Ⅰ 什麼是無線感測技術
早在上世紀70年代,就出現了將傳統感測器採用點對點傳輸、連接感測控制器而構成感測網路雛形,我們把它歸之為第一代感測器網路。隨著相關學科的不斷發展和進步,感測器網路同時還具有了獲取多種信息信號的綜合處理能力,並通過與感測控制的相聯,組成了有信息綜合和處理能力的感測器網路,這是第二代感測器網路。而從上世紀末開始,現場匯流排技術開始應用於感測器網路,人們用其組建智能化感測器網路,大量多功能感測器被運用,並使用無線技術連接,無線感測器網路逐漸形成。
無線感測器網路是新一代的感測器網路,具有非常上世紀70年代,其發展和應用,將會給人類的生活和生產的各個領域帶來深遠影響。
無線感測器網路可以看成是由數據獲取網路、數據頒布網路和控制管理中心三部分組成的。其主要組成部分是集成有感測器、處理單元和通信模塊的節點,各節點通過協議自組成一個分布式網路,再將採集來的數據通過優化後經無線電波傳輸給信息處理中心。
Ⅱ 無線感測器網路的特點與應用
無線感測器網路是一種新型的感測器網路,其主要是由大量的感測器節點組成,利用無線網路組成一個自動配置的網路系統,並將感知和收集到的信息發給管理部門。目前無線感測器網路在軍事、生態環境、醫療和家居方面都有一定應用,未來無線感測器網路的發展前景將是不可估量的。
一、無線感測器網路的特點
(一)節點數量多
在監測區通常都會安置許多感測器節點,並通過分布式處理信息,這樣就能夠提高監測的准確性,有效獲取更加精確的信息,並降低對節點感測器的精度要求。此外,由於節點數量多,因此存在許多冗餘節點,這樣就能使系統的容錯能力較強,並且節點數量多還能夠覆蓋到更廣闊的監測區域,有效減少監測盲區。
(二)動態拓撲
無線感測器網路屬於動態網路,其節點並非固定的。當某個節電出現故障或是耗盡電池後,將會退出網路,此外,還可能由於需要而被轉移添加到其他的網路當中。
(三)自組織網路
無線感測器的節點位置並不能進行精確預先設定。節點之間的相互位置也無法預知,例如通過使用飛機播散節點或隨意放置在無人或危險的區域內。在這種情況下,就要求感測器節點自身能夠具有一定的組織能力,能夠自動進行相關管理和配置。
(四)多跳路由
無線感測網路中,節點之間的距離通常都在幾十到幾百米,因此節點只能與其相鄰的節點進行直接通信。如果需要與范圍外的節點進行通信,就需要經過中間節點進行路由。無線感測網路中的多跳路由並不是專門的路由設備,所有傳輸工作都是由普通的節點完成的。
(五)以數據為中心
無線感測網路中的節點均利用編號標識。由於節點是隨機分布的,因此節點的編號和位置之間並沒有聯系。用戶在查詢事件時,只需要將事件報告給網路,並不需要告知節點編號。因此這是一種以數據為中心進行查詢、傳輸的方式。
(六)電源能力局限性
通常都是用電池對節點進行供電,而每個節點的能源都是有限的,因此一旦電池的能量消耗完,就是造成節點無法再進行正常工作。
二、無線感測器網路的應用
(一)環境監測應用
無線感測器可以用於進行氣象研究、檢測洪水和火災等,在生態環境監測中具有明顯優勢。隨著我國市場經濟的不斷發展,生態環境污染問題也越來越嚴重。我國是一個幅員遼闊、資源豐富的農業大國,因此在進行農業生產時利用無線感測器進行對生產環境變化進行監測能夠為農業生產帶來許多好處,這對我國市場經濟的'不斷發展有著重要意義。
(二)醫療護理應用
