當前位置:首頁 » 無線網路 » BP神經網路輸入的動信號
擴展閱讀
單位網路已連接不可上網 2025-07-23 10:02:16
釘釘網路連接失敗圖片 2025-07-23 09:58:31

BP神經網路輸入的動信號

發布時間: 2022-09-19 11:51:43

1. BP神經網路方法

人工神經網路是近幾年來發展起來的新興學科,它是一種大規模並行分布處理的非線性系統,適用解決難以用數學模型描述的系統,逼近任何非線性的特性,具有很強的自適應、自學習、聯想記憶、高度容錯和並行處理能力,使得神經網路理論的應用已經滲透到了各個領域。近年來,人工神經網路在水質分析和評價中的應用越來越廣泛,並取得良好效果。在這些應用中,縱觀應用於模式識別的神經網路,BP網路是最有效、最活躍的方法之一。

BP網路是多層前向網路的權值學習採用誤差逆傳播學習的一種演算法(Error Back Propagation,簡稱BP)。在具體應用該網路時分為網路訓練及網路工作兩個階段。在網路訓練階段,根據給定的訓練模式,按照「模式的順傳播」→「誤差逆傳播」→「記憶訓練」→「學習收斂」4個過程進行網路權值的訓練。在網路的工作階段,根據訓練好的網路權值及給定的輸入向量,按照「模式順傳播」方式求得與輸入向量相對應的輸出向量的解答(閻平凡,2000)。

BP演算法是一種比較成熟的有指導的訓練方法,是一個單向傳播的多層前饋網路。它包含輸入層、隱含層、輸出層,如圖4-4所示。

圖4-4 地下水質量評價的BP神經網路模型

圖4-4給出了4層地下水水質評價的BP神經網路模型。同層節點之間不連接。輸入信號從輸入層節點,依次傳過各隱含層節點,然後傳到輸出層節點,如果在輸出層得不到期望輸出,則轉入反向傳播,將誤差信號沿原來通路返回,通過學習來修改各層神經元的權值,使誤差信號最小。每一層節點的輸出隻影響下一層節點的輸入。每個節點都對應著一個作用函數(f)和閾值(a),BP網路的基本處理單元量為非線性輸入-輸出的關系,輸入層節點閾值為0,且f(x)=x;而隱含層和輸出層的作用函數為非線性的Sigmoid型(它是連續可微的)函數,其表達式為

f(x)=1/(1+e-x) (4-55)

設有L個學習樣本(Xk,Ok)(k=1,2,…,l),其中Xk為輸入,Ok為期望輸出,Xk經網路傳播後得到的實際輸出為Yk,則Yk與要求的期望輸出Ok之間的均方誤差為

區域地下水功能可持續性評價理論與方法研究

式中:M為輸出層單元數;Yk,p為第k樣本對第p特性分量的實際輸出;Ok,p為第k樣本對第p特性分量的期望輸出。

樣本的總誤差為

區域地下水功能可持續性評價理論與方法研究

由梯度下降法修改網路的權值,使得E取得最小值,學習樣本對Wij的修正為

區域地下水功能可持續性評價理論與方法研究

式中:η為學習速率,可取0到1間的數值。

所有學習樣本對權值Wij的修正為

區域地下水功能可持續性評價理論與方法研究

通常為增加學習過程的穩定性,用下式對Wij再進行修正:

區域地下水功能可持續性評價理論與方法研究

式中:β為充量常量;Wij(t)為BP網路第t次迭代循環訓練後的連接權值;Wij(t-1)為BP網路第t-1次迭代循環訓練後的連接權值。

在BP網路學習的過程中,先調整輸出層與隱含層之間的連接權值,然後調整中間隱含層間的連接權值,最後調整隱含層與輸入層之間的連接權值。實現BP網路訓練學習程序流程,如圖4-5所示(倪深海等,2000)。

圖4-5 BP神經網路模型程序框圖

若將水質評價中的評價標准作為樣本輸入,評價級別作為網路輸出,BP網路通過不斷學習,歸納出評價標准與評價級別間復雜的內在對應關系,即可進行水質綜合評價。

BP網路對地下水質量綜合評價,其評價方法不需要過多的數理統計知識,也不需要對水質量監測數據進行復雜的預處理,操作簡便易行,評價結果切合實際。由於人工神經網路方法具有高度民主的非線性函數映射功能,使得地下水水質評價結果較准確(袁曾任,1999)。

