当前位置:首页 » 网络连接 » 计算机网络术语以太网
扩展阅读
网络安全法监控主任责任 2025-07-05 16:29:00
世界上首个计算机网络 2025-07-05 14:15:44
电脑一扯就黑屏怎么办 2025-07-05 12:42:54

计算机网络术语以太网

发布时间: 2022-07-12 02:05:28

什么是以太网

你可以找本计算机三级网络的书看看,上面有之方面的详情!

以太网,指由施乐公司创建并由施乐、Intel和DEC公司联合开发的基带局域网规范。以太网络使用CSMA/CD(载波监听多路访问及冲突检测技术)技术,并以10 Mbps的速率运行在多种类型的电缆上。

90年代,交换型以太网得到了发展,并先后推出了100兆的快速以太网、1000兆的千兆位以太网和10000兆的万兆位以太网等更高速的以太网技术。以太网的帧格式特别适合于传输IP数据包。随着Internet的快速发展,以太网被广泛使用。值得一提的是,如果接入网也采用以太网,将形成从局域网、接入网、城域网到广域网全部是以太网的结构,这样采用与IP数据包结构近似的以太网帧结构,各网之间无缝连接,中间不需要任何格式转换,可以提高运行效率,方便管理,降低成本,这种结构可以提供端到端的连接。基于以上原因,以太网接入得到了快速发展,并且越来越受到人们的重视。

② 以太网是什么意思

以太网是当今现有局域网采用的最通用的通信协议标准,组建于七十年代早期。Ethernet(以太网)是一种传输速率为10Mbps的常用局域网(LAN)标准。在以太网中,所有计算机被连接一条同轴电缆上,采用具有冲突检测的载波感应多处访问(CSMA/CD)方法,采用竞争机制和总线拓朴结构。基本上,以太网由共享传输媒体,如双绞线电缆或同轴电缆和多端口集线器、网桥或交换机构成。在星型或总线型配置结构中,集线器/交换机/网桥通过电缆使得计算机、打印机和工作站彼此之间相互连接。

以太网具有的一般特征概述如下:
共享媒体:所有网络设备依次使用同一通信媒体。
广播域:需要传输的帧被发送到所有节点,但只有寻址到的节点才会接收到帧。
CSMA/CD:以太网中利用载波监听多路访问/冲突检测方法(Carrier Sense Multiple Access/Collision Detection)以防止 twp 或更多节点同时发送。
MAC 地址:媒体访问控制层的所有 Ethernet 网络接口卡(NIC)都采用48位网络地址。这种地址全球唯一。
Ethernet 基本网络组成:
共享媒体和电缆:10BaseT(双绞线),10Base-2(同轴细缆),10Base-5(同轴粗缆)。
转发器或集线器:集线器或转发器是用来接收网络设备上的大量以太网连接的一类设备。通过某个连接的接收双方获得的数据被重新使用并发送到传输双方中所有连接设备上,以获得传输型设备。
网桥:网桥属于第二层设备,负责将网络划分为独立的冲突域获分段,达到能在同一个域/分段中维持广播及共享的目标。网桥中包括一份涵盖所有分段和转发帧的表格,以确保分段内及其周围的通信行为正常进行。
交换机:交换机,与网桥相同,也属于第二层设备,且是一种多端口设备。交换机所支持的功能类似于网桥,但它比网桥更具有的优势是,它可以临时将任意两个端口连接在一起。交换机包括一个交换矩阵,通过它可以迅速连接端口或解除端口连接。与集线器不同,交换机只转发从一个端口到其它连接目标节点且不包含广播的端口的帧。
以太网协议:IEEE 802.3标准中提供了以太帧结构。当前以太网支持光纤和双绞线媒体支持下的四种传输速率:
10 Mbps – 10Base-T Ethernet(802.3)
100 Mbps – Fast Ethernet(802.3u)
1000 Mbps – Gigabit Ethernet(802.3z))
10 Gigabit Ethernet – IEEE 802.3ae

以太网简史:
1972年,罗伯特•梅特卡夫(Robert Metcalfe)和施乐公司帕洛阿尔托研究中心(Xerox PARC)的同事们研制出了世界上第一套实验型的以太网系统,用来实现Xerox Alto(一种具有图形用户界面的个人工作站)之间的互连,这种实验型的以太网用于Alto工作站、服务器以及激光打印机之间的互连,其数据传输率达到了2.94Mbps。
梅特卡夫发明的这套实验型的网络当时被称为Alto Aloha网。1973年,梅特卡夫将其命名为以太网,并指出这一系统除了支持Alto工作站外,还可以支持任何类型的计算机,而且整个网络结构已经超越了Aloha系统。他选择“以太”(ether)这一名词作为描述这一网络的特征:物理介质(比如电缆)将比特流传输到各个站点,就像古老的“以太理论”(luminiferous ether)所阐述的那样,古代的“以太理论”认为“以太”通过电磁波充满了整个空间。就这样,以太网诞生了。
最初的以太网事一种实验型的同轴电缆网,冲突检测采用CSMA/CD 。该网络的成功,引起了大家的关注。1980年,三家公司(数字设备公司、Intel公司、施乐公司)联合研发了10M以太网1.0规范。最初的IEEE802.3即基于该规范,并且与该规范非常相似。802.3工作组于1983年通过了草案,并于1985年出版了官方标准ANSI/IEEE Std 802.3-1985。从此以后,随着技术的发展,该标准进行了大量的补充与更新,以支持更多的传输介质和更高的传输速率等。
1979年,梅特卡夫成立了3Com公司,并生产出第一个可用的网络设备:以太网卡(NIC), 它是允许从主机到IBM终端和PC机等不同设备相互之间实现无缝通信的第一款产品,使企业能够以无缝方式共享和打印文件,从而增强工作效率,提高企业范围的通信能力。

