当前位置:首页 » 无线网络 » 神经网络信号分离
扩展阅读
怎么创建一个博客网站 2025-07-24 07:38:19
电脑黑屏开始闪英文 2025-07-24 07:16:55

神经网络信号分离

发布时间: 2022-09-19 21:39:14

⑴ 盲源分离的盲源分离的发展及发展趋势

目前国际国内对盲源分离问题的研究工作仍处于不断发展阶段,新理论、新方法还在源源不断地涌现。 1986年,法国学者Jeanny Herault和Christian Jutten提出了递归神经网络模型和基于Hebb学习律的学习算法,以实现2个独立源信号混合的分离。这一开创性的论文在信号处理领域中揭开了新的一章,即盲源分离问题的研究。
其后二十几年来,对于盲信号分离问题,学者们提出了很多的算法,每种算法都在一定程度上取得了成功。从算法的角度而言,BSS算法可分为批处理算法和自适应算法;从代数函数和准则而言,又分为基于神经网络的方法、基于高阶统计量的方法、基于互信息量的方法、基于非线性函数的方法等。
尽管国内对盲信号分离问题的研究相对较晚,但在理论和应用方面也取得很大的进展。清华大学的张贤达教授在其1996年出版的《时间序列分析——高阶统计量方法》一书中,介绍了有关盲分离的理论基础,其后关于盲分离的研究才逐渐多起来。近年来国内各类基金支持了盲信号处理理论和应用的项目,也成立了一些研究小组。 虽然盲源分离理论方法在最近20年已经取得了长足的发展,但是还有许多问题有待进一步研究和解决。首先是理论体系有待完善。实际采用的处理算法或多或少都带有一些经验知识,对于算法的稳定性和收敛性的证明不够充分。盲源分离尚有大量的理论和实际问题有待解决,例如多维ICA问题、带噪声信号的有效分离方法、如何更有效地利用各种先验知识成功分离或提取出源信号、一般性的非线性混合信号的盲分离、如何与神经网络有效地结合、源信号的数目大于观察信号的数目时ICA方法等。另外,盲源分离可同其他学科有机结合,如模糊系统理论在盲分离技术中的应用可能是一个有前途的研究方向;盲源分离技术与遗传算法相结合,可以减少计算复杂度,提高收敛速度。如何有效提高算法对源信号统计特性的学习和利用也需要进行深入研究。在硬件实现方面,盲分离问题也存在着极大的发展空间,例如用FPGA实现等。
经过人们将近20年的共同努力,有关盲分离的理论和算法得到了较快发展,包括盲分离问题本身的可解性以及求解原理等方面的基本理论问题在一定程度上得到了解决,并提出了一些在分离能力、内存需求、计算速度等方面性能各异的算法。由于该问题的理论研究深度和算法实现难度都较大,目前对于盲分离的研究仍然很不成熟,难以满足许多实际应用需求,许多理论问题和算法实现的相应技术也有待进一步探索。

⑵ 人工神经网络评价法

人工神经元是人工神经网络的基本处理单元,而人工智能的一个重要组成部分又是人工神经网络。人工神经网络是模拟生物神经元系统的数学模型,接受信息主要是通过神经元来进行的。首先,人工神经元利用连接强度将产生的信号扩大;然后,接收到所有与之相连的神经元输出的加权累积;最后,将神经元与加权总和一一比较,当比阈值大时,则激活人工神经元,信号被输送至与它连接的上一层的神经元,反之则不行。

人工神经网络的一个重要模型就是反向传播模型(Back-Propagation Model)(简称BP模型)。对于一个拥有n个输入节点、m个输出节点的反向传播网络,可将输入到输出的关系看作n维空间到m维空间的映射。由于网络中含有大量非线性节点,所以可具有高度非线性。

