當前位置:首頁 » 無線網路 » 神經網路信號預測輸入層幾個點
擴展閱讀
電腦一扯就黑屏怎麼辦 2025-07-05 12:42:54

神經網路信號預測輸入層幾個點

發布時間: 2022-05-27 14:31:05

Ⅰ 神經網路演算法原理

4.2.1 概述

人工神經網路的研究與計算機的研究幾乎是同步發展的。1943年心理學家McCulloch和數學家Pitts合作提出了形式神經元的數學模型,20世紀50年代末,Rosenblatt提出了感知器模型,1982年,Hopfiled引入了能量函數的概念提出了神經網路的一種數學模型,1986年,Rumelhart及LeCun等學者提出了多層感知器的反向傳播演算法等。

神經網路技術在眾多研究者的努力下,理論上日趨完善,演算法種類不斷增加。目前,有關神經網路的理論研究成果很多,出版了不少有關基礎理論的著作,並且現在仍是全球非線性科學研究的熱點之一。

神經網路是一種通過模擬人的大腦神經結構去實現人腦智能活動功能的信息處理系統,它具有人腦的基本功能,但又不是人腦的真實寫照。它是人腦的一種抽象、簡化和模擬模型,故稱之為人工神經網路(邊肇祺,2000)。

人工神經元是神經網路的節點,是神經網路的最重要組成部分之一。目前,有關神經元的模型種類繁多,最常用最簡單的模型是由閾值函數、Sigmoid 函數構成的模型(圖 4-3)。

儲層特徵研究與預測

以上演算法是對每個樣本作權值修正,也可以對各個樣本計算δj後求和,按總誤差修正權值。

Ⅱ BP神經網路輸出層的輸入信號問題

閾值肯定是要包含進來的,閾值的作用就是控制神經元的激活或抑制狀態。神經網路是模仿大腦的神經元,當外界刺激達到一定的閥值時,神經元才會受刺激,影響下一個神經元。
簡單說來是這樣的:超過閾值,就會引起某一變化,不超過閾值,無論是多少,都不產生影響。

閾值又叫臨界值,是指一個效應能夠產生的最低值或最高值。

閾值又稱閾強度,是指釋放一個行為反應所需要的最小刺激強度。低於閾值的刺激不能導致行為釋放。在反射活動中,閾值的大小是固定不變的,在復雜行為中,閾值則受各種環境條件和動物生理狀況的影響。當一種行為更難於釋放時,就是閾值提高了;當一種行為更容易釋放時,就是閾值下降了。

Ⅲ BP神經網路輸入層神經元個數是越多越好嗎

作非線性擬合的話,一般隱藏層是1-2層;至於隱藏層神經元數目也並不是越多越好,太多可能出現過擬合現象,具體的話需要嘗試,也可以參考一些經驗公式。

Ⅳ 神經網路參數如何確定

神經網路各個網路參數設定原則:

①、網路節點  網路輸入層神經元節點數就是系統的特徵因子(自變數)個數,輸出層神經元節點數就是系統目標個數。隱層節點選按經驗選取,一般設為輸入層節點數的75%。如果輸入層有7個節點,輸出層1個節點,那麼隱含層可暫設為5個節點,即構成一個7-5-1 BP神經網路模型。在系統訓練時,實際還要對不同的隱層節點數4、5、6個分別進行比較,最後確定出最合理的網路結構。

②、初始權值的確定  初始權值是不應完全相等的一組值。已經證明,即便確定  存在一組互不相等的使系統誤差更小的權值,如果所設Wji的的初始值彼此相等,它們將在學習過程中始終保持相等。故而,在程序中,我們設計了一個隨機發生器程序,產生一組一0.5~+0.5的隨機數,作為網路的初始權值。

③、最小訓練速率  在經典的BP演算法中,訓練速率是由經驗確定,訓練速率越大,權重變化越大,收斂越快;但訓練速率過大,會引起系統的振盪,因此,訓練速率在不導致振盪前提下,越大越好。因此,在DPS中,訓練速率會自動調整,並盡可能取大一些的值,但用戶可規定一個最小訓練速率。該值一般取0.9。

④、動態參數  動態系數的選擇也是經驗性的,一般取0.6 ~0.8。

⑤、允許誤差  一般取0.001~0.00001,當2次迭代結果的誤差小於該值時,系統結束迭代計算,給出結果。

⑥、迭代次數  一般取1000次。由於神經網路計算並不能保證在各種參數配置下迭代結果收斂,當迭代結果不收斂時,允許最大的迭代次數。

⑦、Sigmoid參數 該參數調整神經元激勵函數形式,一般取0.9~1.0之間。

⑧、數據轉換。在DPS系統中,允許對輸入層各個節點的數據進行轉換,提供轉換的方法有取對數、平方根轉換和數據標准化轉換。

(4)神經網路信號預測輸入層幾個點擴展閱讀:

神經網路的研究內容相當廣泛,反映了多學科交叉技術領域的特點。主要的研究工作集中在以下幾個方面:

