Ⅰ 电脑安全密钥是什么

1、电脑安全密钥就是无线网络安全上网密码,可以在路由器里面获得。
2、该密码仅在无线网络连接中需要,有线连接不存在密钥问题。但是必须正确连接路由器才能访问该路由器,进而获得密钥。
3、打开电脑,点击右下面像阶梯的图标,点击。再打开网络共享中心,进入网络管理共享中心,再点击管理无线网络。双击你连上的网络。点击安全,显示字符,就可以看见你的密码了。
Ⅱ 怎样为自己的家用电脑设置密钥怎样修改密码
1、
设置账户
密码
控制面板/
用户帐户
/更改帐户/选择你使用的帐户/创建密码
/输入密码/确认密码/然后点击“创建密码”按钮即可。
2、修改密码
打开控制面板选/
用户账户
/更改账户/点击原来的“账户名”/更改我的密码/输入新密码,再次输入新密码,然后点击“更改密码”按钮即可(不设密码为空)。
Ⅲ 电脑上键入网络安全密钥是什么密码
密匙就是无线网络安全上网密码,可以在路由器里面获得。该密码仅在无线网络连接中需要,有线连接不存在密匙问题。但是必须正确连接路由器才能访问该路由器,进而获得密匙。
请问你家安装无线路由器了吗?如果没安装,你搜索到的信号应该是别人家的,需要别人允许你连接才可能告诉你密钥。
如果已经安装了,可以用台式机进入路由器设置界面,在无线参数设置页面可以找到密钥
网络密钥即是指在网络中使用的密钥。 互联网络是一个开放式的系统,任何人都可以通过它共享自己的资源,获取需要的信息。当人们在网络上进行信息交流的时候,比如聊天、收发邮件,或者登录需要提供个人信息的站点,这些包含着重要个人资料的信息包很可能在到达最终目的地前被第三方截获并破解。所以保护个人隐私是互联网络的头等大事,而使用加密密钥是最简单、有效的方法。信息在发送前需要按照规则进行数据的重新排列组合,打乱了原有的数据顺序,这样即便数据包被第三方截获
加密类型
编辑
分类
一般来说密钥加密的方法有三种类型:对称加密、非对称加密和Hash加密。
密钥的一个重要因素是它的长度——位,使用浏览器的时候也许你已经注意到了,在帮助中,我们可以查到某个版本浏览器的密钥长度,比如密钥长度为128,则表示这个密钥里包含了2的128次方个密码规则(如图),这是一个天文数字。
也许你会问有必要要这么大的密钥吗?要知道,计算机的运算能力在突飞猛进地发展,如果拥有足够的设备和资金,破解密钥是不成问题的。比如64位的密钥在条件许可的情况下,以现有的技术水平,可以在三天内被完全破解。当然破解成本和信息自身价值是有关系的,如果耗费的成本远远大于信息内容的价值时,没有人会愿意去做这个亏本买卖的,所以目前128位的密钥长度还是足够安全的。
对称加密
只使用了一个密钥进行加密解密,所以也可以叫做单密钥加密。它对密钥本身没有特殊的要求,通信双方只要有一个相同的密钥就行,一个用户把自己需要发送的数据通过密钥加密成混乱的信息,接受方使用相同的密钥把接受到的信息还原成原始数据,这个方法可以在极短的时间内对大量信息进行加密解密。但是如果密钥在传输过程中就被截获,那么以后的加密过程就形同虚设。这个方法的优点是使用同一个密钥节省了加密解密所需的时间,但是无法保证密钥的安全性。
目前使用对称密钥算法的是RC5、RC6、Blowfish和Twofish,其中最后两种算法位数长,而且加密解密速度很快。
非对称加密
在加密和解密中使用了一对密钥,一个是公用密钥,它对外公开发布,另一个是私有密钥,由用户自己保存。从理论上讲,这种加密方式只要是用户的私有密钥没有丢失或者被窃,那么他们之间加密的信息是绝对不会被破解的。但是它的缺点也非常明显,就是加密速度非常缓慢。由于要进行大量的数学运算,即使加密少量的信息也需要花费大量的时间。