以太网和IEEE802.3:
以太网是Xerox公司发明的基带LAN标准。它采用带冲突检测的载波监听多路访问协议(CSMA/CD),速率为10Mbps,传输介质为同轴电缆。以太网是在20世纪70年代为解决网络中零散的和偶然的堵塞而开发的,而IEEE802.3标准是在最初的以太网技术基础上于1980年开发成功的。现在,以太网一词泛指所有采用CSMA/CD协议的局域网。以太网2.0版由数字设备公司、Intel公司和Xerox公司联合开发,它与IEEE802.3兼容。
以太网和IEEE802.3通常由接口卡(网卡)或主电路板上的电路实现。以太网电缆协议规定用收发器将电缆连到网络物理设备上。收发器执行物理层的大部分功能,其中包括冲突检测及收发器电缆将收发器连接到工作站上。
IEEE802.3提供了多种电缆规范,10Base5就是其中的一种,它与以太网最为接近。在这一规范中,连接电缆称作连接单元接口(AUI),网络连接设备称为介质访问单元(MAU)而不再是收发器。
1.以太网和IEEE802.3的工作原理
在基于广播的以太网中,所有的工作站都可以收到发送到网上的信息帧。每个工作站都要确认该信息帧是不是发送给自己的,一旦确认是发给自己的,就将它发送到高一层的协议层。
在采用CSMA/CD传输介质访问的以太网中,任何一个CSMA/CDLAN工作站在任何一时刻都可以访问网络。发送数据前,工作站要侦听网络是否堵塞,只有检测到网络空闲时,工作站才能发送数据。
在基于竞争的以太网中,只要网络空闲,任一工作站均可发送数据。当两个工作站发现网络空闲而同时发出数据时,就发生冲突。这时,两个传送操作都遭到破坏,工作站必须在一定时间后重发,何时重发由延时算法决定。
2.以太网和IEEE802.3服务的差别
尽管以太网与IEEE802.3标准有很多相似之处,但也存在一定的差别。以太网提供的服务对应于OSI参考模型的第一层和第二层,而IEEE802.3提供的服务对应于OSI参考模型的第一层和第二层的信道访问部分(即第二层的一部分)。IEEE802.3没有定义逻辑链路控制协议,但定义了几个不同物理层,而以太网只定义了一个。
IEEE802.3的每个物理层协议都可以从三方面说明其特征,这三方面分别是LAN的速度、信号传输方式和物理介质类型。http://www.yestar2000.com/A200508/2005-08-02/183118.html
引自:

③ 什么是以太网

以太网(Ethernet)是一种计算机局域网组网技术。IEEE制定的IEEE 802.3标准给出了以太网的技术标准。它规定了包括物理层的连线、电信号和介质访问层协议的内容。以太网是当前应用最普遍的局域网技术。它很大程度上取代了其他局域网标准,如令牌环网(token ring)、FDDI和ARCNET。
以太网的标准拓扑结构为总线型拓扑,但目前的快速以太网(100BASE-T、1000BASE-T标准)为了最大程度的减少冲突,最大程度的提高网络速度和使用效率,使用交换机(Switch hub)来进行网络连接和组织,这样,以太网的拓扑结构就成了星型,但在逻辑上,以太网仍然使用总线型拓扑和CSMA/CD(Carrier Sense Multiple Access/Collision Detect 即带冲突检测的载波监听多路访问)的总线争用技术。
目录 [隐藏]
1 历史
2 概述
3 CSMA/CD共享介质以太网
4 以太网中继器和集线器
5 桥接和交换
6 以太网类型
6.1 早期的以太网
6.2 10Mbps以太网
6.3 100Mbps以太网(快速以太网)
6.4 1Gbps以太网
6.5 万兆以太网
6.6 十万兆以太网
7 参考文献
8 参看
9 外部链接
[编辑]历史

以太网技术的最初进展来自于施乐帕洛阿尔托研究中心的许多先锋技术项目中的一个。人们通常认为以太网发明于1973年,当年鲍勃.梅特卡夫(Bob Metcalfe)给他PARC的老板写了一篇有关以太网潜力的备忘录。但是梅特卡夫本人认为以太网是之后几年才出现的。在1976年,梅特卡夫和他的助手David Boggs发表了一篇名为《以太网:区域计算机网络的分布式包交换技术》的文章。
网路协议
应用层
DHCP · DNS · FTP · Gopher · HTTP · IMAP4 · IRC · NNTP · XMPP · POP3 · SIP · SMTP · SNMP · SSH · TELNET · RPC · RTCP · RTP ·RTSP · SDP · SOAP · GTP · STUN · NTP · SSDP · BGP · RIP · 更多
传输层
TCP · UDP · TLS · DCCP · SCTP ·

