收、發雙方建立精確的位定時信號,以便正確區分每位數據信號。在傳輸中,數據要分成組(或稱幀),一幀含多個字元代碼或多個獨立碼元。在發送數據前,在每幀開始必須加上規定的幀同步碼元序列,接收端檢測出該序列標志後,確定幀的開始,建立雙方同步。接收端DCE從接收序列中提取位定時信號,從而達到位(碼元)同步。同步傳輸不加起、止信號,傳輸效率高,使用於2 400 bit/s以上數據傳輸,但技術比較復雜。
單工、半雙工和全雙工傳輸 單工傳輸指數據只能按單一方向發送和接收;半雙工傳輸指數據可以在兩個方向傳輸但不能同時進行,即交替收、發;全雙工傳輸指數據可以在兩個方向同時傳輸,即同時收和發。一般四線線路為全雙工數據傳輸,二線線路可實現全雙工數據傳輸。
7. 視頻信號如何在計算機網路中傳輸
應用層處理信號,也就是打包,向下層傳遞,下一層依次封裝對應的協議。最後到物理層,在物理層傳輸,中間遇到路由,解包,讀取,打包,轉發。然後到達目的主機,依次有底層解包向上層傳遞。到應用層顯示。。
8. 電腦怎樣通過互聯網傳輸數據
網路中數據傳輸過程
我們每天都在使用互聯網,我們電腦上的數據是怎麼樣通過互聯網傳輸到到另外的一台電腦上的呢?
我們知道現在的互聯網中使用的TCP/IP協議是基於,OSI(開放系統互聯)的七層參考模型的,(雖然不是完全符合)從上到下分別為 應用層 表示層 會話層 傳輸層 網路層 數據鏈路層和物理層。其中數據鏈路層又可是分為兩個子層分別為邏輯鏈路控制層(Logic Link Control,LLC )和介質訪問控制層((Media Access Control,MAC )也就是平常說的MAC層。LLC對兩個節點中的鏈路進行初始化,防止連接中斷,保持可靠的通信。MAC層用來檢驗包含在每個楨中的地址信息。在下面會分析到。還要明白一點路由器是在網路層的,而網卡在數據鏈路層。
我們知道,ARP(Address Resolution Protocol,地址轉換協議)被當作底層協議,用於IP地址到物理地址的轉換。在乙太網中,所有對IP的訪問最終都轉化為對網卡MAC地址的訪問。如果主機A的ARP列表中,到主機B的IP地址與MAC地址對應不正確,由A發往B數據包就會發向錯誤的MAC地址,當然無法順利到達B,結 果是A與B根本不能進行通信。
首先我們分析一下在同一個網段的情況。假設有兩台電腦分別命名為A和B,A需要相B發送數據的話,A主機首先把目標設備B的IP地址與自己的子網掩碼進行「與」操作,以判斷目標設備與自己是否位於同一網段內。如果目標設備在同一網段內,並且A沒有獲得與目標設備B的IP地址相對應的MAC地址信息,則源設備(A)以第二層廣播的形式(目標MAC地址為全1)發送ARP請求報文,在ARP請求報文中包含了源設備(A)與目標設備(B)的IP地址。同一網段中的所有其他設備都可以收到並分析這個ARP請求報文,如果某設備發現報文中的目標IP地址與自己的IP地址相同,則它向源設備發回ARP響應報文,通過該報文使源設備獲得目標設備的MAC地址信息。為了減少廣播量,網路設備通過ARP表在緩存中保存IP與MAC地址的映射信息。在一次 ARP的請求與響應過程中,通信雙方都把對方的MAC地址與IP地址的對應關系保存在各自的ARP表中,以在後續的通信中使用。ARP表使用老化機制,刪除在一段時間內沒有使用過的IP與MAC地址的映射關系。一個最基本的網路拓撲結構:
PC-A並不需要獲取遠程主機(PC-C)的MAC地址,而是把IP分組發向預設網關,由網關IP分組的完成轉發過程。如果源主機(PC-A)沒有預設網關MAC地址的緩存記錄,則它會通過ARP協議獲取網關的MAC地址,因此在A的ARP表中只觀察到網關的MAC地址記錄,而觀察不到遠程主機的 MAC地址。在乙太網(Ethernet)中,一個網路設備要和另一個網路設備進行直接通信,
除了知道目標設備的網路層邏輯地址(如IP地址)外,還要知道目標設備的第二層物理地址(MAC地址)。ARP協議的基本功能就是通過目標設備的IP地址,查詢目標設備的MAC地址,以保證通信的順利進行。 數據包在網路中的發送是一個及其復雜的過程,上圖只是一種很簡單的情況,中間沒有過多的中間節點,其實現實中只會比這個更復雜,但是大致的原理是一致的。
(1)PC-A要發送數據包到PC-C的話,如果PC-A沒有PC-C的IP地址,則PC-A首先要發出一個dns的請求,路由器A或者dns解析伺服器會給PC-A回應PC-C的ip地址,這樣PC-A關於數據包第三層的IP地址信息就全了:源IP地址:PC-A,目的ip地址:PC-C。
(2)接下來PC-A要知道如何到達PC-C,然後,PC-A會發送一個arp的地址解析請求,發送這個地址解析請求,不是為了獲得目標主機PC-C的MAC地址,而是把請求發送到了路由器A中,然後路由器A中的MAC地址會發送給源主機PC-A,這樣PC-A的數據包的第二層信息也全了,源MAC地址:PC-A的MAC地址,目的MAC地址:路由器A的MAC地址,