Hash加密
是通过数学运算,把不同长度的信息转化到128位编码中,形成Hash值,通过比较这个数值是否正确,来确定通信双方的合法性。这也可以说是数字签名,在数据传输后,可以通过比较Hash值来判断信息途中是否被截获修改,是否由合法的发送人发送或者合法的接收人接收等。用这种方法,可以防止密钥丢失的问题,因为它的加密部分是随机生成的,如果没有正确的Hash值根本就无法解开加密部分,而且它还具备了数字签名的能力,可以证明发送方和接收方的合法身份,具有不可抵赖性,很适用于商业信息的传递。目前使用的有MD4、MD5和SHA。
2重要性
编辑
目前大部分网络传输的工具和软件都带有密钥,可以通过帮助菜单下的“关于…”选项来查看使用工具的密钥长度。
密钥对于个人用户来说重要性低一些,但是大部分网站或者社区论坛会要求登录详细的身份信息,为了保护自己的隐私(像用户密码、身份证件等还是比较重要,不应轻易泄漏的),还应该使用密钥位数高的工具,或者通过补丁来增加安全性,防止个人资料的流失。、
公用密钥加密技术使用不对称的密钥来加密和解密,每对密钥包含一个公钥和一个私钥,公钥是公开,而且广泛分布的,而私钥从来不公开,只有自己知道。
用公钥加密的数据只有私钥才能解密,相反的,用私钥加密的数据只有公钥才能解密,正是这种不对称性才使得公用密钥密码系统那么有用。 使用公用密钥密码系统进行认证 认证是一个验证身份的过程,目的是使一个实体能够确信对方是他所声称的实体。 下面用简单的例子来描述如何使用公用密钥密码系统来轻易的验证身份。
加密解密雏形
假设A要认证B,B有一个密钥对,即一个公钥和一个私钥,B透露给A他的公钥(至于他是怎么做的将在以后讨论)。然后A产生一段随机的消息,然后把它发给B。 A-->B random--message B用自己的私钥来加密这段消息,然后把加密后的消息返回给A。 B-->A B"s--private--key A接到了这段消息,然后用B以前发过来的公钥来解密。她把解密后的消息和原始的消息做比较,如果匹配的话,她就知道自己正在和B通信。一个入侵者应该不知道B的私钥,因此就不能正确的加密那段A要检查的随机消息。
设置无线网络的安全密钥 无线网络上的个人信息和文件有时可能会被接收到网络信号的人看到。这可能导致身份窃取和其他恶意行为。网络安全密钥或密码可以有助于保护您的无线网络免受此类未经授权的访问。 设置网络向导将引导您完成安全密钥的设置过程。
通过单击
“开始”按钮 ,然后单击“控制面板”,打开“设置网络”。 在 搜索框中,键入网络,然后依次单击“网络和共享中心”、“设置新的连接或网络”和“设置新网络”。 注意 建议不要将有线对等保密 (WEP) 用作无线网络安全方法。Wi-Fi 保护访问(WPA 或 WPA2)的安全性相对较高。如果您尝试使用 WPA 或 WPA2,但它们不起作用,则建议您将网络适配器升级为使用 WPA 或 WPA2 的适配器。所有网络设备、计算机、路由器,以及访问点也都必须支持 WPA 或 WPA2。 无线网络的加密方法 目前有三种类型的无线网络加密:Wi-Fi 保护访问(WPA 和 WPA2)、有线对等保密 (WEP) 和 802.1x。以下部分将详细介绍前两种加密类型。802.1x 通常用于企业网络,因而不在此处进行讨论。 Wi-Fi 保护访问(WPA 和 WPA2) WPA 和 WPA2 要求用户提供安全密钥以进行连接。密钥验证完毕后,计算机或设备与访问点之间发送的数据都将被加密。
Ⅳ 戴尔电脑显示密码解密钥匙解锁密钥提取密码怎么破解)
一、首先,打开戴尔电脑,然后在键盘按下“Win+R”,打开“运行”程序。

Ⅳ 密码技术(十一)之密钥