RSVP · PPTP · OSPF · 更多
网络层
IP (IPv4 · IPv6) · ARP · RARP · ICMP · ICMPv6 · IGMP ·

IS-IS · IPsec · 更多
数据链路层
Wi-Fi(IEEE 802.11) · WiMAX(IEEE 802.16) ·

ATM · DTM · 令牌环 · 以太网路 · FDDI · 帧中继 · GPRS · EVDO · HSPA · HDLC · PPP · L2TP · ISDN ·STP · 更多
物理层
以太网路 · 调制解调器 · 电力线通信(PLC) · SONET/SDH · G.709 · 光导纤维 · 同轴电缆 · 双绞线 · 更多
本模板:查看 • 讨论 • 编辑 • 历史
1979年,梅特卡夫为了开发个人电脑和局域网离开了施乐(Xerox),成立了3Com公司。3Com对DEC、英特尔和施乐进行游说,希望与他们一起将以太网标准化、规范化。这个通用的以太网标准于1980年9月30日出台。当时业界有两个流行的非公有网络标准令牌环网和ARCNET,在以太网大潮的冲击下他们很快萎缩并被取代。而在此过程中,3Com也成了一个国际化的大公司。
梅特卡夫曾经开玩笑说,Jerry Saltzer为3Com的成功作出了贡献。Saltzer在一篇与他人合着的很有影响力的论文中指出,在理论上令牌环网要比以太网优越。受到此结论的影响,很多电脑厂商或犹豫不决或决定不把以太网接口做为机器的标准配置,这样3Com才有机会从销售以太网网卡大赚。这种情况也导致了另一种说法“以太网不适合在理论中研究,只适合在实际中应用”。也许只是句玩笑话,但这说明了这样一个技术观点:通常情况下,网络中实际的数据流特性与人们在局域网普及之前的估计不同,而正是因为以太网简单的结构才使局域网得以普及。梅特卡夫和Saltzer曾经在麻省理工学院 MAC项目(Project MAC)的同一层楼里工作,当时他正在做自己的哈佛大学毕业论文,在此期间奠定了以太网技术的理论基础。
[编辑]概述

1990年代的以太网网卡或叫NIC(Network Interface Card,以太网适配器)。这张卡可以支持基于同轴电缆的10BASE2 (BNC连接器, 左)和基于双绞线的10BASE-T(RJ-45, 右)。
以太网基于网络上无线电系统多个节点发送信息的想法实现,每个节点必须取得电缆或者信道的才能传送信息,有时也叫作以太(Ether)。(这个名字来源于19世纪的物理学家假设的电磁辐射媒体-光以太。后来的研究证明光以太不存在。) 每一个节点有全球唯一的48位地址也就是制造商分配给网卡的MAC地址,以保证以太网上所有系统能互相鉴别。由于以太网十分普遍,许多制造商把以太网卡直接集成进计算机主板.
已经发现以太网通讯具有自相关性的特点,这对于电信通讯工程十分重要的。
[编辑]CSMA/CD共享介质以太网

带冲突检测的载波侦听多路访问 (CSMA/CD)技术规定了多台电脑共享一个信道的方法。这项技术最早出现在1960年代由夏威夷大学开发的ALOHAnet,它使用无线电波为载体。这个方法要比令牌环网或者主控制网要简单。当某台电脑要发送信息时,必须遵守以下规则:
开始 - 如果线路空闲,则启动传输,否则转到第4步
发送 - 如果检测到冲突,继续发送数据直到达到最小报文时间 (保证所有其他转发器和终端检测到冲突),再转到第4步.
成功传输 - 向更高层的网络协议报告发送成功,退出传输模式。
线路忙 - 等待,直到线路空闲
线路进入空闲状态 - 等待一个随机的时间,转到第1步,除非超过最大尝试次数
超过最大尝试传输次数 - 向更高层的网络协议报告发送失败,退出传输模式
就像在没有主持人的座谈会中,所有的参加者都通过一个共同的媒介(空气)来相互交谈。每个参加者在讲话前,都礼貌地等待别人把话讲完。如果两个客人同时开始讲话,那么他们都停下来,分别随机等待一段时间再开始讲话。这时,如果两个参加者等待的时间不同,冲突就不会出现。如果传输失败超过一次,将采用退避指数增长时间的方法(退避的时间通过截断二进制指数退避算法(truncated binary exponential backoff)来实现)。
最初的以太网是采用同轴电缆来连接各个设备的。电脑通过一个叫做附加单元接口(Attachment Unit Interface,AUI)的收发器连接到电缆上。一根简单网线对于一个小型网络来说还是很可靠的,对于大型网络来说,某处线路的故障或某个连接器的故障,都会造成以太网某个或多个网段的不稳定。
因为所有的通信信号都在共用线路上传输,即使信息只是发给其中的一个终端(destination),某台电脑发送的消息都将被所有其他电脑接收。在正常情况下,网络接口卡会滤掉不是发送给自己的信息,接收目标地址是自己的信息时才会向CPU发出中断请求,除非网卡处于混杂模式(Promiscuous mode)。这种“一个说,大家听”的特质是共享介质以太网在安全上的弱点,因为以太网上的一个节点可以选择是否监听线路上传输的所有信息。共享电缆也意味着共享带宽,所以在某些情况下以太网的速度可能会非常慢,比如电源故障之后,当所有的网络终端都重新启动时。
[编辑]以太网中继器和集线器