BP網路可以任意逼近任何連續函數,但是它主要存在如下缺點:①從數學上看,它可歸結為一非線性的梯度優化問題,因此不可避免地存在局部極小問題;②學習演算法的收斂速度慢,通常需要上千次或更多。

神經網路具有學習、聯想和容錯功能,是地下水水質評價工作方法的改進,如何在現行的神經網路中進一步吸取模糊和灰色理論的某些優點,建立更適合水質評價的神經網路模型,使該模型既具有方法的先進性又具有現實的可行性,將是我們今後研究和探討的問題。

2. bp神經網路是動態神經網路還是靜態神經網路

bp神經網路屬於靜態神經網路。靜態神經網路的特點是無反饋,無記憶,輸出僅依賴於當前的輸入,bp神經網路正是如此,不過它會根據誤差調整權值。

3. 一個關於信號源識別的BP神經網路 BP網路看不懂 求大神幫助

  1. A是輸出結果矩陣。E=T-A;這一句是計算輸出與實際的誤差。

  2. 輸入、輸出不是直接的數學表達式關系,是一個非線性系統,通過訓練得到的。


BP(Back Propagation)神經網路是年由Rumelhart和McCelland為首的科學家小組提出,是一種按誤差逆傳播演算法訓練的多層前饋網路,是目前應用最廣泛的神經網路模型之一。BP網路能學習和存貯大量的輸入-輸出模式映射關系,而無需事前揭示描述這種映射關系的數學方程。它的學習規則是使用最速下降法,通過反向傳播來不斷調整網路的權值和閾值,使網路的誤差平方和最小。BP神經網路模型拓撲結構包括輸入層(input)、隱層(hidden layer)和輸出層(output layer)。

4. bp神經網路對輸入數據和輸出數據有什麼要求

p神經網路的輸入數據越多越好,輸出數據需要反映網路的聯想記憶和預測能力。

BP網路能學習和存貯大量的輸入-輸出模式映射關系,而無需事前揭示描述這種映射關系的數學方程。它的學習規則是使用最速下降法,通過反向傳播來不斷調整網路的權值和閾值,使網路的誤差平方和最小。

BP神經網路模型拓撲結構包括輸入層(input)、隱層(hide layer)和輸出層(output layer)。BP網路具有高度非線性和較強的泛化能力,但也存在收斂速度慢、迭代步數多、易於陷入局部極小和全局搜索能力差等缺點。

(4)BP神經網路輸入的動信號擴展閱讀:

BP演算法主要思想是:輸入學習樣本,使用反向傳播演算法對網路的權值和偏差進行反復的調整訓練,使輸出的向量與期望向量盡可能地接近,當網路輸出層的誤差平方和小於指定的誤差時訓練完成,保存網路的權值和偏差。

1、初始化,隨機給定各連接權及閥值。

2、由給定的輸入輸出模式對計算隱層、輸出層各單元輸出

3、計算新的連接權及閥值,計算公式如下:

4、選取下一個輸入模式對返回第2步反復訓練直到網路設輸出誤差達到要求結束訓練。

5. bp神經網路

BP(Back Propagation)網路是1986年由Rumelhart和McCelland為首的科學家小組提出,是一種按誤差逆傳播演算法訓練的多層前饋網路,是目前應用最廣泛的神經網路模型之一。BP網路能學習和存貯大量的輸入-輸出模式映射關系,而無需事前揭示描述這種映射關系的數學方程。它的學習規則是使用最速下降法,通過反向傳播來不斷調整網路的權值和閾值,使網路的誤差平方和最小。BP神經網路模型拓撲結構包括輸入層(input)、隱層(hide layer)和輸出層(output layer)。
人工神經網路就是模擬人思維的第二種方式。這是一個非線性動力學系統,其特色在於信息的分布式存儲和並行協同處理。雖然單個神經元的結構極其簡單,功能有限,但大量神經元構成的網路系統所能實現的行為卻是極其豐富多彩的。

人工神經網路首先要以一定的學習准則進行學習,然後才能工作。現以人工神經網路對手寫「A」、「B」兩個字母的識別為例進行說明,規定當「A」輸入網路時,應該輸出「1」,而當輸入為「B」時,輸出為「0」。