——秘密的精华
在使用对称密码、公钥密码、消息认证码、数字签哗樱名等密码技术使用,都需要一个称为 密钥 的巨大数字。然而,数字本身的大小并不重要,重要的是 密钥空间的大小 ,也就是可能出现的密钥的总数量,因为密钥空间越大,进行暴力破解就越困难。密钥空间的大小是由 密钥长度 决定的。
对称密码DES的密钥的实质长度为56比特(7个字节)。
例如,
一个DES密钥用二进制可以表示为:
01010001 11101100 01001011 00010010 00111101 01000010 00000011
用十六进制则可以表示为:
51 EC 4B 12 3D 42 03
而用十进制则可以表示为:
2305928028626269955
在对称密码三重DES中,包括使用两个DES密钥的DES-EDE2和使用三个DES密钥的DES-EDE3这两种方式。
DES-EDE2的密钥长度实质长度为112比特(14字节),比如:
51 EC 4B 12 3D 42 03 30 04 D8 98 95 93 3F
DES-EDE3的密钥的实质长度为168比特(21字节),比如:
51 EC 4B 12 3D 42 03 30 04 D8 98 95 93 3F 24 9F 61 2A 2F D9 96
对称密码AES的密钥长度可以从128、192和256比特中进行选择,当密钥长度为256比特时,比如:
51 EC 4B 12 3D 42 03 30 04 D8 98 95 93 3F 24 9F 61 2A 2F D9 96
B9 42 DC FD A0 AE F4 5D 60 51 F1
密钥和明文是等价的 。假设明文具有100万的价值,那么用来加密这段明文的密钥也就是具有100万元的价值;如果明文值1亿元,密钥也就值1亿元;如果明文的内容是生死攸关的,那么密钥也同样是生死攸关的。
在对称密码中,加密和解密使用同一个密钥。由于发送者和接收者需要共享密钥,因此对称密码又称为共享密钥密码。对称密码中所使用的密钥必须对发送者和接收者以外的人保密,否则第三方就能够解密了。
在消息认证码中,发送者和接收者使用共享的密钥来进行认证。消息认证码只能由持有合法密钥的人计算出来。将消息认证码附加在通信报文后面,就可以识别通信内容是否被篡改或伪装,由于“持有合法的密钥”就是发送者和接收者合法身份的证明,因此消息认证码的密钥必须对发送者以外的人保密,否则就会产生篡改和伪装的风险。
在数字签名中,签名生成和验证使用不同的密钥,只有持有私钥的本人才能够生成签名,但由于验证签名使用的是公钥,因此任何人都能够验证签名。
对称密码和公钥密码的密钥都是用于确保机密性的密钥。如果不知道用于解密的合法密钥,就无法得知明文的内容。
相对地,消息认证码和数字签名所使用的密钥,则是用于认证的密钥。如果不知道合法的密钥,就无法篡改数据,也无法伪装本人的身份。
当我们访问以https://开头的网页时,Web服务器和浏览器之间会进行基于SSL/TLS的加密通信。在这样的通信中所使用的密钥是仅限于本次通信的一次密钥,下次通信时就不能使用了,想这样每次通信只能使用一次的密钥称为 会话密钥 。
由于会话密钥只在本次通信中有效,万一窃听者获取了本次通信的会话密钥,也只能破译本次通信的内容。
虽然每次乱轿丛通信都会更换会话密钥,但如果用来生成密钥的伪随机数生成器品质不好,窃听帆纳者就有可能预测出下次生成会话密钥,这样就会产生通信内容被破译的风险。
相对于每次通信更换的会话密钥,一直被重复使用的密钥称为 主密钥 。