在以太网技术的发展中,以太网集线器(Ethernet Hub)的出现使得网络更加可靠,接线更加方便。
因为信号的衰减和延时,根据不同的介质以太网段有距离限制。例如,10BASE5同轴电缆最长距离500米 (1,640 英尺)。最大距离可以通过以太网中继器实现,中继器可以把电缆中的信号放大再传送到下一段。中继器最多连接5个网段,但是只能有4个设备(即一个网段最多可以接4个中继器)。这可以减轻因为电缆断裂造成的问题:当一段同轴电缆断开,所有这个段上的设备就无法通讯,中继器可以保证其他网段正常工作。
类似于其他的高速总线,以太网网段必须在两头以电阻器作为终端。对于同轴电缆,电缆两头的终端必须接上被称作“终端器”的50欧姆的电阻和散热器,and affixed to a male M or BNC connector.如果不这么做,就会发生类似电缆断掉的情况:总线上的AC 信号当到达终端时将被反射,而不能消散。被反射的信号将被认为是冲突,从而使通信无法继续。中继器可以将连在其上的两个网段进行电气隔离,增强和同步信号。大多数中继器都有被称作“自动隔离”的功能,可以把有太多冲突或是冲突持续时间太长的网段隔离开来,这样其他的网段不会受到损坏部分的影响。中继器在检测到冲突消失后可以恢复网段的连接。
随着应用的拓展,人们逐渐发现星型的网络拓扑结构最为有效,于是设备厂商们开始研制有多个端口的中继器。多端口中继器就是众所周知的集线器(Hub)。集线器可以连接到其他的集线器或者同轴网络。
第一个集线器被认为是“多端口收发器”或者叫做“fanouts”。最着名的例子是DEC的DELNI,它可以使许多台具有AUI连接器的主机共用一个收发器。集线器也导致了不使用同轴电缆的小型独立以太网网段的出现。
像DEC和SynOptics这样的网络设备制造商曾经出售过用于连接许多10BASE-2细同轴线网段的集线器。
非屏蔽双绞线(unshielded twisted-pair cables , UTP)最先应用在星型局域网中,之后在10BASE-T中也得到应用,并最终代替了同轴电缆成为以太网的标准。这项改进之后,RJ45电话接口代替了 AUI 成为电脑和集线器的标准界口,非屏蔽3类双绞线/5类双绞线成为标准载体。集线器的应用使某条电缆或某个设备的故障不会影响到整个网络,提高了以太网的可靠性。双绞线以太网把每一个网段点对点地连起来,这样终端就可以做成一个标准的硬件,解决了以太网的终端问题。
采用集线器组网的以太网尽管在物理上是星型结构,但在逻辑上仍然是总线型的,半双工的通信方式采用CSMA/CD的冲突检测方法,集线器对于减少包冲突的作用很小。每一个数据包都被发送到集线器的每一个端口,所以带宽和安全问题仍没有解决。集线器的总吞吐量受到单个连接速度的限制(10或100 Mbit/s),这还是考虑在前同步码、帧间隔、头部、尾部和打包上花销最少的情况。当网络负载过重时,冲突也常常会降低总吞吐量。最坏的情况是,当许多用长电缆组网的主机传送很多非常短的帧时,网络的负载仅达到50%就会因为冲突而降低集线器的吞吐量。为了在冲突严重降低吞吐量之前尽量提高网络的负载,通常会进行一些设置工作。
[编辑]桥接和交换

尽管中继器在某些方面隔离了以太网网段,电缆断线的故障不会影响到整个网络,但它向所有的以太网设备转发所有的数据。这严重限制了同一个以太网网络上可以相互通信的机器数量。为了减轻这个问题,桥接方法被采用,在工作在物理层的中继器之基础上,桥接工作在数据链路层。通过网桥时,只有格式完整的数据包才能从一个网段进入另一个网段;冲突和数据包错误则都被隔离。通过记录分析网络上设备的MAC地址,网桥可以判断它们都在什么位置,这样它就不会向非目标设备所在的网段传递数据包。象生成树协议这样的控制机制可以协调多个交换机共同工作。
早期的网桥要检测每一个数据包,这样,特别是同时处理多个端口的时候,数据转发相对Hub(中继器)来说要慢。1989年网络公司Kalpana发明了EtherSwitch,第一台以太网交换机。以太网交换机把桥接功能用硬件实现,这样就能保证转发数据速率达到线速。
大多数现代以太网用以太网交换机代替Hub。尽管布线同Hub以太网是一样的,但是交换式以太网比共享介质以太网有很多明显的优势,例如更大的带宽和更好的结局隔离异常设备。交换网络典型的使用星型拓扑, 尽管设备工作在半双工模式是仍然是共享介质的多结点网。10BASE-T和以后的标准是全双工以太网,不再是共享介质系统。
交换机加电后,首先也像Hub那样工作,转发所有数据到所有端口。接下来,当它学习到每个端口的地址以后,他就只把非广播数据发送给特定的目的端口。这样,线速以太网交换就可以在任何端口对之间实现,所有端口对之间的通讯互不干扰。
因为数据包一般只是发送到他的目的端口,所以交换式以太网上的流量要略微小于共享介质式以太网。尽管如此,交换式以太网依然是不安全的网络技术,因为它还很容易因为ARP欺骗或者MAC满溢而瘫痪,同时网络管理员也可以利用监控功能抓取网络数据包。
当只有简单设备(除Hub之外的设备)接入交换机端口,那么整个网络可能工作在全双工方式。如果一个网段只有2个设备,那么冲突探测也不需要了,两个设备可以随时收发数据。总的带宽就是链路的2倍(尽管带宽每个方向上是一样的),但是没有冲突发生就意味着允许几乎100%的使用链路带宽。
交换机端口和所连接的设备必须使用相同的双工设置。多数100BASE-TX和1000BASE-T设备支持自动协商特性,即这些设备通过信号来协调要使用的速率和双工设置。然而,如果自动协商被禁用或者设备不支持,则双工设置必须通过自动检测进行设置或在交换机端口和设备上都进行手工设置以避免双工错配——这是以太网问题的一种常见原因(设备被设置为半双工会报告迟发冲突,而设备被设为全双工则会报告runt)。许多低端交换机没有手工进行速率和双工设置的能力,因此端口总是会尝试进行自动协商。当启用了自动协商但不成功时(例如其他设备不支持),自动协商会将端口设置为半双工。速率是可以自动感测的,因此将一个10BASE-T设备连接到一个启用了自动协商的10/100交换端口上时将可以成功地建立一个半双工的10BASE-T连接。但是将一个配置为全双工100Mb工作的设备连接到一个配置为自动协商的交换端口时(反之亦然)则会导致双工错配。
即使电缆两端都设置成自动速率和双工模式协商,错误猜测还是经常发生而退到10Mbps模式。因此,如果性能差于预期,应该查看一下是否有计算机设置成10Mbps模式了,如果已知另一端配置为100Mbit,则可以手动强制设置成正确模式。.
当两个节点试图用超过电缆最高支持数据速率(例如在3类线上使用100Mbps或者3类/5类线使用1000Mbps)通信时就会发生问题。不像ADSL或者传统的拨号Modem通过详细的方法检测链路的最高支持数据速率,以太网节点只是简单的选择两端支持的最高速率而不管中间线路。因此如果过高的速率导致电缆不可靠就会导致链路失效。解决方案只有强制通讯端降低到电缆支持的速率。
[编辑]以太网类型