所以網路學習的准則應該是:如果網路作出錯誤的的判決,則通過網路的學習,應使得網路減少下次犯同樣錯誤的可能性。首先,給網路的各連接權值賦予(0,1)區間內的隨機值,將「A」所對應的圖象模式輸入給網路,網路將輸入模式加權求和、與門限比較、再進行非線性運算,得到網路的輸出。在此情況下,網路輸出為「1」和「0」的概率各為50%,也就是說是完全隨機的。這時如果輸出為「1」(結果正確),則使連接權值增大,以便使網路再次遇到「A」模式輸入時,仍然能作出正確的判斷。

如果輸出為「0」(即結果錯誤),則把網路連接權值朝著減小綜合輸入加權值的方向調整,其目的在於使網路下次再遇到「A」模式輸入時,減小犯同樣錯誤的可能性。如此操作調整,當給網路輪番輸入若干個手寫字母「A」、「B」後,經過網路按以上學習方法進行若干次學習後,網路判斷的正確率將大大提高。這說明網路對這兩個模式的學習已經獲得了成功,它已將這兩個模式分布地記憶在網路的各個連接權值上。當網路再次遇到其中任何一個模式時,能夠作出迅速、准確的判斷和識別。一般說來,網路中所含的神經元個數越多,則它能記憶、識別的模式也就越多。

如圖所示拓撲結構的單隱層前饋網路,一般稱為三層前饋網或三層感知器,即:輸入層、中間層(也稱隱層)和輸出層。它的特點是:各層神經元僅與相鄰層神經元之間相互全連接,同層內神經元之間無連接,各層神經元之間無反饋連接,構成具有層次結構的前饋型神經網路系統。單計算層前饋神經網路只能求解線性可分問題,能夠求解非線性問題的網路必須是具有隱層的多層神經網路。
神經網路的研究內容相當廣泛,反映了多學科交叉技術領域的特點。主要的研究工作集中在以下幾個方面:

(1)生物原型研究。從生理學、心理學、解剖學、腦科學、病理學等生物科學方面研究神經細胞、神經網路、神經系統的生物原型結構及其功能機理。

(2)建立理論模型。根據生物原型的研究,建立神經元、神經網路的理論模型。其中包括概念模型、知識模型、物理化學模型、數學模型等。

(3)網路模型與演算法研究。在理論模型研究的基礎上構作具體的神經網路模型,以實現計算機模擬或准備製作硬體,包括網路學習演算法的研究。這方面的工作也稱為技術模型研究。

(4)人工神經網路應用系統。在網路模型與演算法研究的基礎上,利用人工神經網路組成實際的應用系統,例如,完成某種信號處理或模式識別的功能、構作專家系統、製成機器人等等。

縱觀當代新興科學技術的發展歷史,人類在征服宇宙空間、基本粒子,生命起源等科學技術領域的進程中歷經了崎嶇不平的道路。我們也會看到,探索人腦功能和神經網路的研究將伴隨著重重困難的克服而日新月異。
神經網路可以用作分類、聚類、預測等。神經網路需要有一定量的歷史數據,通過歷史數據的訓練,網路可以學習到數據中隱含的知識。在你的問題中,首先要找到某些問題的一些特徵,以及對應的評價數據,用這些數據來訓練神經網路。

雖然BP網路得到了廣泛的應用,但自身也存在一些缺陷和不足,主要包括以下幾個方面的問題。

首先,由於學習速率是固定的,因此網路的收斂速度慢,需要較長的訓練時間。對於一些復雜問題,BP演算法需要的訓練時間可能非常長,這主要是由於學習速率太小造成的,可採用變化的學習速率或自適應的學習速率加以改進。

其次,BP演算法可以使權值收斂到某個值,但並不保證其為誤差平面的全局最小值,這是因為採用梯度下降法可能產生一個局部最小值。對於這個問題,可以採用附加動量法來解決。

再次,網路隱含層的層數和單元數的選擇尚無理論上的指導,一般是根據經驗或者通過反復實驗確定。因此,網路往往存在很大的冗餘性,在一定程度上也增加了網路學習的負擔。

最後,網路的學習和記憶具有不穩定性。也就是說,如果增加了學習樣本,訓練好的網路就需要從頭開始訓練,對於以前的權值和閾值是沒有記憶的。但是可以將預測、分類或聚類做的比較好的權值保存。

