當前位置:首頁 » 無線網路 » 網路信號結構圖解大全
擴展閱讀
web網路安全的論文 2025-09-16 06:54:42

網路信號結構圖解大全

發布時間: 2025-09-16 05:19:27

A. 計算機網路的拓撲結構分為哪些

計算機網路的最主要的拓撲結構有匯流排型拓撲、環形拓撲、樹形拓撲、星形拓撲、混合型拓撲以及網狀拓撲。除了匯流排型、環型、星型還有樹形、混合型和網狀拓撲結構。

環形拓撲、星形拓撲、匯流排型拓撲是三個最基本的拓撲結構。在區域網中,使用最多的是星形結構。

1、匯流排型拓撲:

匯流排型拓撲是一種基於多點連接的拓撲結構,是將網路中的所有的設備通過相應的硬體介面直接連接在共同的傳輸介質上。匯流排拓撲結構使用一條所有PC都可訪問的公共通道,每台PC只要連一條線纜即可。在匯流排型拓撲結構中,所有網上微機都通過相應的硬體介面直接連在匯流排上, 任何一個結點的信息都可以沿著匯流排向兩個方向傳輸擴散,並且能被匯流排中任何一個結點所接收。

7、蜂窩拓撲結構:

蜂窩拓撲結構是無線區域網中常用的結構。

B. 求wlan的組網結構

一個無線區域網可當作有線區域網的擴展來使用,也可以獨立作為有線區域網的替代設施,因此無線區域網提供了很強的組網靈活性。

無線區域網(WLAN)技術的成長始於20世紀80年代中期,它是由美國聯邦通信委員會(FCC)為工業、科研和醫學(ISM)頻段的公共應用提供授權而產生的。這項政策使各大公司和終端用戶不需要獲得FCC許可證,就可以應用無線產品,從而促進了WLAN技術的發展和應用。

與有線區域網通過銅線或光纖等導體傳輸不同的是,無線區域網使用電磁頻譜來傳遞信息。同無線廣播和電視類似,無線區域網使用頻道(Airwave)發送信息。傳輸可以通過使用無線微波或紅外線實現,但要求所使用的有效頻率且發送功率電平標准,在政府機構允許的范圍之內。

WLAN技術的優勢

WLAN是指以無線信道作傳輸媒介的計算機區域網絡,是計算機網路與無線通信技術相結合的產物,它以無線多址信道作為傳輸媒介,提供傳統有線區域網的功能,能夠使用戶真正實現隨時、隨地、隨意的寬頻網路接入。

WLAN技術使網上的計算機具有便攜性,能快速、方便地解決有線方式不易實現的網路信道的連通問題。WLAN利用電磁波在空氣中發送和接收數據,而無需線纜介質。

與有線網路相比,WLAN具有以下優點:

◆安裝便捷:無線區域網的安裝工作簡單,它無需施工許可證,不需要布線或開挖溝槽。它的安裝時間只是安裝有線網路時間的零頭。

◆覆蓋范圍廣:在有線網路中,網路設備的安放位置受網路信息點位置的限制。而無線區域網的通信范圍,不受環境條件的限制,網路的傳輸范圍大大拓寬,最大傳輸范圍可達到幾十公里。

◆經濟節約:由於有線網路缺少靈活性,這就要求網路規劃者盡可能地考慮未來發展的需要,所以往往導致預設大量利用率較低的信息點。而一旦網路的發展超出了設計規劃,又要花費較多費用進行網路改造。WLAN不受布線接點位置的限制,具有傳統區域網無法比擬的靈活性,可以避免或減少以上情況的發生。

◆易於擴展:WLAN有多種配置方式,能夠根據需要靈活選擇。這樣,WLAN就能勝任從只有幾個用戶的小型網路到上千用戶的大型網路,並且能夠提供像「漫遊」(Roaming)等有線網路無法提供的特性。

◆傳輸速率高:WLAN的數據傳輸速率現在已經能夠達到11Mbit/s,傳輸距離可遠至20km以上。應用到正交頻分復用(OFDM)技術的WLAN,甚至可以達到54Mbit/s。

此外,無線區域網的抗干擾性強、網路保密性好。對於有線區域網中的諸多安全問題,在無線區域網中基本上可以避免。而且相對於有線網路,無線區域網的組建、配置和維護較為容易,一般計算機工作人員都可以勝任網路的管理工作。

由於WLAN具有多方面的優點,其發展十分迅速。在最近幾年裡,WLAN已經在醫院、商店、工廠和學校等不適合網路布線的場合得到了廣泛的應用。

WLAN的拓撲結構

WLAN有兩種主要的拓撲結構,即自組織網路(也就是對等網路,即人們常稱的Ad-Hoc網路)和基礎結構網路(Infrastructure Network)。

自組織型WLAN是一種對等模型的網路,它的建立是為了滿足暫時需求的服務。自組織網路是由一組有無線介面卡的無線終端,特別是移動電腦組成。這些無線終端以相同的工作組名、擴展服務集標識號(ESSID)和密碼等對等的方式相互直連,在WLAN的覆蓋范圍之內,進行點對點,或點對多點之間的通信,如圖1所示。