除了以上提到的不同帧类型以外,各类以太网的差别仅仅在于速率和配线。因此,总的来说,同样的网络协议栈软件可以运行在大多数以太网上。
以下的章节简要综述了不同的正式的以太网类型。除了这些正式的标准以外,许多厂商因为一些特殊的原因,比如为了支持更长距离的光纤传输,而制定了一些专用的标准。
很多以太网卡和交换设备都支持多速率,设备之间通过自动协商设置最佳的连接速度和双工方式。如果协商失败,多速率设备就会探测另一方使用的速率但是默认为半双工方式。10/100以太网端口支持10BASE-T和100BASE-TX。10/100/1000支持10BASE-T,100BASE-TX,和1000BASE-T。
[编辑]早期的以太网
参见:兆比特以太网
施乐以太网(Xerox Ethernet,又称“全录以太网”) ── 是以太网络的雏型。最初的2.94Mbit/s以太网,并仅在全录公司里内部使用。而在1982年,Xerox与DEC及Intel组成DIX联盟,并共同发表了Ethernet Version 2(EV2)的规格,并将它投放在商场市场,而且被普遍使用。而EV2的网络就是目前受IEEE承认的10BASE5。[1]
10BROAD36 ── 已经过时。一个早期的支持长距离以太网的标准。它运行在同轴电缆上,使用了一种类似于线缆调制解调器系统的宽带调制技术。
1BASE5 ── 也称为星型局域网,速率是1Mbit/s。在商业上很失败。双绞线 的第一次使用就用在这里。
[编辑]10Mbps以太网

10BASE-T电缆
参见:十兆以太网
10BASE5(又称粗缆(Thick Ethernet)或黄色电缆)── 最早实现10 Mbit/s以太网。 早期IEEE标准,使用单根RG-11同轴电缆,最大距离为500米,并最多可以连接100台电脑的收发器,而缆线两端必须接上50欧姆的终端电阻。接收端通过所谓的“插入式分接头”插入电缆的内芯和屏蔽层。在电缆终结处使用N型连接器。尽管由于早期的大量布设,到现在还有一些系统在使用,这一标准实际已经丢弃,被10BASE2所淘汰。
10BASE2(又称细缆(Thin Ethernet)或模拟网络)── 10BASE5后的产品,使用RG-58同轴电缆,最长转输距离约200米(实际为185米),仅能连接30台计算机,计算机使用T型适配器连接到带有BNC连接器的网卡,而线路两头需要50欧姆的终结器。虽然在能力、规格上不及10BASE5,但是因为其线材较细,方便布线、成本也便宜,所以得到更广泛的使用,淘汰了10BASE5。由于双绞线的普及,它也被各式的双绞线网络取代。
StarLAN ── 第一个双绞线上实现的以太网标准10 Mbit/s。后发展成10BASE-T。
10BASE-T ── 使用3类双绞线,4类双绞线,5类双绞线的4根线(两对双绞线)100米。以太网集线器或以太网交换机位于中间连接所有节点。
FOIRL ── 光纤中继器链路。光纤以太网原始版本。
10BASE-F ── 10Mbps以太网光纤标准通称,2千米。只有10BASE-FL应用比较广泛。
10BASE-FL ── FOIRL标准一种升级。
10BASE-FB ── 用于连接多个Hub或者交换机的骨干网技术,已废弃。
10BASE-FP ── 无中继被动星型网,从未得到应用。
[编辑]100Mbps以太网(快速以太网)
参见:100Mbps以太网
快速以太网(Fast Ethernet)为IEEE在1995年发表的网络标准,能提供达100Mbps的传输速度。[2]
100BASE-T -- 下面三个100 Mbit/s 双绞线标准通称,最远100米。
100BASE-TX -- 类似于星型结构的10BASE-T。使用2对电缆,但是需要5类电缆以达到100Mbit/s.
100BASE-T4 -- 使用3类电缆,使用所有4对线,半双工。由于5类线普及,已经废弃。
100BASE-T2 -- 无产品。使用3类电缆。支持全双工使用2对线,功能等效100BASE-TX,但支持旧电缆。
100BASE-FX -- 使用多模光纤,最远支持400米,半双工连接 (保证冲突检测),2km全双工。
100VG AnyLAN -- 只有惠普支持, VG最早出现在市场上。需要4对三类电缆。也有人怀疑VG不是以太网。
[编辑]1Gbps以太网
参见:1Gbps以太网