無線感測器網路通過使用互聯網路將收集到的信息傳送到接受埠,例如一些病人身上會有一些用於監測心率、血壓等的感測器節點,這樣醫生就可以隨時了解病人的病情,一旦病人出現問題就能夠及時進行臨時處理和救治。在醫療領域內感測器已經有了一些成功案例,例如芬蘭的技術人員設計出了一種可以穿在身上的無線感測器系統,還有SSIM(Smart Sensors and Integrated Microsystems)等。
(三)智能家居建築應用
文物保護單位的一個重要工作就是要對具有意義的古老建築實行保護措施。利用無線感測器網路的節點對古老建築內的溫度是、濕度、關照等進行監測,這樣就能夠對建築物進行長期有效的監控。對於一些珍貴文物的保存,對保護地的位置、溫度和濕度等提前進行檢測,可以提高展覽品或文物的保存品質。例如,英國一個博物館基於無線感測器網路設計了一個警報系統,利用放在溫度底部的節點檢測燈光、振動等信息,以此來保障文物的安全[5]。
目前我國基礎建設處在高速發展期,建設單位對各種建設工程的安全施工監測越來越關注。利用無線感測器網路使建築能夠檢測到自身狀況並將檢測數據發送給管理部門,這樣管理部門就能夠及時掌握建築狀況並根據優先等級來處理建築修復工作。
另外,在傢具或家電匯中設置無線感測器節點,利用無線網路與互聯網路,將家居環境打造成一個更加舒適方便的空間,為人們提供更加人性化和智能化的生活環境。通過實時監測屋內溫度、濕度、光照等,對房間內的細微變化進行監測和感知,進而對空調、門窗等進行智能控制,這樣就能夠為人們提供一個更加舒適的生活環境。
(四)軍事應用
無線感測器網路具有低能耗、小體積、高抗毀等特性,且其具有高隱蔽性和高度的自組織能力,這為軍事偵察提供有效手段。美國在20世紀90年代就開始在軍事研究中應用無線感測器網路。無線感測器網路在惡劣的戰場內能夠實時監控區域內敵軍的裝備,並對戰場上的狀況進行監控,對攻擊目標進行定位並能夠檢測生化武器。
目前無線感測器網路在全球許多國家的軍事、研究、工業部門都得到了廣泛的關注,尤其受到美國國防部和軍事部門的重視,美國基於C4ISR又提出了C4KISR的計劃,對戰場情報的感知和信息綜合能力又提出新的要求,並開設了如NSOF系統等的一系列軍事無線感測器網路研究。
總之,隨著無線感測器網路的研究不斷深入和擴展,人們對無線感測器的認識也越來越清晰,然而目前無線感測器網路的在技術上還存在一定問題需要解決,例如存儲能力、傳輸能力、覆蓋率等。盡管無線感測器網路還有許多技術問題待解決使得現在無法廣泛推廣和運用,但相信其未來發展前景不可估量。
Ⅲ 無線感測器網路
你的理解對,
無線感測器網路是由部署在監測區域內大量的廉價微型感測器節點,通過無線通信方式形成的一個多跳自組織網路。
無線網路,既包括允許用戶建立遠距離無線連接的全球語音和數據網路,也包括為近距離無線連接進行優化的紅外線技術及射頻技術,與有線網路的用途十分類似,最大的不同在於傳輸媒介的不同,利用無線電技術取代網線,可以和有線網路互為備份。
希望對你能有所幫助。
Ⅳ 無線感測器網路技術的介紹
本書從項目團隊當前正在開展的主要研究方向出發,介紹了無線感測器網路相關的若干關鍵技術。內容涵蓋無線感測器網路的網路支撐技術(物理層、MAC、路由協議,協議標准)、服務支撐技術(時間同步,節點定位,容錯技術、安全設計,服務質量保證)及應用支撐技術(網路管理,操作系統以及開發環境)等方面,主要介紹無線感測器網路技術的相關原理及方法等,給廣大讀者進行系統學習及深入研究提供參考。
Ⅳ 無線感測器網路機械振動監測系統設計都可以採用哪些方案