(一)神经网络评价法的步骤

利用神经网络对复垦潜力进行评价的目的就是对某个指标的输入产生一个预期的评价结果,在此过程中需要对网络的连接弧权值进行不断的调整。

(1)初始化所有连接弧的权值。为了保证网络不会出现饱和及反常的情况,一般将其设置为较小的随机数。

(2)在网络中输入一组训练数据,并对网络的输出值进行计算。

(3)对期望值与输出值之间的偏差进行计算,再从输出层逆向计算到第一隐含层,调整各条弧的权值,使其往减少该偏差的方向发展。

(4)重复以上几个步骤,对训练集中的各组训练数据反复计算,直至二者的偏差达到能够被认可的程度为止。

(二)人工神经网络模型的建立

(1)确定输入层个数。根据评价对象的实际情况,输入层的个数就是所选择的评价指标数。

(2)确定隐含层数。通常最为理想的神经网络只具有一个隐含层,输入的信号能够被隐含节点分离,然后组合成新的向量,其运算快速,可让复杂的事物简单化,减少不必要的麻烦。

(3)确定隐含层节点数。按照经验公式:

灾害损毁土地复垦

式中:j——隐含层的个数;

n——输入层的个数;

m——输出层的个数。

人工神经网络模型结构如图5-2。

图5-2人工神经网络结构图(据周丽晖,2004)

(三)人工神经网络的计算

输入被评价对象的指标信息(X1,X2,X3,…,Xn),计算实际输出值Yj

灾害损毁土地复垦

比较已知输出与计算输出,修改K层节点的权值和阈值。

灾害损毁土地复垦

式中:wij——K-1层结点j的连接权值和阈值;

η——系数(0<η<1);

Xi——结点i的输出。

输出结果:

Cj=yj(1-yj)(dj-yj) (5-21)

式中:yj——结点j的实际输出值;

dj——结点j的期望输出值。因为无法对隐含结点的输出进行比较,可推算出:

灾害损毁土地复垦

式中:Xj——结点j的实际输出值。

它是一个轮番代替的过程,每次的迭代都将W值调整,这样经过反复更替,直到计算输出值与期望输出值的偏差在允许值范围内才能停止。

利用人工神经网络法对复垦潜力进行评价,实际上就是将土地复垦影响评价因子与复垦潜力之间的映射关系建立起来。只要选择的网络结构合适,利用人工神经网络函数的逼近性,就能无限接近上述映射关系,所以采用人工神经网络法进行灾毁土地复垦潜力评价是适宜的。

(四)人工神经网络方法的优缺点

人工神经网络方法与其他方法相比具有如下优点:

(1)它是利用最优训练原则进行重复计算,不停地调试神经网络结构,直至得到一个相对稳定的结果。所以,采取此方法进行复垦潜力评价可以消除很多人为主观因素,保证了复垦潜力评价结果的真实性和客观性。

(2)得到的评价结果误差相对较小,通过反复迭代减少系统误差,可满足任何精度要求。

(3)动态性好,通过增加参比样本的数量和随着时间不断推移,能够实现动态追踪比较和更深层次的学习。

(4)它以非线性函数为基础,与复杂的非线性动态经济系统更贴近,能够更加真实、更为准确地反映出灾毁土地复垦潜力,比传统评价方法更适用。

但是人工神经网络也存在一定的不足:

(1)人工神经网络算法是采取最优化算法,通过迭代计算对连接各神经元之间的权值不断地调整,直到达到全局最优化。但误差曲面相当复杂,在计算过程中一不小心就会使神经网络陷入局部最小点。

(2)误差通过输出层逆向传播,隐含层越多,逆向传播偏差在接近输入层时就越不准确,评价效率在一定程度上也受到影响,收敛速度不及时的情况就容易出现,从而造成个别区域的复垦潜力评价结果出现偏离。