圖1自組織網路結構

組建自組織網路不需要增添任何網路基礎設施,僅需要移動節點及配置一種普通的協議。在這種拓撲結構中,不需要有中央控制器的協調。因此,自組織網路使用非集中式的MAC協議,例如CSMA/CA。但由於該協議所有節點具有相同的功能性,因此實施復雜並且造價昂貴。

自組織WLAN另一個重要方面,在於它不能採用全連接的拓撲結構。原因是對於兩個移動節點而言,某一個節點可能會暫時處於另一個節點傳輸范圍以外,它接收不到另一個節點的傳輸信號,因此無法在這兩個節點之間直接建立通信。

基礎結構型WLAN利用了高速的有線或無線骨幹傳輸網路。在這種拓撲結構中,移動節點在基站(BS)的協調下接入到無線信道,如圖2所示。

圖2基礎結構網路結構

基站的另一個作用是將移動節點與現有的有線網路連接起來。當基站執行這項任務時,它被稱為接入點(AP)。基礎結構網路雖然也會使用非集中式MAC協議,如基於競爭的802.11協議可以用於基礎結構的拓撲結構中,但大多數基礎結構網路都使用集中式MAC協議,如輪詢機制。由於大多數的協議過程都由接入點執行,移動節點只需要執行一小部分的功能,所以其復雜性大大降低。

在基礎結構網路中,存在許多基站及基站覆蓋范圍下的移動節點形成的蜂窩小區。基站在小區內可以實現全網覆蓋。在目前的實際應用中,大部分無線WLAN都是基於基礎結構網路。

一個用戶從一個地點移動到另一個地點,應該被認定為離開一個接入點,進入另一個接入點,這種情形稱為「漫遊」。漫遊功能要求小區之間必須有合理的重疊,以便用戶不會中斷正在通信的鏈路連接。接入點之間也需要相互協調,以便用戶透明地從一個小區漫遊到另一個小區。發生漫遊時,必須執行切換操作。切換既可以通過交換局,以集中的方式來控制,也可以通過移動節點,監測節點的信號強度來實現控制,也就是非集中式切換。

在基礎結構型網路中,小區大小一般都比較小。小區半徑的減小,意味著移動節點傳輸范圍的縮短,這樣可以減少功率損耗。並且,小的蜂窩小區可以採用頻率復用技術,從而提高系統頻譜利用率。目前,提高頻譜利用率的常用策略有:固定信道分配(FCA)、動態信道分配(DCA)和功率控制(PC)等。

在使用FCA策略時,每個小區分配有固定的資源,但與移動節點數量無關。這種策略的問題在於,它沒有充分考慮移動用戶的分布。在人口稀少的地區,同樣分配相同數量的帶寬資源給小區,但小區可能僅包含幾個或者是根本不包含任何移動節點,使資源被浪費。因此,在這種情況下,頻譜的利用率並不是最優的。

在移動節點採用DCA、PC技術,或者是集成DCA和PC的技術,可以提高整個蜂窩系統的容量,減少信道干擾,並減少發射功率。

DCA技術將所有可用的信道放置在一個公共信道池中,並根據小區當前的負載,將這些信道動態地分配給小區。移動節點向基站報告其干擾水平,基站以最小干擾方式實現信道復用。

PC方案通過減小發送功率的方法,來減少系統中干擾,並減少移動節點的電池能量消耗。當某一個小區內受到的干擾增加時,PC方案通過增加發送節點的功率,來提高接收信號的信噪比(SIR)。當節點受到的干擾減小時,發送節點通過降低發送功率來節約能量。

除以上兩種應用比較廣泛的拓撲結構之外,還有另外一種正處於理論研究階段的拓撲結構,即完全分布式網路拓撲結構。這種結構要求,相關節點在數據傳輸過程中完成一定的功能,類似於分組無線網的概念。對每一節點而言,它可能只知道網路的部分拓撲結構(也可通過安裝專門軟體獲取全部拓撲知識),但它可與鄰近節點按某種方式共享對拓撲結構的認識,來完成分布路由演算法,即路由網路上的每一節點要互相協助,以便將數據傳送至目的節點。

分布式結構抗損性能好,移動能力強,可形成多跳網,適合較低速率的中小型網路。對於用戶節點而言,它的復雜性和成本較其它拓撲結構高,並存在多徑干擾和「遠—近」效應。同時,隨著網路規模的擴大,其性能指標下降較快。但分布式WLAN將在軍事領域中具有很好的應用前景。

縮略語注釋

WLAN:Wireless Local Area Network,無線區域網

FCC:Federal Communications Commission,美國聯邦通信委員會

OFDM:Orthogonal Frequency Division Multiplexing,正交頻分復用

ESSID:Extended Service Set ID,擴展服務集標識號

FCA:Fixed Channel Allocation,固定信道分配

DCA:Dynamic Channel Allocation,動態信道分配

PC:Power Control,功率控制

SIR:Signal to Interference Noise Ratio,信噪比