一、無線感測器網路是工業自動化的新熱點無線感測器網路的出現引起了全世界范圍的廣泛關注,被稱為二十一世紀最具影響的技術技術之一;改變世界的10大新技術之一;全球未來的四大高技術產業之一。而無線感測器網路技術很快也將進入工業自動化和工業測控領域,大多數工業儀表和自動化產品產品都將很快嵌入無線傳輸功能,完成從有線到無線過渡;圖一是一個典型的工業用無線感測器網路示意圖,核心部分是低功耗的感測器節點(可以使用電池長期供電、太陽能電池供電,或風能、機械機械振動發電等),網路路由器(具有網狀網路路由功能)和無線網關(將信息傳輸到工業乙太網和控制中心,或者傳輸通過互聯網聯網); 圖一,典型的工業用無線感測器網路 圖一,典型的工業用無線感測器網路由於市場巨大,許多在工業自動化領域的老牌勁旅,如GE、Honeywell等,都推出了各種工業無線感測器網路產品和系統,國內也有不少研究機構和大型公司公司在進行相關研究,但是,涉及無線感測器網路的技術都是高度保密的東西,我們這些普通的工程師們,很難了解其中的細節和有機會參與任何設計工作;那麼,我們作為從事自動化和工業控制的普通工程師們,能否有機會自己動手,來設計適合自己應用需要的工業用無線感測器網路產品?來開發我們自己需要的無線工業自動化項目?無線SoC技術的發展,將使我們的夢想,將變為現實,目前應該是一個明顯的轉折點和交匯點。回答的肯定的:我們完全可能自己動手,設計適合自己應用特點的工業用無線感測器網路;二、選擇合適的微控制器和開發平台二、選擇合適的微控制器和開發平台工業環境中的射頻通信條件較為惡劣,廠房中遍布的各種大型器械、金屬管道等對信號的反射、散射造成的多徑效應,以及馬達、器械運轉時產生的電磁雜訊,都會干擾無線信號的正確接收,同時,工業環境強烈的電磁干擾,也對使用在工業無線感測器網路的核心微處理器提出了新的挑戰。我們自己動手設計在這樣環境中運行的工業網路系統,首先需要選擇合適的微處理器和高頻電路;圖二是一個典型的工業無線感測器網路節點硬體結構示意圖 圖二工業無線感測器網路節點示意圖 圖二工業無線感測器網路節點示意圖目前TI公司和FREESCALE公司推出的3套最新無線單片機解決方案:MC13224,CC2530,MSP430F5437+CC2520,都是很好的SoC微控制器解決方案,(見表一)這些方案的特點是,高度集成化設計,微處理器和無線收發部分在同一晶元內部,需要電路板面積小於2平方厘米,外圍只小於很少零件,就有很強抗干擾能力。工業無線感測器網路的網關,路由器和感測器節點,都可以使用同一微處理器來設計; 主要參數 MC13224 無線單片機 CC2530 無線單片機 CC2520 +MSP430F5437 MCU結構 單晶元,ARM7內核,32位MCU 單晶元8051內核 8位MCU 兩片16位MCU 無線高頻前端 IEEE802.15.4 IEEE802.15.4 IEEE802.15.4 無線網路協議 ZIGBEEpro 開源和免費 ZIGBEEpro 開源和免費 ZIGBEEpro 開源和免費 無線連接鏈路 >100DBM >100DBM >100DBM 內置快閃記憶體 128K 256K 256K 低功耗時電池壽命 10年 5年 5年 晶元大量采購價格 每片4美元 每片3美元 每套7美元 軟體開發平台 IAREWARM IAREW8051 IAREW430 硬體開發系統 ARMRF-MC13224PK C51RF-CC2530PK MSPRF-430F5437 在線模擬器 ARM WXL-CC2530 TI430 網路測試工具 網路分析儀 網路分析儀 網路分析儀 