⑶ 神经网络的主要内容特点

(1) 神经网络的一般特点
作为一种正在兴起的新型技术神经网络有着自己的优势,他的主要特点如下:
① 由于神经网络模仿人的大脑,采用自适应算法。使它较之专家系统的固定的推理方式及传统计算机的指令程序方式更能够适应化环境的变化。总结规律,完成某种运算、推理、识别及控制任务。因而它具有更高的智能水平,更接近人的大脑。
② 较强的容错能力,使神经网络能够和人工视觉系统一样,根据对象的主要特征去识别对象。
③ 自学习、自组织功能及归纳能力。
以上三个特点是神经网络能够对不确定的、非结构化的信息及图像进行识别处理。石油勘探中的大量信息就具有这种性质。因而,人工神经网络是十分适合石油勘探的信息处理的。
(2) 自组织神经网络的特点
自组织特征映射神经网络作为神经网络的一种,既有神经网络的通用的上面所述的三个主要的特点又有自己的特色。
① 自组织神经网络共分两层即输入层和输出层。
② 采用竞争学记机制,胜者为王,但是同时近邻也享有特权,可以跟着竞争获胜的神经元一起调整权值,从而使得结果更加光滑,不想前面的那样粗糙。
③ 这一网络同时考虑拓扑结构的问题,即他不仅仅是对输入数据本身的分析,更考虑到数据的拓扑机构。
权值调整的过程中和最后的结果输出都考虑了这些,使得相似的神经元在相邻的位置,从而实现了与人脑类似的大脑分区响应处理不同类型的信号的功能。
④ 采用无导师学记机制,不需要教师信号,直接进行分类操作,使得网络的适应性更强,应用更加的广泛,尤其是那些对于现在的人来说结果还是未知的数据的分类。顽强的生命力使得神经网络的应用范围大大加大。

⑷ 关于神经网络信号处理

神经元网络应用面很广,理论上说它可以应用到你能想到的各个领域,神经元网络在信号处理方面的应用我接触过的有数据压缩,模式识别,还有很多,前景不错。

⑸ 神经网络模型的信息处理

人工神经网络对神经元的兴奋与抑制进行模拟,故而首先应了解神经元的兴奋与抑制状态。
一个神经元的兴奋和抑制两种状态是由细胞膜内外之间不同的电位差来表征的。在抑制状态,细胞膜内外之间有内负外正的电位差,这个电位差大约在-50— -100mv之间。在兴奋状态,则产生内正外负的相反电位差,这时表现为约60—100mv的电脉冲。细胞膜内外的电位差是由膜内外的离子浓度不同导致的。细胞的兴奋电脉冲宽度一般大约为1ms。神经元的兴奋过程电位变化如图1—3所示。
图1-3.神经元的兴奋过程电位变化 对神经细胞的研究结果表明:神经元的电脉冲几乎可以不衰减地沿着轴突传送到其它神经元去。
由神经元传出的电脉冲信号通过轴突,首先到达轴突末梢,这时则使其中的囊泡产生变化从而释放神经递质,这种神经递质通过突触的间隙而进入到另一个神经元的树突中。树突上的受体能够接受神经递质从而去改变膜向离子的通透性.使膜外内离子浓度差产生变化;进而使电位产生变化。显然,信息就从一个神经元传送到另一个神经元中。
当神经元接受来自其它神经元的信息时,膜电位在开始时是按时间连续渐渐变化的。当膜电位变化经超出一个定值时,才产生突变上升的脉冲,这个脉冲接着沿轴突进行传递。神经元这种膜电位高达一定阀值才产生脉冲传送的特性称阀值特性。
这种阀值特性从图1—3中也可以看出。
神经元的信息传递除了有阀值特性之外,还有两个特点。一个是单向性传递,即只能从前一级神经元的轴突末梢传向后一级神经元的树突或细胞体,不能反之。另一个是延时性传递.信息通过突触传递,通常会产生0.5-1ms的延时。 神经元对来自其它神经元的信息有时空综合特性。
在神经网络结构上,大量不同的神经元的轴突末梢可以到达同一个神经元的树突并形成大量突触。来源不同的突触所释放的神经递质都可以对同一个神经元的膜电位变化产生作用。因此,在树突上,神经元可以对不同来源的输入信息进行综合。这就是神经元对信息的空间综合特性。
对于来自同一个突触的信息,神经元可以对于不同时间传入的信息进行综合。故神经元对信息有时间综合特性。 从神经元轴突上传递的信息是等幅、恒宽、编码的离散电脉冲信号,故而是一个数字量。但在突触中神经递质的释放和树突中膜电位的变化是连续的。故而,这时说明突触有D/A功能。在神经元的树突膜电位高过一定阀值时,则又变成电脉冲方式由轴突传送出去。故而,这个过程说明神经元有A/D功能。
很明显,信息通过一个神经元传递时,神经元对信息执行了D/A、A/D转换过程。
从上面可知,神经元对信息的处理和传递有阀值,D/A、A/D和综合等一系列特性和功能。