1000BASE-SX的光信号与电气信号转换器
1000BASE-T -- 1 Gbit/s 介质超五类双绞线或6类双绞线。
1000BASE-SX -- 1 Gbit/s 多模光纤(小于500M)。
1000BASE-LX -- 1 Gbit/s 多模光纤(小于2KM)。
1000BASE-LX10 -- 1 Gbit/s 单模光纤(小于10KM)。长距离方案
1000BASE-LHX --1 Gbit/s 单模光纤(10KM至40KM)。长距离方案
1000BASE-ZX --1 Gbit/s 单模光纤(40KM至70KM)。长距离方案
1000BASE-CX -- 铜缆上达到1Gbps的短距离(小于25 m)方案。早于1000BASE-T,已废弃。
[编辑]万兆以太网
参见:10吉比特以太网路
新的万兆以太网标准包含7种不同的节制类型适用于局域网、城域网和广域网。当前使用附加标准IEEE 802.3ae用以说明,将来会合并进IEEE 802.3标准。
10GBASE-CX4 -- 短距离铜缆方案用于InfiniBand 4x连接器和CX4电缆,最大长度15米。
10GBASE-SR -- 用于短距离多模光纤,根据电缆类型能达到26-82米,使用新型2GHz多模光纤可以达到300米。
10GBASE-LX4 -- 使用波分复用支持多模光纤240-300米,单模光纤超过10公里。
10GBASE-LR 和10GBASE-ER -- 通过单模光纤分别支持10公里和40公里
10GBASE-SW、10GBASE-LW、10GBASE-EW。用于广域网PHY, OC-192 / STM-64 同步光纤网/SDH设备。物理层分别对应10GBASE-SR, 10GBASE-LR和10GBASE-ER,因此使用相同光纤支持距离也一致。(无广域网PHY标准)
10GBASE-T -- 使用屏蔽或非屏蔽双绞线,使用CAT-6A类线至少支持100米传输。CAT-6类线也在较短的距离上支持10GBASE-T。
[编辑]十万兆以太网
参见:100G以太网
新的40G/100G 以太网标准在2010年中制定完成,包含若干种不同的节制类型。当前使用附加标准IEEE 802.3ba用以说明。
40GBASE-KR4 -- 背板方案,最少距离1米。
40GBASE-CR4 / 100GBASE-CR10 -- 短距离铜缆方案,最大长度大约7米。
40GBASE-SR4 / 100GBASE-SR10 -- 用于短距离多模光纤,长度至少在100米以上。
40GBASE-LR4 / 100GBASE-LR10 -- 使用单模光纤,距离超过10公里。
100GBASE-ER4 -- 使用单模光纤,距离超过40公里。