6. 什麼是BP神經網路

BP演算法的基本思想是:學習過程由信號正向傳播與誤差的反向回傳兩個部分組成;正向傳播時,輸入樣本從輸入層傳入,經各隱層依次逐層處理,傳向輸出層,若輸出層輸出與期望不符,則將誤差作為調整信號逐層反向回傳,對神經元之間的連接權矩陣做出處理,使誤差減小。經反復學習,最終使誤差減小到可接受的范圍。具體步驟如下:
1、從訓練集中取出某一樣本,把信息輸入網路中。
2、通過各節點間的連接情況正向逐層處理後,得到神經網路的實際輸出。
3、計算網路實際輸出與期望輸出的誤差。
4、將誤差逐層反向回傳至之前各層,並按一定原則將誤差信號載入到連接權值上,使整個神經網路的連接權值向誤差減小的方向轉化。
5、対訓練集中每一個輸入—輸出樣本對重復以上步驟,直到整個訓練樣本集的誤差減小到符合要求為止。

7. BP神經網路(誤差反傳網路)

雖然每個人工神經元很簡單,但是只要把多個人工

神經元按一定方式連接起來就構成了一個能處理復雜信息的神經網路。採用BP演算法的多層前饋網路是目前應用最廣泛的神經網路,稱之為BP神經網路。它的最大功能就是能映射復雜的非線性函數關系。

對於已知的模型空間和數據空間,我們知道某個模型和他對應的數據,但是無法寫出它們之間的函數關系式,但是如果有大量的一一對應的模型和數據樣本集合,利用BP神經網路可以模擬(映射)它們之間的函數關系。

一個三層BP網路如圖8.11所示,分為輸入層、隱層、輸出層。它是最常用的BP網路。理論分析證明三層網路已經能夠表達任意復雜的連續函數關系了。只有在映射不連續函數時(如鋸齒波)才需要兩個隱層[8]

圖8.11中,X=(x1,…,xi,…,xn)T為輸入向量,如加入x0=-1,可以為隱層神經元引入閥值;隱層輸出向量為:Y=(y1,…,yi,…,ym)T,如加入y0=-1,可以為輸出層神經元引入閥值;輸出層輸出向量為:O=(o1,…,oi,…,ol)T;輸入層到隱層之間的權值矩陣用V表示,V=(V1,…,Vj,…,Vl)T,其中列向量Vj表示隱層第j個神經元的權值向量;隱層到輸出層之間的權值矩陣用W表示,W=(W1,…,Wk,…,Wl)T

其中列向量Wk表示輸出層第k個神經元的權值向量。

圖8.11 三層BP網路[8]

BP演算法的基本思想是:預先給定一一對應的輸入輸出樣本集。學習過程由信號的正向傳播與誤差的反向傳播兩個過程組成。正向傳播時,輸入樣本從輸入層傳入,經過各隱層逐層處理後,傳向輸出層。若輸出層的實際輸出與期望的輸出(教師信號)不符,則轉入誤差的反向傳播。將輸出誤差以某種形式通過隱層向輸入層逐層反傳,並將誤差分攤給各層的所有神經元,獲得各層的誤差信號,用它們可以對各層的神經元的權值進行調整(關於如何修改權值參見韓立群著作[8]),循環不斷地利用輸入輸出樣本集進行權值調整,以使所有輸入樣本的輸出誤差都減小到滿意的精度。這個過程就稱為網路的學習訓練過程。當網路訓練完畢後,它相當於映射(表達)了輸入輸出樣本之間的函數關系。

在地球物理勘探中,正演過程可以表示為如下函數:

d=f(m) (8.31)

它的反函數為

m=f-1(d) (8.32)

如果能夠獲得這個反函數,那麼就解決了反演問題。一般來說,難以寫出這個反函數,但是我們可以用BP神經網路來映射這個反函數m=f-1(d)。對於地球物理反問題,如果把觀測數據當作輸入數據,模型參數當作輸出數據,事先在模型空間隨機產生大量樣本進行正演計算,獲得對應的觀測數據樣本,利用它們對BP網路進行訓練,則訓練好的網路就相當於是地球物理數據方程的反函數。可以用它進行反演,輸入觀測數據,網路就會輸出它所對應的模型。

BP神經網路在能夠進行反演之前需要進行學習訓練。訓練需要大量的樣本,產生這些樣本需要大量的正演計算,此外在學習訓練過程也需要大量的時間。但是BP神經網路一旦訓練完畢,在反演中的計算時間可以忽略。

要想使BP神經網路比較好地映射函數關系,需要有全面代表性的樣本,但是由於模型空間的無限性,難以獲得全面代表性的樣本集合。用這樣的樣本訓練出來的BP網路,只能反映樣本所在的較小范圍數據空間和較小范圍模型空間的函數關系。對於超出它們的觀測數據就無法正確反演。目前BP神經網路在一維反演有較多應用,在二維、三維反演應用較少,原因就是難以產生全面代表性的樣本空間。