主要參數MC13224無線單片機CC2530無線單片機CC2520+MSP430F5437MCU結構單晶元,ARM7內核,32位MCU單晶元8051內核8位MCU兩片16位MCU無線高頻前端IEEE802.15.4IEEE802.15.4IEEE802.15.4無線網路協議ZIGBEEpro開源和免費ZIGBEEpro開源和免費ZIGBEEpro開源和免費無線連接鏈路>100DBM>100DBM>100DBM內置快閃記憶體128K256K256K低功耗時電池壽命10年5年5年晶元大量采購價格每片4美元每片3美元每套7美元軟體開發平台IAREWARMIAREW8051IAREW430硬體開發系統ARMRF-MC13224PKC51RF-CC2530PKMSPRF-430F5437在線模擬器ARMWXL-CC2530TI430網路測試工具網路分析儀網路分析儀網路分析儀採用上述方案,在保證系統可靠性的前提下,最大的特點是經濟和方便,因為無線單片機晶元價格很低,甚至已經低於許多類型普通單片機,設計者可以放手進行設計和調試,不必擔心晶元損壞等;另外目前國內嵌入式設計的知識已經相當普及,設計工業用無線感測器網路網關,路由器,節點和設計我們熟悉的普通單片機系統,核心技術沒有什麼不同,而且,的IAR編譯,調試系統是目前世界是最強大的商業化嵌入式C語言軟體設計工具,配合成都無線龍通訊提供的無線單片機開發平台,樣板工程設計,JTAG在線模擬器,你可以精確的將故障定位到每一行指令,將無線組網和通訊,實現慢動作式的重放,並隨時捕獲空中無線數據包裝;整個無線通訊軟體硬體設計的的過程,在這些高級調試開發工具的幫助下,完全透明化,可控制化,使你像開發你的其它單片機系統一樣,快捷容易的完成設計任務;三、ZIGBEEpro符合工業無線網路設計要求三、ZIGBEEpro符合工業無線網路設計要求與面向家庭的無線網路技術(ZIGBEE2004到ZIGBEE2006屬於這類面向家庭的技術)不同,面向工業自動化應用的無線網路技術需要滿足以下五個方面需求,■高可靠性:大部分的工業控制應用要求數據的可靠傳輸率要超過95%。為了實現在工業現場使用無線通信來實現高可靠傳輸面臨以下挑戰,ZIGBEEpro協議棧採用2.4GHz物理層都基於DSSS(DirectSequenceSpreadSpectrum,直接序列擴頻)技術(包括數據的調制,激活和休眠射頻收發器,信道能量檢測,信道接收數據包的鏈路質量指示,空閑信道評估,收發數據等)具有很強抗干擾能力,而且MAC層和應用層(APS部分)有應答重傳功能,另外MAC層的CSMA機制使節點發送之前先監聽信道,也可以起到避開干擾的作用;網路層採用了網狀網的組網方式,從源節點到達目的節點可以有多條路徑,路徑的冗餘加強了網路的健壯性,如果原先的路徑出現了問題,比如受到干擾,或者其中一個中間節點出現故障,ZIGBEEPRO可以進行路由修復,另選一條合適的路徑來保持通信。同時,ZIGBEEPRO最新增加的頻率捷變(frequencyagility),也大大加強其作為工業網路使用的可靠性,ZigBeepro網路受到外界干擾,比如各種工業現場的無線干擾,無法正常工作時,整個ZIGBEEPRO網路可以自動動態的切換到全部16個頻道的一個干凈工作信道上(實現FHSS跳頻功能)。和其它目前採用DSSS+FHSS的工業無線網路協議比較,ZIGBEEPRO可靠性和抗干擾性更勝一籌;採用表一的無線單片機,都可以支持ZIGBEEPRO的無線網路協議棧;■嚴格實時性:對於工業閉環控制應用,數據傳輸延遲應低於1.5倍的感測器采樣時間。ZIGBEEPRO網路針對工業通信對時延敏感的應用做了優化,通信時延和從休眠狀態激活的時延都非常短。