④ 请问什么叫以太网请解释

我们知道局域网-LAN(Local Area Network)是 将小区域内的各种通信设备互联在一起所形成的网络,覆盖范围一般局限在房间、大楼或园区内。局域网的特点是:距离短、延迟小、数据速率高、传输可靠。 目前常见的局域网类型包括:以太网(Ethernet)、光纤分布式数据接口(FDDI)、异步传输模式(ATM)、令牌环网(Token Ring)、交换网Switching等,它们在拓朴结构、传输介质、传输速率、数据格式等多方面都有许多不同。其中应用最广泛的当属以太网—— 一种总线结构的LAN,是目前发展最迅速、也最经济的局域网 。我们这里简单对以太网(Ethernet)、光纤分布式数据接口(FDDI)、异步传输模式(ATM)进行介绍。
1、以太网Ethernet
Ethernet是Xerox、Digital Equipment和Intel三家公司开发的局域网组网规范,并于80年代初首次出版,称为DIX1.0。1982年修改后的版本为DIX2.0。 这三家公司将此规范提交给IEEE(电子电气工程师协会)802委员会,经过IEEE成员的修改并通过,变成了IEEE的正式标准,并编号为IEEE802.3。Ethernet和IEEE802.3虽然有很多规定不同,但术语Ethernet通常认为与802.3是兼容的。IEEE将802.3标准提交国际标准化组织(ISO)第一联合技术委员会(JTC1),再次经过修订变成了国际标准ISO8802.3。 早期局域网技术的关键是如何解决连接在同一总线上的多个网络节点有秩序的共享一个信道的问题,而以太网络正是利用载波监听多路访问/碰撞检测(CSMA/CD)技术成功的提高了局域网络共享信道的传输利用率,从而得以发展和流行的。交换式快速以太网及千兆以太网是近几年发展起来的先进的网络技术,使以太网络成为当今局域网应用较为广泛的主流技术之一。随着电子邮件数量的不断增加,以及网络数据库管理系统和多媒体应用的不断普及,迫切需要高速高带宽的网络技术。交换式快速以太网技术便应运而生。快速以太网及千兆以太网从根本上讲还是以太网,只是速度快。它基于现有的标准和技术(IEEE802.3标准,CSMA/CD介质存取协议,总线性或星型拓扑结构,支持细缆、UTP、光纤介质,支持全双工传输),可以使用现有的电缆和软件,因此它是一种简单、经济、安全的选择。然而,以太网络在发展早期所提出的共享带宽、信道争用机制极大的限制了网络后来的发展,即使是近几年发展起来的链路层交换技术(即交换式以太网技术)和提高收发时钟频率(即快速以太网技术)也不能从根本上解决这一问题,具体表现在:1、以太网提供是一种所谓“无连接”的网络服务,网络本身对所传输的信息包无法进行诸如交付时间、包间延迟、占用带宽等等关于服务质量的控制。因此没有服务质量保证(Quality of Service)。2、对信道的共享及争用机制导致信道的实际利用带宽远低于物理提供的带宽,因此带宽利用率低。 除以上两点以外,以太网传输机制所固有的对网络半径、冗余拓扑和负载平衡能力的限制以及网络的附加服务能力薄弱等,也都是以太网络的不足之处。但以太网以成熟的技术、广泛的用户基础和较高的性能价格比,仍是传统数据传输网络应用中较为优秀的解决方案。 以太网几个术语介绍: 以太网根据不同的媒体可分为:10BASE-2、10BASE-5、10BASE-T及10BASE-FL。10Base2以太网是采用细同轴电缆组网,最大的网段长度是200m,每网段节点数是30,它是相对最便宜的系统; 10Base5以太网 是采用粗同轴电缆,最大网段长度为500m,每网段节点数是100,它适合用于主干网;10Base-T以太网是采用双绞线,最大网段长度为100m,每网段节点数是1024,它的特点是易于维护;10Base-F以太网采用光纤连接,最大网段长度是2000m,每网段节点数为1024,此类网络最适于在楼间使用。 交换以太网:其支持的协议仍然是IEEE802.3/以太网,但提供多个单独的 10Mbps端口。它与原来IEEE802.3/以太网完全兼容,并且克服了共享10Mbps带来的网络效率下降。 100BASE-T快速以太网:与10BASE-T的区别在于将网络的速率提高了十倍,即100M。采用了FDDI的PMD协议,但价格比FDDI便宜。100BASE-T的标准由IEEE802.3制定。与10BASE-T采用相同的媒体访问技术、类似的步线规则和相同的引出线,易于与10BASE-T集成。每个网段只允许两个中继器,最大网络跨度为210米。
2、FDDI网络 光纤分布数据接口(FDDI)是目前成熟的LAN技术中传输速率最高的一种。这种传输速率高达100Mb/s的网络技术所依据的标准是ANSIX3T9.5。该网络具有定时令牌协议的特性,支持多种拓扑结构,传输媒体为光纤。使用光纤作为传输媒体具有多种优点: 1、较长的传输距离,相邻站间的最大长度可达2KM,最大站间距离为200KM。 2、具有较大的带宽,FDDI的设计带宽为100Mb/s。 3、具有对电磁和射频干扰抑制能力,在传输过程中不受电磁和射频噪声的影响,也不影响其设备。 4、光纤可防止传输过程中被分接偷听,也杜绝了辐射波的窃听,因而是最安全的传输媒体。 光纤分布式数据接口FDDI是一种使用光纤作为传输介质的、高速的、通用的环形网络。它能以100Mbps的速率跨越长达100km的距离,连接多达500个设备,既可用于城域网络也可用于小范围局域网。FDDI采用令牌传递的方式解决共享信道冲突问题,与共享式以太网的CSMA/CD的效率相比在理论上要稍高一点(但仍远比不上交换式以太网),采用双环结构的FDDI还具有链路连接的冗余能力,因而非常适于做多个局域网络的主干。然而FDDI与以太网一样,其本质仍是介质共享、无连接的网络,这就意味着它仍然不能提供服务质量保证和更高的带宽利用率。在少量站点通讯的网络环境中,它可达到比共享以太网稍高的通讯效率,但随着站点的增多,效率会急剧下降,这时候无论从性能和价格都无法与交换式以太网、ATM网相比。交换式FDDI会提高介质共享效率,但同交换式以太网一样,这一提高也是有限的,不能解决本质问题。另外,FDDI有两个突出的问题极大的影响了这一技术的进一步推广,一个是其居高不下的建设成本,特别是交换式FDDI的价格甚至会高出某些ATM交换机;另一个是其停滞不前的组网技术,由于网络半径和令牌长度的制约,现有条件下FDDI将不可能出现高出100M的带宽。面对不断降低成本同时在技术上不断发展创新的ATM和快速交换以太网技术的激烈竞争,FDDI的市场占有率逐年缩减。据相关部门统计,现在各大型院校、教学院所、政府职能机关建立局域或城域网络的设计倾向较为集中的在ATM和快速以太网这两种技术上,原先建立较早的FDDI网络,也在向星型、交换式的其他网络技术过渡。 3、ATM网络 随着人们对集话音、图像和数据为一体的多媒体通信需求的日益增加,特别是为了适应今后信息高速公路建设的需要,人们又提出了的宽带综合业务数字网(B-ISDN)这种全新的通信网络, 而B-ISDN的实现需要一种全新的传输模式,此即异步传输模式(ATM)。在1990年,国际电报电话咨询委员会(CCITT)正式建议将ATM作为实现B-ISDN的一项技术基础,这样,以ATM为机制的信息传输和交换模式也就成为电信和计算机网络操作的基础和2l世纪通信的主体之一。尽管目前世界各国,都在积极开展ATM技术研究和B-ISDN的建设, 但以ATM为基础的B-ISDN的完善和普及却还要等到下一世纪,所以称ATM为一项跨世纪的新兴通信技术。不过, ATM技术仍然是当前国际网络界所注意的焦点,其相关产品的开发也是各厂商想要抢占的网络市场的一个制高点。 ATM是目前网络发展的最新技术,它采用基于信元的异步传输模式和虚电路结构,根本上解决了多媒体的实时性及带宽问题。实现面向虚链路的点到点传输,它通常提供155Mbps的带宽。它既汲取了话务通讯中电路交换的“有连接”服务和服务质量保证,又保持了以太、FDDI等传统网络中带宽可变、适于突发性传输的灵活性,从而成为迄今为止适用范围最广、技术最先进、传输效果最理想的网络互联手段。ATM技术具有如下特点:1、实现网络传输有连接服务,实现服务质量保证(QoS)。2、交换吞吐量大、带宽利用率高。3、具有灵活的组网拓扑结构和负载平衡能力,伸缩性、可靠性极高。4、ATM是现今唯一可同时应用于局域网、广域网两种网络应用领域的网络技术,它将局域网与广域网技术统一。 4、其他局域网 令牌环是IBM公司于80年代初开发成功的一种网络技术。 之所以称为环,是因为这种网络的物理结构具有环的形状。环上有多个站逐个与环相连,相邻站之间是一种点对点的链路,因此令牌环与广播方式的Ethernet不同,它是一种顺序向下一站广播的LAN。与Ethernet 不同的另一个诱人的特点是,即使负载很重,仍具有确定的响应时间。令牌环所遵循的标准是IEEE802.5,它规定了三种操作速率:1Mb/s、 4Mb/s和 16Mb/s。开始时,UTP 电缆只能在 1Mb/s的速率下操作,STP电缆可操作在 4Mb/s和16Mb/s,现已有多家厂商的产品突破了这种限制。 交换网是随着多媒体通信以及客户/服务器(Client/Server)体系结构的发展而产生的, 由于网络传输变得越来越拥挤,传统的共享LAN难以满足用户需要,曾经采用的网络区段化, 由于区段越多,路由器等连接设备投资越大,同时众多区段的网络也难于管理。 当网络用户数目增加时,如何保持网络在拓展后的性能及其可管理性呢?网络交换技术就是一个新的解决方案。 传统的共享媒体局域网依赖桥接/路由选择,交换技术却为终端用户提供专用点对点连接,它可以把一个提供“一次一用户服务”的网络,转变成一个平行系统,同时支持多对通信设备的连接,即每个与网络连接的设备均可独立与换机连接。 目前我们学校用的比较多的是以太网。