⑹ 神经网络的特点

不论何种类型的人工神经网络,它们共同的特点是,大规模并行处理,分布式存储,弹性拓扑,高度冗余和非线性运算。因而具有很髙的运算速度,很强的联想能力,很强的适应性,很强的容错能力和自组织能力。这些特点和能力构成了人工神经网络模拟智能活动的技术基础,并在广阔的领域获得了重要的应用。例如,在通信领域,人工神经网络可以用于数据压缩、图像处理、矢量编码、差错控制(纠错和检错编码)、自适应信号处理、自适应均衡、信号检测、模式识别、ATM流量控制、路由选择、通信网优化和智能网管理等等。
人工神经网络的研究已与模糊逻辑的研究相结合,并在此基础上与人工智能的研究相补充,成为新一代智能系统的主要方向。这是因为人工神经网络主要模拟人类右脑的智能行为而人工智能主要模拟人类左脑的智能机理,人工神经网络与人工智能有机结合就能更好地模拟人类的各种智能活动。新一代智能系统将能更有力地帮助人类扩展他的智力与思维的功能,成为人类认识和改造世界的聪明的工具。因此,它将继续成为当代科学研究重要的前沿。

怎么理解信息几何对方法论

是理解深度神经网络学习机制的重要工具。
Shun-ichi Amari是日本理化所的荣休教授,神经网络研究的教父级人物,一生做出了大量开拓性的成果,包括独立发展了信息几何(Information Geometry),首次提出了随机梯度下降算法(1967)、连续吸引子神经网络(1977)、Amari-Hopfield模型、nature gradient等。
信息几何的理论在神经网络、热力学系统、控制系统以及Birkhoff系统中应用。信息几何是由日本学者Amari 提出的,其最初的基本思想是建立拥有黎曼度量和对偶联络的微分流形,并引入散度作为距离函数,建立了信息几何框架,并成功地将这一理论应用于解决统计理论、控制理论、神经网络、盲源信号分离、密码学, 热动力、生物学、经济学等领域的实际问题。
信息几何是基于微分几何发展出来的一套理论体系。主要应用于统计分析、控制理论、神经网络、量子力学、信息论等领域。

什么是离散型神经网络

近年来离散型时滞神经网络的稳定性一直是人们研究的热点问题。考虑到在网络中信号从一点传送到另一点可能要经过很多网络段,而不同的网络段一般有不同的传输条件,这就导致多个加性时滞。研究多个加性时滞的离散型神经网络的稳定性具有重要的理论意义和实际价值。对于这类神经网络,本文以两个加性时滞为例首先研究了确定参数情况下的全局指数稳定性问题。利用Lyapunov稳定性理论和线性矩阵不等式方法,得到了这类神经网络全局指数稳定性条件。该条件保守性小而易于检验。当参数不确定时,对于两个加性时滞的离散神经网络研究了鲁棒渐近稳定性问题,得到了这类不确定神经网络鲁棒渐近稳定的新条件。最后,对于确定参数情况下的稳定性结果,本文进行了改进而得到了简洁而保守性小的稳定性判据。论文按以下结构进行组织: 第一章介绍了多个加性时滞离散神经网络稳定性的研究背景,在此基础上提出了本文的研究问题。 第二章介绍了本文所需的预备知识,包括李亚普诺夫稳定性理论和不等式定理等。 第三章研究了确定参数情况下的带两个加性时滞离散神经网络的全局指数稳定性问题。通过构造Lyapunov-Krasovskii泛函,利用自由权值矩阵方法处理该Lyapunov-Krasovskii泛函的差分,得到了这类神经网络全局指数稳定性结果。所得稳定性条件可方便地使用MATLAB中的LMI工具箱检验。 第四章对范数有界参数不确定情况下的带两个加性时滞离散神经网络,研究了鲁棒渐近稳定性问题。采用李亚普诺夫函数方法,得到了这类不确定神经网络的鲁棒渐近稳定性判据,进一步举例说明了该判据的有效性。 第五章对于第三章所得结果进行了改进。通过构造新的Lyapunov-Krasovskii泛函,应用一种新技术计算该Lyapunov-Krasovskii泛函的差分,得到了新的稳定性结果。所得稳定性结果涉及的矩阵变量少,而且具有较小的保守性。 第六章是全文总结,并指出了下一步要研究的问题。