設備設備搜索時延典型值為毫秒級別,休眠激活時延典型值是15ms,活動設備信道接入時延為15ms,加上ZIGBEEPRO新的路由演算法,大大提高了網路路由效率;在通過多跳接力的方式進行傳輸的延遲大幅度降低,完全能夠保證端到端通信實時性。■低能耗:用於對工業全流程進行泛在感知的無線感測器網路節點由於成本的限制和安裝條件限制,通常不採用外接電源的方式,而是靠自身攜帶的電池供電。由於表一中列出的新型無線單片機和ZIGBEEPRO無線前端的一系列革命性的新設計,,節點的電池壽命應達到3至10年。能夠實現使用最少的能源的工業用無線感測器網路;■安全性:隨著工業控制系統網路化進程的推進,網路安全和數據安全問題日益突出,一些安全漏洞將給工業控制應用造成巨大的損失。無線通信由於信道的開放特徵更容易受到攻擊,其安全保障機制將更加復雜;為了工業網路應用設計了高安全模式(HighSecurityMode),就是當節點加入網路時,信託中心(TrustCenter,TC)會先配一把萬能金鑰(MasterKey)給新加入的節點,然後,新加入的節點再用這把萬能金鑰透過SKKE的流程,與網路中的任何節點建立連結金鑰(LinkKey),最後再利用連結金鑰加密後產生一把網路共用的網路金鑰,網路金鑰(NWKKey)放在應用層有效載荷中傳送給對方,然後再通過網路傳輸加密資料。ZIGBEEPro的安全設計,完全能夠實現工業無線網路對安全通訊的主要要求;而且,如表一所示的新的16位,32位無線單片機具有強大的數據處理能力,已經完全具有能力實現復雜的安全演算法的能力,對應工業無線感測器網路提出的挑戰。■兼容性:為了保護用戶的原有投資,基於工業無線感測器網路要具有與工廠原有的有線控制系統互連和互操作的能力。採用ZIGBEEPRO設計的無線網關,能夠實現和目前工業乙太網,CAN匯流排,各種工業控制匯流排的無縫連接,和互聯網的IP通訊。ZIGBEE也是全球無線感測器網路的重要標准,是具有很好兼容性的工業無線感測器網路網路協議軟體;綜上所述,以感測和控制為目標的ZIGBEEPRO無線網路,具有加強版商業級和工業的協議棧,完全可以滿足上述五個方面的要求,使用ZIGBEEPRO協議棧,完全可以設計出圖二所示結構那樣,滿足自己特別應用要求的工業無線感測器網路項目和產品;四,有線到無線,我們笑迎新的技術挑戰四,有線到無線,我們笑迎新的技術挑戰通過上面的簡單介紹,我們看到任何工程師,都有機會來進入這個全新的技術領域,入門並不難,精通也辦得到;這是因為我們生活在互聯網時代,也是因為國內在這個領域已經有像深圳無線龍科技這樣的一批先行者,他們出版了相關中文書籍(北航出版《無線單片機叢書》十本,最新一冊是《ZIGBEE2007PRO入門與實戰》),提供相關C51RF,MSPRF,ARMRF系列低價格無線單片機開發工具,同時,對ZIGBEEPRO這樣的協議棧的應用提供相關技術支持,提供高頻模塊等服務,這樣,就使我們入門進行設計開發時,更加方便容易,另外,TI,Freescale公司,提供了廉價的無線單片機晶元,高性能的免費無線網路協議棧;這些,都為我們投入這個全線的技術領域——相對復雜的工業自動感測器網路和無線工業自動控制領域,打開了方便之門;本文重點介紹的是工業無線感測器網路部分的實現,其實,在已經實現工業無線感測器網路和節點間雙向通訊的前提下,實現對工業設備的無線控制控制,包括繼電器,I/O,開關控制,電機控制,都已經是很容易實現的,水到渠成的事情,只需要在軟體和硬體上進行一些小的擴展就可以了;從有線到無線,從傳統有線工業自動化系統,到新的工業無線感測器網路系統,我們面對全新的挑戰,讓我們現在就出發,在這些設計開發的挑戰中,去完成我們技術更新和升華;