⑤ 快速以太网和千兆以太网有什么区别

1、性质不同:快速以太网是计算机网络中的以太网术语,能提供100Mbps的传输速率。IEEE 802.3u 100BASE-T快速以太网标准于1995年由IEEE正式推出,早前快速以太网的传输速率为10Mbps。千兆以太网标准于1999年由IEEE正式发布,该标准距快速以太网标准问世仅数年,但直到2010年左右才被广泛使用。

2、往返时延不同:快速以太网的往返时延为100~500位时,千兆以太网的往返时延为4000位时。

3、应用网络不同:快速以太网的应用网络为家用或小型企业网络,千兆以太网的应用网络中/大型企业网络。

(5)计算机网络术语以太网扩展阅读:

注意事项:

由于六类线缆的外径要比一般的五类线粗,为了避免线缆的缠绕(特别是在弯头处),在管线设计时一定要注意管径的填充度,一般内径20mm的线管以放2根六类线为宜。

桥架设计合理,保证合适的线缆弯曲半径。上下左右绕过其他线槽时,转弯坡度要平缓,重点注意两端线缆下垂受力后是否还能在不压损线缆的前提下盖上盖板。

放线过程中主要是注意对拉力的控制,对于带卷轴包装的线缆,建议两头至少各安排一名工人,把卷轴套在自制的拉线杆上,放线端的工人先从卷轴箱内预拉出一部分线缆,供合作者在管线另一端抽取,预拉出的线不能过多,避免多根线在场地上缠结环绕。

⑥ 电脑上的以太网是什么意思

您好楼主,以太网不是一种具体的网络,是一种技术规范。 以太网是当今现有局域网采用的最通用的通信协议标准。该标准定义了在局域网(LAN)中采用的电缆类型和信号处理方法。以太网在互联设备之间以10~100Mbps的速率传送信息包,双绞线电缆10 Base T以太网由于其低成本、高可靠性以及10Mbps的速率而成为应用最为广泛的以太网技术。直扩的无线以太网可达11Mbps,许多制造供应商提供的产品都能采用通用的软件协议进行通信,开放性最好。

⑦ 我电脑宽带显示以太网是什么意思

首先你要知道一点,这个并不是你电脑自己连上网络了,而是你的路由器通过拨号已经连上了网络(也就是你说的手动宽带连接),你说的以太网连接是指的你的电脑通过网线链接到了路由器,局域网通了,可以上网。
至于你说的那种方式好一些,都一样,不会对网速有影响。