一般来说,加密的对象是用户直接使用的信息,这样的情况下所使用的密钥称为CEK(Contents Encryting Key,内容加密密钥);相对地,用于加密密钥的密钥则称为KEK(Key Encryting Key,密钥加密密钥)。
在很多情况下,之前提到的会话密钥都是被作为CEK使用的,而主密钥则是被作为KEK使用的。
生成密钥的最好方法就是使用随机数,因为米哟啊需要具备不易被他人推测的性质。在可能的情况下最好使用能够生成密码学上的随机数的硬件设备,但一般我们都是使用伪随机数生成器这一专门为密码学用途设计的软件。
在生成密钥时,不能自己随便写出一些像“3F 23 52 28 E3....”这样的数字。因为尽管你想生成的是随机的数字,但无论如何都无法避免人为偏差,而这就会成为攻击者的目标。
尽管生成伪随机数的算法有很多种,但密码学用途伪随机生成器必须是专门针对密码学用途而设计的。例如,有一些伪随机数生成器可以用于游戏和模拟算法,尽管这些伪随机数生成器所生成的数列看起也是随机的,但只要不是专门为密码学用途设计的,就不能用来生成密钥,因为这些伪随机数生成器不具备不可预测性这一性质。
有时候我们也会使用人类的可以记住的口令(pasword或passphrase)来生成密钥。口令指的是一种由多个单词组成的较长的password。
严格来说,我们很少直接使用口令来作为密钥使用,一般都是将口令输入单向散列函数,然后将得到的散列值作为密钥使用。
在使用口令生成密钥时,为了防止字典攻击,需要在口令上附加一串称为盐(salt)的随机数,然后在将其输入单向散列函数。这种方法称为“基于口令的密码(Password Based Encryption,PBE)”。
在使用对称密码时,如何在发送者和接收者之间共享密钥是一个重要的问题,要解决密钥配送问题,可以采用事先共享密钥,使用密钥分配中心,使用公钥密码等方法,除了上述方法,之前还提到一种解决密钥配送的问题的方法称为Diffie-Hellman密钥交换。
有一种提供通信机密性的技术称为 密钥更新 (key updating),这种方法就是在使用共享密钥进行通信的过程中,定期更改密钥。当然,发送者和接收者必须同时用同样的方法来改变密钥才行。
在更新密钥时,发送者和接收者使用单向散列函数计算当前密钥的散列值,并将这个散列值用作新的密钥。简单说,就是 用当前密钥散列值作为下一个密钥 。
我们假设在通信过程中的某个时间点上,密钥被窃听者获取了,那么窃听者就可以用这个密钥将之后的通信内容全部解密。但是,窃听者却无法解密更新密钥这个时间点之前的内容,因为这需要用单向散列函数的输出反算出单向散列函数的输入。由于单向散列函数具有单向性,因此就保证了这样的反算是非常困难的。
这种防止破译过去的通信内容机制,称为 后向安全 (backward security)。
由于会话密钥在通信过程中仅限于一次,因此我们不需要保存这种秘密。然而,当密钥需要重复使用时,就必须要考虑保存密钥的问题了。
人类是 无法记住具有实用长度的密钥 的。例如,像下面这样一个AES的128比特的密钥,一般人是很难记住的。
51 EC 4B 12 3D 42 03 30 04 DB 98 95 93 3F 24 9F
就算勉强记住了,也只过不是记住一个密钥而已。但如果要记住多个像这样的密钥并且保证不忘记,实际上是非常困难的。
我们记不住密钥,但如果将密钥保存下来又可能会被窃取。这真是一个头疼的问题。这个问题很难得到彻底解决,但我们可以考虑一些合理的解决方法。
将密钥保存生文件,并将这个文件保存在保险柜等安全地方。但是放在保险柜里的话,出门就无法使用了。这种情况,出门时就需要随身携带密钥。而如果将密钥放在存储卡随身携带的话,就会产生存储卡丢失、被盗等风险。