(3)然後數據會到達交換機A,交換機A看到數據包的第二層目的MAC地址,是去往路由器A的,就把數據包發送到路由器A,路由器A收到數據包,首先查看數據包的第三層ip目的地址,如果在自己的路由表中有去往PC-C的路由,說明這是一個可路由的數據包。 (4)然後路由器進行IP重組和分組的過程。首先更換此數據包的第二層包頭信息,路由器PC-A到達PC—C要經過一個廣域網,在這里會封裝很多廣域網相關的協議。其作用也是為了找下一階段的信息。同時對第二層和第三層的數據包重校驗。把數據經過Internet發送出去。最後經過很多的節點發送到目標主機PC_C中。
現在我們想一個問題,PC-A和PC-C的MAC地址如果是相同的話,會不會影響正常的通訊呢!答案是不會影響的,因為這兩個主機所處的區域網被廣域網分隔開了,通過對發包過程的分析可以看出來,不會有任何的問題。而如果在同一個區域網中的話,那麼就會產生通訊的混亂。當數據發送到交換機是,這是的埠信息會有兩個相同的MAC地址,而這時數據會發送到兩個主機上,這樣信息就會混亂。因此這也是保證MAC地址唯一性的一個理由。
我暫且按我的理解說說吧。
先看一下計算機網路OSI模型的七個層次:
┌—————┐
│ 應用層 │←第七層
├—————┤
│ 表示層 │
├—————┤
│ 會話層 │
├—————┤
│ 傳輸層 │
├—————┤
│ 網路層 │
├—————┤
│數據鏈路層│
├—————┤
│ 物理層 │←第一層
└—————┘
而我們現在用的網路通信協議TCP/IP協議者只劃分了四成:
┌—————┐
│ 應用層 │ ←包括OSI的上三層
├—————┤
│ 傳輸層 │
├—————┤
│ 網路層 │
├—————┤
│網路介面層 │←包括OSI模型的下兩層,也就是各種不同區域網。
└—————┘
兩台計算機通信所必須需要的東西:IP地址(網路層)+埠號(傳送層)。
兩台計算機通信(TCP/IP協議)的最精簡模型大致如下:
主機A---->路由器(零個或多個)---->主機B
舉個例子:主機A上的應用程序a想要和主機B上面的應用程序b通信,大致如下
程序a將要通信的數據發到傳送層,在傳送層上加上與該應用程序對應的通信埠號(主機A上不同的應用程序有不同的埠號),如果是用的TCP的話就加上TCP頭部,UDP就加上UDP頭部。
在傳送成加上頭部之後繼續嚮往下傳到網路層,然後加上IP頭部(標識主機地址以及一些其他的數據,這里就不詳細說了)。
然後傳給下層到數據鏈路層封裝成幀,最後到物理層變成二進制數據經過編碼之後向外傳輸。
在這個過程中可能會經過許多各種各樣的區域網,舉個例子:
主機A--->(區域網1--->路由器--->區域網2)--->主機B
這個模型比上面一個稍微詳細點,其中括弧裡面的可以沒有也可能有一個或多個,這個取決於你和誰通信,也就是主機B的位置。
主機A的數據已經到了具體的物理介質了,然後經過區域網1到了路由器,路由器接受主機A來的數據先經過解碼,還原成數據幀,然後變成網路層數據,這個過程也就是主機A的數據經過網路層、數據鏈路層、物理層在路由器上面的一個反過程。
然後路由器分析主機A來的數據的IP頭部(也就是在主機A的網路層加上的數據),並且修改頭部中的一些內容之後繼續把數據傳送出去。
一直到主機B收到數據為止,主機B就按照主機A處理數據的反過程處理數據,直到把數據交付給主機B的應用程序b。完成主機A到主機B的單方向通信。
這里的主機A、B只是為了書寫方便而已,可能通信的雙方不一定就是個人PC,伺服器與主機,主機與主機,伺服器與伺服器之間的通信大致都是這樣的。
再舉個例子,我們開網頁上網路:
就是我們的主機瀏覽器的這個應用程序和網路的伺服器之間的通信。應用成所用的協議就是HTTP,而伺服器的埠號就是熟知埠號80.
大致過程就是上面所說,其中的細節很復雜,任何一個細節都可以寫成一本書,對於非專業人員也沒有必要深究。
9. 手機已收到無線網路如何把網路信號發送給筆記本電腦
方法一:購買無線網卡,插上SIM卡後插入你的筆記本的PIC插槽內就可以使用了,購買無線網卡時會隨卡贈送安裝光碟,你只需要按照提示就可以很方便的安裝程序和使用了。
方法二:通過手機和筆記本連接上網。這需要你的手機支持和本本的USB連接(藍牙好象也可以不過我沒試過)。然後還要把購買手機時帶的電腦軟體安裝到電腦上就可以使用了。
最後一點就是要開通手機的上網功能,不知道你用的是聯通CDMA還是移動。
在正常情況下聯通CDMA的速度要好與移動。
10. 數據包是如何在網路中傳輸的
數據傳輸過程如下:(如qq)
在發送主機A上,發送的數據經過應用層時,應用層對數據進行了包裝,它在要傳輸的數據上加了一個應用層首部AH後,繼續向傳輸層傳送。
傳輸層接收到應用層的數據後,將數據+應用層AH當做數據,給它進行包裝,加上自己的首部,此時的數據變為數據+應用層AH+傳輸層PH,繼續向會話層傳送。
依此類推,數據每傳遞一層,便增加相應協議的首部。
直到傳輸至數據鏈路層,數據鏈路層將加了自己首部的數據交給物理層後,轉換為高低跳躍的比特流,這時候的數據才能在線路上傳輸。