Ⅵ 無線感測器網路體系結構包括哪些部分,各部分的
結構
感測器網路系統通常包括感測器節點EndDevice、匯聚節點Router和管理節點Coordinator。
大量感測器節點隨機部署在監測區域內部或附近,能夠通過自組織方式構成網路。感測器節點監測的數據沿著其他感測器節點逐跳地進行傳輸,在傳輸過程中監測數據可能被多個節點處理,經過多跳後路由到匯聚節點,最後通過互聯網或衛星到達管理節點。用戶通過管理節點對感測器網路進行配置和管理,發布監測任務以及收集監測數據。
感測器節點
處理能力、存儲能力和通信能力相對較弱,通過小容量電池供電。從網路功能上看,每個感測器節點除了進行本地信息收集和數據處理外,還要對其他節點轉發來的數據進行存儲、管理和融合,並與其他節點協作完成一些特定任務。
匯聚節點
匯聚節點的處理能力、存儲能力和通信能力相對較強,它是連接感測器網路與Internet 等外部網路的網關,實現兩種協議間的轉換,同時向感測器節點發布來自管理節點的監測任務,並把WSN收集到的數據轉發到外部網路上。匯聚節點既可以是一個具有增強功能的感測器節點,有足夠的能量供給和更多的、Flash和SRAM中的所有信息傳輸到計算機中,通過匯編軟體,可很方便地把獲取的信息轉換成匯編文件格式,從而分析出感測節點所存儲的程序代碼、路由協議及密鑰等機密信息,同時還可以修改程序代碼,並載入到感測節點中。
管理節點
管理節點用於動態地管理整個無線感測器網路。感測器網路的所有者通過管理節點訪問無線感測器網路的資源。
無線感測器測距
在無線感測器網路中,常用的測量節點間距離的方法主要有TOA(Time of Arrival),TDOA(Time Difference of Arrival)、超聲波、RSSI(Received Sig nalStrength Indicator)和TOF(Time of Light)等。
Ⅶ 無線感測網路的問題
涉及的內容是挺多的,
1.硬體方面的(目前處除了軍用,或其他一些特定應用外,我們國家很多感測器晶元用的還都是國外的,沒有過硬的技術啊)。
2.無線感測器網路協議研究。根據感測器網路自身的特點,結合應用,量身打造更合適的通信協議。
3.軟體方面的。目前有系統級別的Tiny OS,編程語言nesC,針對特定應用編寫輕量級程序。
4.無線感測器數據管理層面。可以研究網路數據流挖掘之類的。
哪個最有前景?1最有發展空間,但難度大。3是基礎,最容易上手,想有突破很難。2和4,自己想吧。
以上都是個人粗淺見解,做個參考。
Ⅷ 無線感測器網路節點硬體的模塊化設計
無線感測器網路節點硬體的模塊化設計
隨著人們對於環境監測要求的不斷提高,無線感測器網路技術以其投資成本低、架設方便、可靠性高的性能優勢得到了比較廣泛的應用。由於無線感測器網路節點需要實現採集、處理、通信等多個功能,因此硬體上採用模塊化設計可以大大提高網路節點的穩定性和安全性。那麼下面我就來討論一下無線感測器網路節點硬體的模塊化設計。
1 CC2430晶元簡介