1.生物原型

從生理學、心理學、解剖學、腦科學、病理學等方面研究神經細胞、神經網路、神經系統的生物原型結構及其功能機理。

2.建立模型

根據生物原型的研究,建立神經元、神經網路的理論模型。其中包括概念模型、知識模型、物理化學模型、數學模型等。

3.演算法

在理論模型研究的基礎上構作具體的神經網路模型,以實現計算機模擬或准備製作硬體,包括網路學習演算法的研究。這方面的工作也稱為技術模型研究。

神經網路用到的演算法就是向量乘法,並且廣泛採用符號函數及其各種逼近。並行、容錯、可以硬體實現以及自我學習特性,是神經網路的幾個基本優點,也是神經網路計算方法與傳統方法的區別所在。

Ⅳ 試畫出BP神經網路結構輸入層3節點,隱層5節點,輸出層2節點

BP(Back Propagation)神經網路是1986年由Rumelhart和McCelland為首的科學家小組提出,是一種按誤差逆傳播演算法訓練的多層前饋網路,是目前應用最廣泛的神經網路模型之一。BP網路能學習和存貯大量的輸入-輸出模式映射關系,而無需事前揭示描述這種映射關系的數學方程。它的學習規則是使用最速下降法,通過反向傳播來不斷調整網路的權值和閾值,使網路的誤差平方和最小。BP神經網路模型拓撲結構包括輸入層(input)、隱層(hidden layer)和輸出層(output layer)。


用WORD可以畫,插入形狀。

Ⅵ 怎樣判斷神經網路有幾個輸入、幾個隱層和幾個輸出啊!

那我就用最簡單的語言告訴你:
你數數輸入端有幾個圓圈就有幾個輸入量,輸出端一樣的。
輸入端和輸出端只有一層。單層網路沒有隱含層,多層則有一層或是多層隱含層。至於每層隱含層的數量,你數數個數就出來了。
其實我感覺,設置一個三層的神經網路就可以了。隱含層的神經元只需要幾個就能解決問題了。沒有必要太多。

Ⅶ 神經網路對輸入變數個數有沒有要求,六十個可以嗎

可以,但是網路規模太大,很臃腫,需要調整的參數過多,影響收斂速度。

關於隱層節點數:在BP 網路中,隱層節點數的選擇非常重要,它不僅對建立的神經網路模型的性能影響很大,而且是訓練時出現「過擬合」的直接原因,但是目前理論上還沒有一種科學的和普遍的確定方法。 目前多數文獻中提出的確定隱層節點數的計算公式都是針對訓練樣本任意多的情況,而且多數是針對最不利的情況,一般工程實踐中很難滿足,不宜採用。事實上,各種計算公式得到的隱層節點數有時相差幾倍甚至上百倍。為盡可能避免訓練時出現「過擬合」現象,保證足夠高的網路性能和泛化能力,確定隱層節點數的最基本原則是:在滿足精度要求的前提下取盡可能緊湊的結構,即取盡可能少的隱層節點數。研究表明,隱層節點數不僅與輸入/輸出層的節點數有關,更與需解決的問題的復雜程度和轉換函數的型式以及樣本數據的特性等因素有關。
在確定隱層節點數時必須滿足下列條件:
(1)隱層節點數必須小於N-1(其中N為訓練樣本數),否則,網路模型的系統誤差與訓練樣本的特性無關而趨於零,即建立的網路模型沒有泛化能力,也沒有任何實用價值。同理可推得:輸入層的節點數(變數數)必須小於N-1。
(2) 訓練樣本數必須多於網路模型的連接權數,一般為2~10倍,否則,樣本必須分成幾部分並採用「輪流訓練」的方法才可能得到可靠的神經網路模型。
總之,若隱層節點數太少,網路可能根本不能訓練或網路性能很差;若隱層節點數太多,雖然可使網路的系統誤差減小,但一方面使網路訓練時間延長,另一方面,訓練容易陷入局部極小點而得不到最優點,也是訓練時出現「過擬合」的內在原因。因此,合理隱層節點數應在綜合考慮網路結構復雜程度和誤差大小的情況下用節點刪除法和擴張法確定。

Ⅷ 神經網路一個隱含層通常有幾個節點數阿

一個最簡單的分類,是在平面上畫一條直線,左邊為類0,右邊為類1,直線表示為

這是一個分類器,輸入(x,y),那麼,要求的參數有三個:a,b,c。另外注意c的作用,如果沒有c,這條直線一定會過原點。


因此,我們可以設計一個簡單的神經網路,包含兩層,輸入層有三個節點,代表x,y,1,三條線分別代表a,b,cg(z)對傳入的值x進行判別,並輸出結果。

但是,由於z的值可能為[],為了方便處理,需要將其壓縮到一個合理的范圍,還需sigmoid函數:

這樣的激勵函數,能夠將剛才的區間,壓縮到

Ⅸ BP神經網路輸入層結點個數怎麼確定

就是輸入特徵的個數