万一密钥被盗,为了能够让攻击者花更多的时间才能真正使用这个密钥,我们可以使用将密钥加密后保存的方法,当然,要将密钥加密,必须需要另一个密钥。像这样用于密码加密的密钥,一般称为KEK。
对密钥进行加密的方法虽然没有完全解决机密性的问题,但在现实中却是一个非常有效地方法,因为这样做可以减少需要保管密钥的数量。
假设计算机上有100万个文件,分别使用不同的密钥进行加密生成100万个密文,结果我们手上就产生了100万个密钥,而要保管100万个密钥是很困难的。
于是,我们用一个密钥(KEK)将这100万个密钥进行加密,那么现在我们只要保管者一个KEK就可以了,这一个KEK的价值相当于签名的100万个密钥的价值的总和。
用1个密钥来代替多个密钥进行保管的方法,和认证机构的层级化非常相似。在后者中,我们不需要信任多个认证机构,而只需要信任一个根CA就可以了。同样的,我们也不需要确保多个密钥的机密性,而只需要确保一个KEK的机密性就可以了。
密钥的作废和生成是同等重要的,这是因为密钥和明文是等价的。
假设Alice向Bob发送了一封加密邮件。Bob在解密之后阅读了邮件的内容,这时本次通信所使用的密钥对于Alice和Bob来说就不需要了。不在需要的密钥必须妥善删除,因为如果被窃听者Eve获取,之前发送的加密邮件就会被解密。
如果密钥是计算机上的一个文件,那么仅仅删除这个文件是不足以删除密钥的,因为有一些技术能够让删除的文件“恢复”。此外,很多情况下文件的内容还会残留在计算机的内存中,因此必须将这些痕迹完全抹去。简而言之,要完全删除密钥,不但要用到密码软件,还需要在设计计算机系统时对信息安全进行充分的考虑
如果包含密钥的文件被误删或者保管密钥的笔记本电脑损坏了,会怎么样?
如果丢失了对称密钥密码的共享密钥,就无法解密密文了。如果丢失了消息认证码的密钥,就无法向通信对象证明自己的身份了。
公钥密码中,一般不太会发送丢失公钥的情况,因为公钥是完全公开的,很有可能在其他电脑上存在副本。
最大的问题是丢失公钥密码的私钥。如果丢失了公钥密码的私钥,就无法解密用公钥密码加密的密文了。此外,如果丢失了数字签名的私钥,就无法生成数字签名了。
Diffie-Hellman密钥交换(Diffie-Hellman key exchange)是1976年由Whitfield Diffie和Martin Hellman共同发明的一种算法。使用这种算法,通信双方仅通过交换一些可以公开的信息就能够生成共享秘密数字,而这一秘密数字就可以被用作对称密码的密钥。IPsec 中就使用了经过改良的Diffie-Hellman密钥交换。
2 Alice 生成一个随机数A
A是一个1 ~ P-2之间的整数。这个数是一个只有Alice知道的密码数字,没有必要告诉Bob,也不能让Eve知道。
Alice计算出的密钥=Bob计算出的密钥
在步骤1-7中,双方交换数字一共有4个,P、G、G A mod P 和 G B mod P。根据这4个数字计算出Alice和Bob的共享密钥是非常困难的。
如果Eve能欧知道A和B的任意一个数,那么计算G A*B 就很容易了,然而仅仅根据上面的4个数字很难求出A和B的。
根据G A mod P 计算出A的有效算法到现在还没有出现,这问题成为有限域(finite field) 的 离散对数问题 。
Diffie-Hellman密钥交换是利用了“离散对数问题”的复杂度来实现密钥的安全交换的,如果将“离散对数问题”改为“椭圆曲线上离散对数问题”,这样的算法就称为 椭圆曲线Diffie-Hellman 密钥交换。
椭圆曲线Diffie-Hellman密钥交换在总体流程上是不变的,只是所利用的数学问题不同而已。椭圆曲线Diffie-Hellman密钥交换能够用较短的密钥长度实现较高的安全性。