CC2430是一款工作在2.4 GHz免費頻段上,支持IEEE 802.15.4標準的無線收發晶元。該晶元具有很高的集成度,體積小功耗低。單個晶元上整合了ZigBee射頻(RF)前端、內存和微控制器。CC2430擁有1個8位MCU(8051),8 KB的RAM,32 KB、64 KB或128 KB的Flash,還包含模擬數字轉換器(ADC),4個定時器(Timer),AESl28協處理器,看門狗定時器(Watchdog-timer),32.768 kHz晶振的休眠模式定時器,上電復位電路(Power-on-Reset),掉電檢測電(Brown-out-Detection),以及21個可編程I/O介面。
CC2430晶元採用0.18μm CMOS工藝生產,工作時的電流損耗為27 mA;在接收和發射模式下,電流損耗分別為26.7 mA和26.9 mA;休眠時電流為O.5 μA。CC2430的休眠模式和轉換到主動模式的超短時間的特性,特別適合那些要求電池壽命非常長的應用。
2 無線感測器網路系統結構
整個無線感測器網路由若干採集節點、1個匯聚節點、1個中轉器、1個上位機控制中心組成,系統結構如圖1所示。無線感測器網路採集節點完成數據採集、預處理和通信工作;匯聚節點負責網路的發起和維護,收集並上傳數據,將中轉器下發的命令通告採集節點;中轉器負責上傳收集到的數據並將控制中心發出的命令信息傳遞給匯聚節點;控制中心負責處理最終上傳數據,並且可以由用戶下達網路的操作命令。
採集節點和匯聚節點由CC2430作為控制核心,採集節點可採集並傳遞數據,匯聚節點負責收集所有採集節點採集到的數據。中轉器採用ARM處理器作為控制核心,和匯聚節點採用串口通信,以GPRS通信方式和上位機控制中心進行交互。上位機控制中心實現人機交互,可以處理、顯示上傳的數據並且可以直接由客戶下達網路動作執行命令。
3 節點模塊化設計
匯聚節點和採集節點在硬體配置上基本相同,採用模塊化設計使得設計通用性更好。
每個節點主要由控制模塊、無線模塊、採集模塊、電源模塊4部分構成。
3.1 控制模塊
控制模塊主要由CC2430及其外圍電路構成,完成對採集數據的處理、存儲以及收發工作,並對電源模塊進行管理。晶元CC2430包括21個可編程I/0口,其中8路A/D介面,可滿足多路感測器的採集、處理需求。CC2430自帶了一個復位介面,外接一個復位按鍵可以實現硬體初始化系統。32 MHz晶振提供系統時鍾,32.768 kHz晶振供系統休眠時使用。
節點選用晶元FM25L256作為存儲設備,這是一款256 Kb鐵電存儲器,其SPI介面頻率高達25 MHz,低功耗運行以及10年的數據保持力保證了節點數據存儲的低成本以及可靠性。
3.2 無線模塊
無線模塊負責節點間數據和命令的傳輸,因此,合理設計無線模塊是節點穩定、高效通信的重要保證。
TI公司提供了一個適用於CC2430的微帶巴倫電路,這個設計把無線電RF引腳差分信號的阻抗轉換為單端50 Ω。由於該電路直接影響節點的通信質量,在使用前必須對其進行模擬驗證。設計中選用ADS模擬軟體進行模擬,採用了版圖和原理圖的聯合模擬方法。模擬電路圖如圖5所示,微帶電路為TI提供的微帶巴倫電路,分立元件均選自村田公司元件庫內的模型,嚴格保證了模擬數據的`真實性和可靠性。巴倫電路在工作頻段內(2.400~2.4835 GHz)信號傳輸特性高效、穩定。
3.3 採集模塊
採集模塊負責採集數據並調理數據信號。本設計中,監測的是土壤的溫度和濕度數據,採用的感測器是PTWD-3A型土壤溫度感測器以及TDR-3型土壤水分感測器。
PTWD-3A型土壤溫度感測器採用精密鉑電阻作為感應部件,其阻值隨溫度變化而變化。為了准確地進行測量,採用四線法測量電阻原理,將電阻信號調理成CC2430晶元A/D通道能采樣的電壓信號。由P354運算放大器、高精度精密貼片電阻以及2.5 V電源構成10 mA恆流源。10 mA的電流環流經感測器電阻R1、R2將電阻信號轉換成為電壓信號,由差分放大器LT1991一倍增益將信號轉換為單端輸出送入CC2430晶元的ADC通道進行采樣。