8. BP神經網路的特性

思維學普遍認為,人類大腦的思維分為抽象(邏輯)思維、形象(直觀)思維和靈感(頓悟)思維三種基本方式。
邏輯性的思維是指根據邏輯規則進行推理的過程;它先將信息化成概念,並用符號表示,然後,根據符號運算按串列模式進行邏輯推理;這一過程可以寫成串列的指令,讓計算機執行。然而,直觀性的思維是將分布式存儲的信息綜合起來,結果是忽然間產生想法或解決問題的辦法。這種思維方式的根本之點在於以下兩點:1.信息是通過神經元上的興奮模式分布儲在網路上;2.信息處理是通過神經元之間同時相互作用的動態過程來完成的。
人工神經網路具有初步的自適應與自組織能力。在學習或訓練過程中改變突觸權重值,以適應周圍環境的要求。同一網路因學習方式及內容不同可具有不同的功能。人工神經網路是一個具有學習能力的系統,可以發展知識,以致超過設計者原有的知識水平。通常,它的學習訓練方式可分為兩種,一種是有監督或稱有導師的學習,這時利用給定的樣本標准進行分類或模仿;另一種是無監督學習或稱無導師學習,這時,只規定學習方式或某些規則,則具體的學習內容隨系統所處環境 (即輸入信號情況)而異,系統可以自動發現環境特徵和規律性,具有更近似人腦的功能。

9. BP神經網路輸出層的輸入信號問題

閾值肯定是要包含進來的,閾值的作用就是控制神經元的激活或抑制狀態。神經網路是模仿大腦的神經元,當外界刺激達到一定的閥值時,神經元才會受刺激,影響下一個神經元。
簡單說來是這樣的:超過閾值,就會引起某一變化,不超過閾值,無論是多少,都不產生影響。

閾值又叫臨界值,是指一個效應能夠產生的最低值或最高值。

閾值又稱閾強度,是指釋放一個行為反應所需要的最小刺激強度。低於閾值的刺激不能導致行為釋放。在反射活動中,閾值的大小是固定不變的,在復雜行為中,閾值則受各種環境條件和動物生理狀況的影響。當一種行為更難於釋放時,就是閾值提高了;當一種行為更容易釋放時,就是閾值下降了。

10. BP神經網路的原理的BP什麼意思

人工神經網路有很多模型,但是日前應用最廣、基本思想最直觀、最容易被理解的是多層前饋神經網路及誤差逆傳播學習演算法(Error Back-Prooaeation),簡稱為BP網路。

在1986年以Rumelhart和McCelland為首的科學家出版的《Parallel Distributed Processing》一書中,完整地提出了誤差逆傳播學習演算法,並被廣泛接受。多層感知網路是一種具有三層或三層以上的階層型神經網路。典型的多層感知網路是三層、前饋的階層網路(圖4.1),即:輸入層、隱含層(也稱中間層)、輸出層,具體如下:

圖4.1 三層BP網路結構

(1)輸入層

輸入層是網路與外部交互的介面。一般輸入層只是輸入矢量的存儲層,它並不對輸入矢量作任何加工和處理。輸入層的神經元數目可以根據需要求解的問題和數據表示的方式來確定。一般而言,如果輸入矢量為圖像,則輸入層的神經元數目可以為圖像的像素數,也可以是經過處理後的圖像特徵數。

(2)隱含層

1989年,Robert Hecht Nielsno證明了對於任何在閉區間內的一個連續函數都可以用一個隱層的BP網路來逼近,因而一個三層的BP網路可以完成任意的n維到m維的映射。增加隱含層數雖然可以更進一步的降低誤差、提高精度,但是也使網路復雜化,從而增加了網路權值的訓練時間。誤差精度的提高也可以通過增加隱含層中的神經元數目來實現,其訓練效果也比增加隱含層數更容易觀察和調整,所以一般情況應優先考慮增加隱含層的神經元個數,再根據具體情況選擇合適的隱含層數。

(3)輸出層

輸出層輸出網路訓練的結果矢量,輸出矢量的維數應根據具體的應用要求來設計,在設計時,應盡可能減少系統的規模,使系統的復雜性減少。如果網路用作識別器,則識別的類別神經元接近1,而其它神經元輸出接近0。