基于口令密码(password based encryption,PBE)就是一种根据口令生成密钥并用该密钥进行加密的方法。其中加密和解密使用同一个密钥。
PBE有很多种实现方法。例如RFC2898和RFC7292 等规范中所描述的PBE就通过Java的javax.crypto包等进行了实现。此外,在通过密码软件PGP保存密钥时,也会使用PBE。
PBE的意义可以按照下面的逻辑来理解。
想确保重要消息的机制性。
↓
将消息直接保存到磁盘上的话,可能被别人看到。
↓
用密钥(CEK)对消息进行加密吧。
↓
但是这次又需要确保密钥(CEK)的机密性了。
↓
将密钥(CEK)直接保存在磁盘上好像很危险。
↓
用另一个密钥(KEK)对密钥进行加密(CEK)吧。
↓
等等!这次又需要确保密钥(KEK)的机密性了。进入死循环了。
↓
既然如此,那就用口令来生成密钥(KEK)吧。
↓
但只用口令容易遭到字典攻击
↓
那么就用口令和盐共同生成密钥(KEK)吧。
↓
盐可以和加密后的密钥(CEK)一切保存在磁盘上,而密钥(KEK)可以直接丢弃。
↓
口令就记在自己的脑子里吧。
PBE加密包括下列3个步骤:
盐是由伪随机数生成器生成的随机数,在生成密钥(KEK)时会和口令一起被输入单向散列函数。
密钥(KEK)是根据秘密的口令生成的,加盐好像没有什么意义,那么盐到底起到什么作用呢?
盐是用来防御字典攻击的 。字典攻击是一种事先进行计算并准备好候选密钥列表的方法。
我们假设在生成KEK的时候没有加盐。那么主动攻击者Mallory就可以根据字典数据事先生成大量的候选KEK。
在这里,事先是很重要的一点。这意味着Mallory可以在窃取到加密会话的密钥之前,就准备好了大量的候选KEK。当Mallory窃取加密的会话密钥后,就需要尝试将它解密,这是准备好了大量事先生成的候选KEK,就能够大幅度缩短尝试的时间,这就是 字典攻击 (dictionary attack)。
如果在生成KEK时加盐,则盐的长度越大,候选KEK的数量也会随之增大,事先生成的的候选KEK就会变得非常困难。只要Mallory还没有得到盐,就无法生成候选KEK。这是因为加盐之后,候选KEK的数量会变得非常巨大。
具有充足长度的密钥是无法用人脑记忆的。口令也是一样,我们也无法记住具有充足比特数的口令。
在PBE中,我们通过口令生成密钥(KEK),在用这个密钥来加密会话密钥(CEK)。由于通过口令生成的密钥(KEK)强度不如由伪随机数生成器生成的会话密钥(CEK),这就好像是将一个牢固的保险柜的钥匙放在了一个不怎么牢固的保险柜保管,因此在使用基于口令的密钥时,需要将盐和加密后的CEK通过物理方法进行保护。例如将盐和加密后的CEK保存到存储卡随身携带。
在生成KEK时,通过多次使用单向散列函数就可以提高安全性。例如,将盐和口令输入单向散列函数,进行1000次的散列函数所得到的散列值作为KEK来使用,是一个不错的方法。
像这样将单向散列函数进行多次迭代的方法称为 拉伸 (stretching)。
该系列的主要内容来自《图解密码技术第三版》
我只是知识的搬运工
文章中的插图来源于原着
Ⅵ 电脑无线网密钥怎么改为输入密码
修改密码有以下办法供参考:
1、开始/控制面板/网络连接,右键点击“无线网络连接”,点“属性”,点“无线网络配置”选项卡,在“首选网络”内选择并点“删除”您要修改密码的无线网络,点确定并关闭小窗口。
2、双击屏幕右下角任务栏内无线网络标志,弹出“无线网络连接”窗口,刷新网络列表,选择您要修改密码的网络连接,连接并输入新密码即可。