TDR-3型土壤水分感測器輸出信號即為電壓信號。感測器輸出信號通過P354運算放大器送入CC2430晶元的ADC通道進行采樣。
3.4 電源模塊
電源模塊負責調理電壓、分配能量,分為充電管理模塊、雙電源切換管理模塊、電壓轉換模塊3個模塊。本設計中採用額定電壓12 V、電容量3 Ah的鉛酸電池供電。
作為環境監測的無線感測器網路應用,節點需要在野外無人看守的情況下進行工作,能量補給是系統持續工作的重要保證。本設計採用太陽能電池板為節點在野外工作時進行電能的補給,充電管理模塊則是根據日照情況以及電池能量狀態對鉛酸電池進行合理、有效的充電。光電耦合器TLP521-100和場效應管Q共同構成了充電模塊的開關電路,可以由CC2430晶元的I/0口很方便地進行控制。
在太陽能電池板對電池充電時,電池不能對系統進行供電,因此設計中採用了雙電源供電方式,保持“一充一供”的工作狀態,雙電源切換管理模塊負責電源的安全、快速切換。如圖10所示,採用了兩個開關電路對兩塊電源進行切換。
在電源進行切換時,總是先打開處於閑置狀態的電源,再關閉正在為系統供電的電源,因此會在一段短暫的時間內同時有兩個電源對系統供電,這是為了防止系統出現掉電情況。
電源模塊需提供5 V、3.3 V、2.5 V等多組電源以滿足節點各模塊的供能需求。由於系統電源組較多,電壓轉換模塊採用了開關型降壓穩壓器以及低壓差線性穩壓器等多種電壓轉換晶元來對電源進行電壓轉換,同時要確保電源模塊供能的高效性。
結語
節點的設計對整個無線感測器網路系統至關重要。本設計採用了功能強大的射頻晶元CC2430作為核心管理晶元,能較好地完成數據採集、分析、傳輸等多個功能。硬體的模塊化設計大大加強了節點的穩定性、可靠性和通用性,在野外無人值守的情況下無線感測器網路系統可以長期、穩定地進行環境方面的監測。
;Ⅸ 無線感測器網路
無線感測器網路:是一種分布式感測網路,它的末梢是可以感知和檢查外部世界的感測器。無線感測器網路中的感測器通過無線方式通信,因此網路設置老寬早靈活,設備位置可以隨時更改,還可以跟互聯網進行有線或無線方式的連接。通過無線通信方式形成的一個多巧卜跳自組織網路。
無線感測器網路的發展得益於微機電系統、片上系統侍雀、無線通信和低功耗嵌入式技術的飛速發展。無線感測器網路廣泛應用於軍事、智能交通、環境監控、醫療衛生等多個領域。
Ⅹ 簡述RFID與無線感測網技術如何進行融合
RFID(Radio Frequency Identification,射頻識別)技術是一種無線通信技術,通過發射射頻信號來識別物品。無線感測網(Wireless Sensor Network,WSN)技術是一種網路技術,通過無線技術將感測器連接起來,實現多個感測器之間的信息交換和協作。
將RFID與無線感測網技術融合,可以實現自動識別和智能監控。首先,通過RFID技術,可以在無線感測網中的感測器上安裝射頻識別器,使感測器能夠識別周圍的物品。然後,通過無線感測網技術,可以實現多個感測器之間的信息交換和協作,使感測器能夠共同監控周圍的環境。
融合RFID與無線感測網技術的好處在於,可以提高監控的精度和效率。通過射頻識別技術,感測器可以更快更准確地識別物品,並且可以識別更多種類的物品。通過無線感測網技術,感測器可以通過無線網路相互協作,共同監控周圍的環境,並且可以實現遠程監控。