以上三層網路的相鄰層之間的各神經元實現全連接,即下一層的每一個神經元與上一層的每個神經元都實現全連接,而且每層各神經元之間無連接,連接強度構成網路的權值矩陣W。

BP網路是以一種有教師示教的方式進行學習的。首先由教師對每一種輸入模式設定一個期望輸出值。然後對網路輸入實際的學習記憶模式,並由輸入層經中間層向輸出層傳播(稱為「模式順傳播」)。實際輸出與期望輸出的差即是誤差。按照誤差平方最小這一規則,由輸出層往中間層逐層修正連接權值,此過程稱為「誤差逆傳播」(陳正昌,2005)。所以誤差逆傳播神經網路也簡稱BP(Back Propagation)網。隨著「模式順傳播」和「誤差逆傳播」過程的交替反復進行。網路的實際輸出逐漸向各自所對應的期望輸出逼近,網路對輸入模式的響應的正確率也不斷上升。通過此學習過程,確定下各層間的連接權值後。典型三層BP神經網路學習及程序運行過程如下(標志淵,2006):

(1)首先,對各符號的形式及意義進行說明:

網路輸入向量Pk=(a1,a2,...,an);

網路目標向量Tk=(y1,y2,...,yn);

中間層單元輸入向量Sk=(s1,s2,...,sp),輸出向量Bk=(b1,b2,...,bp);

輸出層單元輸入向量Lk=(l1,l2,...,lq),輸出向量Ck=(c1,c2,...,cq);

輸入層至中間層的連接權wij,i=1,2,...,n,j=1,2,...p;

中間層至輸出層的連接權vjt,j=1,2,...,p,t=1,2,...,p;

中間層各單元的輸出閾值θj,j=1,2,...,p;

輸出層各單元的輸出閾值γj,j=1,2,...,p;

參數k=1,2,...,m。

(2)初始化。給每個連接權值wij、vjt、閾值θj與γj賦予區間(-1,1)內的隨機值。

(3)隨機選取一組輸入和目標樣本

提供給網路。

(4)用輸入樣本

、連接權wij和閾值θj計算中間層各單元的輸入sj,然後用sj通過傳遞函數計算中間層各單元的輸出bj

基坑降水工程的環境效應與評價方法

bj=f(sj) j=1,2,...,p (4.5)

(5)利用中間層的輸出bj、連接權vjt和閾值γt計算輸出層各單元的輸出Lt,然後通過傳遞函數計算輸出層各單元的響應Ct

基坑降水工程的環境效應與評價方法

Ct=f(Lt) t=1,2,...,q (4.7)

(6)利用網路目標向量

,網路的實際輸出Ct,計算輸出層的各單元一般化誤差

基坑降水工程的環境效應與評價方法

(7)利用連接權vjt、輸出層的一般化誤差dt和中間層的輸出bj計算中間層各單元的一般化誤差

基坑降水工程的環境效應與評價方法

(8)利用輸出層各單元的一般化誤差

與中間層各單元的輸出bj來修正連接權vjt和閾值γt

基坑降水工程的環境效應與評價方法

(9)利用中間層各單元的一般化誤差

,輸入層各單元的輸入Pk=(a1,a2,...,an)來修正連接權wij和閾值θj

基坑降水工程的環境效應與評價方法

(10)隨機選取下一個學習樣本向量提供給網路,返回到步驟(3),直到m個訓練樣本訓練完畢。

(11)重新從m個學習樣本中隨機選取一組輸入和目標樣本,返回步驟(3),直到網路全局誤差E小於預先設定的一個極小值,即網路收斂。如果學習次數大於預先設定的值,網路就無法收斂。

(12)學習結束。

可以看出,在以上學習步驟中,(8)、(9)步為網路誤差的「逆傳播過程」,(10)、(11)步則用於完成訓練和收斂過程。

通常,經過訓練的網路還應該進行性能測試。測試的方法就是選擇測試樣本向量,將其提供給網路,檢驗網路對其分類的正確性。測試樣本向量中應該包含今後網路應用過程中可能遇到的主要典型模式(宋大奇,2006)。這些樣本可以直接測取得到,也可以通過模擬得到,在樣本數據較少或者較難得到時,也可以通過對學習樣本加上適當的雜訊或按照一定規則插值得到。為了更好地驗證網路的泛化能力,一個良好的測試樣本集中不應該包含和學習樣本完全相同的模式(董軍,2007)。