⑼ 什么是神经网络

神经网络是机器学习的一个流派。这是现今最火的一个学派。我们在第一讲中,已经知道人学习知识是通过神经元的连接,科学家通过模仿人脑机理发明了人工神经元。技术的进一步发展,多层神经元的连接,就形成了神经网络。那么神经网络是怎么搭建起来的呢?神经元是构建神经网络的最基本单位, 这张图就是一个人工神经元的原理图,非常简单,一个神经元由一个加法器和一个门限器组成。加法器有一些输入,代表从其他神经元来的信号,这些信号分别被乘上一个系数后在加法器里相加,如果相加的结果大于某个值,就“激活”这个神经元,接通到下个神经元,否则就不激活。原理就这么简单,做起来也很简单。今天所有的神经网络的基本单元都是这个。输入信号乘上的系数,我们也叫“权重”,就是网络的参数,玩神经网路就是调整权重,让它做你想让它做的事。 一个神经元只能识别一个东西,比如,当你训练给感知器会“认”数字“8”,你给它看任何一个数字,它就会告诉你,这是“8”还不是“8”。为了让机器识别更多更复杂的图像,我们就需要用更多的神经元。人的大脑由 1000 亿个神经元构成,人脑神经元组成了一个很复杂的三维立体结构。

⑽ 神经网络的工作原理

“人脑是如何工作的?”
“人类能否制作模拟人脑的人工神经元?”
多少年以来,人们从医学、生物学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度企图认识并解答上述问题。在寻找上述问题答案的研究过程中,逐渐形成了一个新兴的多学科交叉技术领域,称之为“神经网络”。神经网络的研究涉及众多学科领域,这些领域互相结合、相互渗透并相互推动。不同领域的科学家又从各自学科的兴趣与特色出发,提出不同的问题,从不同的角度进行研究。
人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对于写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。
所以网络学习的准则应该是:如果网络作出错误的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。
普通计算机的功能取决于程序中给出的知识和能力。显然,对于智能活动要通过总结编制程序将十分困难。
人工神经网络也具有初步的自适应与自组织能力。在学习或训练过程中改变突触权重值,以适应周围环境的要求。同一网络因学习方式及内容不同可具有不同的功能。人工神经网络是一个具有学习能力的系统,可以发展知识,以致超过设计者原有的知识水平。通常,它的学习训练方式可分为两种,一种是有监督或称有导师的学习,这时利用给定的样本标准进行分类或模仿;另一种是无监督学习或称无为导师学习,这时,只规定学习方式或某些规则,则具体的学习内容随系统所处环境 (即输入信号情况)而异,系统可以自动发现环境特征和规律性,具有更近似人脑的功能。
神经网络就像是一个爱学习的孩子,您教她的知识她是不会忘记而且会学以致用的。我们把学习集(Learning Set)中的每个输入加到神经网络中,并告诉神经网络输出应该是什么分类。在全部学习集都运行完成之后,神经网络就根据这些例子总结出她自己的想法,到底她是怎么归纳的就是一个黑盒了。之后我们就可以把测试集(Testing Set)中的测试例子用神经网络来分别作测试,如果测试通过(比如80%或90%的正确率),那么神经网络就构建成功了。我们之后就可以用这个神经网络来判断事务的分类了。
神经网络是通过对人脑的基本单元——神经元的建模和联接,探索模拟人脑神经系统功能的模型,并研制一种具有学习、联想、记忆和模式识别等智能信息处理功能的人工系统。神经网络的一个重要特性是它能够从环境中学习,并把学习的结果分布存储于网络的突触连接中。神经网络的学习是一个过程,在其所处环境的激励下,相继给网络输入一些样本模式,并按照一定的规则(学习算法)调整网络各层的权值矩阵,待网络各层权值都收敛到一定值,学习过程结束。然后我们就可以用生成的神经网络来对真实数据做分类。
人工神经网络早期的研究工作应追溯至20世纪40年代。下面以时间顺序,以着名的人物或某一方面突出的研究成果为线索,简要介绍